-
Notifications
You must be signed in to change notification settings - Fork 28.3k
/
context.py
1036 lines (893 loc) · 43 KB
/
context.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from __future__ import print_function
import os
import shutil
import signal
import sys
import threading
import warnings
from threading import RLock
from tempfile import NamedTemporaryFile
from py4j.protocol import Py4JError
from pyspark import accumulators
from pyspark.accumulators import Accumulator
from pyspark.broadcast import Broadcast, BroadcastPickleRegistry
from pyspark.conf import SparkConf
from pyspark.files import SparkFiles
from pyspark.java_gateway import launch_gateway
from pyspark.serializers import PickleSerializer, BatchedSerializer, UTF8Deserializer, \
PairDeserializer, AutoBatchedSerializer, NoOpSerializer
from pyspark.storagelevel import StorageLevel
from pyspark.rdd import RDD, _load_from_socket, ignore_unicode_prefix
from pyspark.traceback_utils import CallSite, first_spark_call
from pyspark.status import StatusTracker
from pyspark.profiler import ProfilerCollector, BasicProfiler
if sys.version > '3':
xrange = range
__all__ = ['SparkContext']
# These are special default configs for PySpark, they will overwrite
# the default ones for Spark if they are not configured by user.
DEFAULT_CONFIGS = {
"spark.serializer.objectStreamReset": 100,
"spark.rdd.compress": True,
}
class SparkContext(object):
"""
Main entry point for Spark functionality. A SparkContext represents the
connection to a Spark cluster, and can be used to create L{RDD} and
broadcast variables on that cluster.
"""
_gateway = None
_jvm = None
_next_accum_id = 0
_active_spark_context = None
_lock = RLock()
_python_includes = None # zip and egg files that need to be added to PYTHONPATH
PACKAGE_EXTENSIONS = ('.zip', '.egg', '.jar')
def __init__(self, master=None, appName=None, sparkHome=None, pyFiles=None,
environment=None, batchSize=0, serializer=PickleSerializer(), conf=None,
gateway=None, jsc=None, profiler_cls=BasicProfiler):
"""
Create a new SparkContext. At least the master and app name should be set,
either through the named parameters here or through C{conf}.
:param master: Cluster URL to connect to
(e.g. mesos://host:port, spark://host:port, local[4]).
:param appName: A name for your job, to display on the cluster web UI.
:param sparkHome: Location where Spark is installed on cluster nodes.
:param pyFiles: Collection of .zip or .py files to send to the cluster
and add to PYTHONPATH. These can be paths on the local file
system or HDFS, HTTP, HTTPS, or FTP URLs.
:param environment: A dictionary of environment variables to set on
worker nodes.
:param batchSize: The number of Python objects represented as a single
Java object. Set 1 to disable batching, 0 to automatically choose
the batch size based on object sizes, or -1 to use an unlimited
batch size
:param serializer: The serializer for RDDs.
:param conf: A L{SparkConf} object setting Spark properties.
:param gateway: Use an existing gateway and JVM, otherwise a new JVM
will be instantiated.
:param jsc: The JavaSparkContext instance (optional).
:param profiler_cls: A class of custom Profiler used to do profiling
(default is pyspark.profiler.BasicProfiler).
>>> from pyspark.context import SparkContext
>>> sc = SparkContext('local', 'test')
>>> sc2 = SparkContext('local', 'test2') # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError:...
"""
self._callsite = first_spark_call() or CallSite(None, None, None)
SparkContext._ensure_initialized(self, gateway=gateway, conf=conf)
try:
self._do_init(master, appName, sparkHome, pyFiles, environment, batchSize, serializer,
conf, jsc, profiler_cls)
except:
# If an error occurs, clean up in order to allow future SparkContext creation:
self.stop()
raise
def _do_init(self, master, appName, sparkHome, pyFiles, environment, batchSize, serializer,
conf, jsc, profiler_cls):
self.environment = environment or {}
# java gateway must have been launched at this point.
if conf is not None and conf._jconf is not None:
# conf has been initialized in JVM properly, so use conf directly. This represent the
# scenario that JVM has been launched before SparkConf is created (e.g. SparkContext is
# created and then stopped, and we create a new SparkConf and new SparkContext again)
self._conf = conf
else:
self._conf = SparkConf(_jvm=SparkContext._jvm)
if conf is not None:
for k, v in conf.getAll():
self._conf.set(k, v)
self._batchSize = batchSize # -1 represents an unlimited batch size
self._unbatched_serializer = serializer
if batchSize == 0:
self.serializer = AutoBatchedSerializer(self._unbatched_serializer)
else:
self.serializer = BatchedSerializer(self._unbatched_serializer,
batchSize)
# Set any parameters passed directly to us on the conf
if master:
self._conf.setMaster(master)
if appName:
self._conf.setAppName(appName)
if sparkHome:
self._conf.setSparkHome(sparkHome)
if environment:
for key, value in environment.items():
self._conf.setExecutorEnv(key, value)
for key, value in DEFAULT_CONFIGS.items():
self._conf.setIfMissing(key, value)
# Check that we have at least the required parameters
if not self._conf.contains("spark.master"):
raise Exception("A master URL must be set in your configuration")
if not self._conf.contains("spark.app.name"):
raise Exception("An application name must be set in your configuration")
# Read back our properties from the conf in case we loaded some of them from
# the classpath or an external config file
self.master = self._conf.get("spark.master")
self.appName = self._conf.get("spark.app.name")
self.sparkHome = self._conf.get("spark.home", None)
for (k, v) in self._conf.getAll():
if k.startswith("spark.executorEnv."):
varName = k[len("spark.executorEnv."):]
self.environment[varName] = v
self.environment["PYTHONHASHSEED"] = os.environ.get("PYTHONHASHSEED", "0")
# Create the Java SparkContext through Py4J
self._jsc = jsc or self._initialize_context(self._conf._jconf)
# Reset the SparkConf to the one actually used by the SparkContext in JVM.
self._conf = SparkConf(_jconf=self._jsc.sc().conf())
# Create a single Accumulator in Java that we'll send all our updates through;
# they will be passed back to us through a TCP server
self._accumulatorServer = accumulators._start_update_server()
(host, port) = self._accumulatorServer.server_address
self._javaAccumulator = self._jvm.PythonAccumulatorV2(host, port)
self._jsc.sc().register(self._javaAccumulator)
self.pythonExec = os.environ.get("PYSPARK_PYTHON", 'python')
self.pythonVer = "%d.%d" % sys.version_info[:2]
# Broadcast's __reduce__ method stores Broadcast instances here.
# This allows other code to determine which Broadcast instances have
# been pickled, so it can determine which Java broadcast objects to
# send.
self._pickled_broadcast_vars = BroadcastPickleRegistry()
SparkFiles._sc = self
root_dir = SparkFiles.getRootDirectory()
sys.path.insert(1, root_dir)
# Deploy any code dependencies specified in the constructor
self._python_includes = list()
for path in (pyFiles or []):
self.addPyFile(path)
# Deploy code dependencies set by spark-submit; these will already have been added
# with SparkContext.addFile, so we just need to add them to the PYTHONPATH
for path in self._conf.get("spark.submit.pyFiles", "").split(","):
if path != "":
(dirname, filename) = os.path.split(path)
if filename[-4:].lower() in self.PACKAGE_EXTENSIONS:
self._python_includes.append(filename)
sys.path.insert(1, os.path.join(SparkFiles.getRootDirectory(), filename))
# Create a temporary directory inside spark.local.dir:
local_dir = self._jvm.org.apache.spark.util.Utils.getLocalDir(self._jsc.sc().conf())
self._temp_dir = \
self._jvm.org.apache.spark.util.Utils.createTempDir(local_dir, "pyspark") \
.getAbsolutePath()
# profiling stats collected for each PythonRDD
if self._conf.get("spark.python.profile", "false") == "true":
dump_path = self._conf.get("spark.python.profile.dump", None)
self.profiler_collector = ProfilerCollector(profiler_cls, dump_path)
else:
self.profiler_collector = None
# create a signal handler which would be invoked on receiving SIGINT
def signal_handler(signal, frame):
self.cancelAllJobs()
raise KeyboardInterrupt()
# see http://stackoverflow.com/questions/23206787/
if isinstance(threading.current_thread(), threading._MainThread):
signal.signal(signal.SIGINT, signal_handler)
def __repr__(self):
return "<SparkContext master={master} appName={appName}>".format(
master=self.master,
appName=self.appName,
)
def _repr_html_(self):
return """
<div>
<p><b>SparkContext</b></p>
<p><a href="{sc.uiWebUrl}">Spark UI</a></p>
<dl>
<dt>Version</dt>
<dd><code>v{sc.version}</code></dd>
<dt>Master</dt>
<dd><code>{sc.master}</code></dd>
<dt>AppName</dt>
<dd><code>{sc.appName}</code></dd>
</dl>
</div>
""".format(
sc=self
)
def _initialize_context(self, jconf):
"""
Initialize SparkContext in function to allow subclass specific initialization
"""
return self._jvm.JavaSparkContext(jconf)
@classmethod
def _ensure_initialized(cls, instance=None, gateway=None, conf=None):
"""
Checks whether a SparkContext is initialized or not.
Throws error if a SparkContext is already running.
"""
with SparkContext._lock:
if not SparkContext._gateway:
SparkContext._gateway = gateway or launch_gateway(conf)
SparkContext._jvm = SparkContext._gateway.jvm
if instance:
if (SparkContext._active_spark_context and
SparkContext._active_spark_context != instance):
currentMaster = SparkContext._active_spark_context.master
currentAppName = SparkContext._active_spark_context.appName
callsite = SparkContext._active_spark_context._callsite
# Raise error if there is already a running Spark context
raise ValueError(
"Cannot run multiple SparkContexts at once; "
"existing SparkContext(app=%s, master=%s)"
" created by %s at %s:%s "
% (currentAppName, currentMaster,
callsite.function, callsite.file, callsite.linenum))
else:
SparkContext._active_spark_context = instance
def __getnewargs__(self):
# This method is called when attempting to pickle SparkContext, which is always an error:
raise Exception(
"It appears that you are attempting to reference SparkContext from a broadcast "
"variable, action, or transformation. SparkContext can only be used on the driver, "
"not in code that it run on workers. For more information, see SPARK-5063."
)
def __enter__(self):
"""
Enable 'with SparkContext(...) as sc: app(sc)' syntax.
"""
return self
def __exit__(self, type, value, trace):
"""
Enable 'with SparkContext(...) as sc: app' syntax.
Specifically stop the context on exit of the with block.
"""
self.stop()
@classmethod
def getOrCreate(cls, conf=None):
"""
Get or instantiate a SparkContext and register it as a singleton object.
:param conf: SparkConf (optional)
"""
with SparkContext._lock:
if SparkContext._active_spark_context is None:
SparkContext(conf=conf or SparkConf())
return SparkContext._active_spark_context
def setLogLevel(self, logLevel):
"""
Control our logLevel. This overrides any user-defined log settings.
Valid log levels include: ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, WARN
"""
self._jsc.setLogLevel(logLevel)
@classmethod
def setSystemProperty(cls, key, value):
"""
Set a Java system property, such as spark.executor.memory. This must
must be invoked before instantiating SparkContext.
"""
SparkContext._ensure_initialized()
SparkContext._jvm.java.lang.System.setProperty(key, value)
@property
def version(self):
"""
The version of Spark on which this application is running.
"""
return self._jsc.version()
@property
@ignore_unicode_prefix
def applicationId(self):
"""
A unique identifier for the Spark application.
Its format depends on the scheduler implementation.
* in case of local spark app something like 'local-1433865536131'
* in case of YARN something like 'application_1433865536131_34483'
>>> sc.applicationId # doctest: +ELLIPSIS
u'local-...'
"""
return self._jsc.sc().applicationId()
@property
def uiWebUrl(self):
"""Return the URL of the SparkUI instance started by this SparkContext"""
return self._jsc.sc().uiWebUrl().get()
@property
def startTime(self):
"""Return the epoch time when the Spark Context was started."""
return self._jsc.startTime()
@property
def defaultParallelism(self):
"""
Default level of parallelism to use when not given by user (e.g. for
reduce tasks)
"""
return self._jsc.sc().defaultParallelism()
@property
def defaultMinPartitions(self):
"""
Default min number of partitions for Hadoop RDDs when not given by user
"""
return self._jsc.sc().defaultMinPartitions()
def stop(self):
"""
Shut down the SparkContext.
"""
if getattr(self, "_jsc", None):
try:
self._jsc.stop()
except Py4JError:
# Case: SPARK-18523
warnings.warn(
'Unable to cleanly shutdown Spark JVM process.'
' It is possible that the process has crashed,'
' been killed or may also be in a zombie state.',
RuntimeWarning
)
pass
finally:
self._jsc = None
if getattr(self, "_accumulatorServer", None):
self._accumulatorServer.shutdown()
self._accumulatorServer = None
with SparkContext._lock:
SparkContext._active_spark_context = None
def emptyRDD(self):
"""
Create an RDD that has no partitions or elements.
"""
return RDD(self._jsc.emptyRDD(), self, NoOpSerializer())
def range(self, start, end=None, step=1, numSlices=None):
"""
Create a new RDD of int containing elements from `start` to `end`
(exclusive), increased by `step` every element. Can be called the same
way as python's built-in range() function. If called with a single argument,
the argument is interpreted as `end`, and `start` is set to 0.
:param start: the start value
:param end: the end value (exclusive)
:param step: the incremental step (default: 1)
:param numSlices: the number of partitions of the new RDD
:return: An RDD of int
>>> sc.range(5).collect()
[0, 1, 2, 3, 4]
>>> sc.range(2, 4).collect()
[2, 3]
>>> sc.range(1, 7, 2).collect()
[1, 3, 5]
"""
if end is None:
end = start
start = 0
return self.parallelize(xrange(start, end, step), numSlices)
def parallelize(self, c, numSlices=None):
"""
Distribute a local Python collection to form an RDD. Using xrange
is recommended if the input represents a range for performance.
>>> sc.parallelize([0, 2, 3, 4, 6], 5).glom().collect()
[[0], [2], [3], [4], [6]]
>>> sc.parallelize(xrange(0, 6, 2), 5).glom().collect()
[[], [0], [], [2], [4]]
"""
numSlices = int(numSlices) if numSlices is not None else self.defaultParallelism
if isinstance(c, xrange):
size = len(c)
if size == 0:
return self.parallelize([], numSlices)
step = c[1] - c[0] if size > 1 else 1
start0 = c[0]
def getStart(split):
return start0 + int((split * size / numSlices)) * step
def f(split, iterator):
return xrange(getStart(split), getStart(split + 1), step)
return self.parallelize([], numSlices).mapPartitionsWithIndex(f)
# Calling the Java parallelize() method with an ArrayList is too slow,
# because it sends O(n) Py4J commands. As an alternative, serialized
# objects are written to a file and loaded through textFile().
tempFile = NamedTemporaryFile(delete=False, dir=self._temp_dir)
try:
# Make sure we distribute data evenly if it's smaller than self.batchSize
if "__len__" not in dir(c):
c = list(c) # Make it a list so we can compute its length
batchSize = max(1, min(len(c) // numSlices, self._batchSize or 1024))
serializer = BatchedSerializer(self._unbatched_serializer, batchSize)
serializer.dump_stream(c, tempFile)
tempFile.close()
readRDDFromFile = self._jvm.PythonRDD.readRDDFromFile
jrdd = readRDDFromFile(self._jsc, tempFile.name, numSlices)
finally:
# readRDDFromFile eagerily reads the file so we can delete right after.
os.unlink(tempFile.name)
return RDD(jrdd, self, serializer)
def pickleFile(self, name, minPartitions=None):
"""
Load an RDD previously saved using L{RDD.saveAsPickleFile} method.
>>> tmpFile = NamedTemporaryFile(delete=True)
>>> tmpFile.close()
>>> sc.parallelize(range(10)).saveAsPickleFile(tmpFile.name, 5)
>>> sorted(sc.pickleFile(tmpFile.name, 3).collect())
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
"""
minPartitions = minPartitions or self.defaultMinPartitions
return RDD(self._jsc.objectFile(name, minPartitions), self)
@ignore_unicode_prefix
def textFile(self, name, minPartitions=None, use_unicode=True):
"""
Read a text file from HDFS, a local file system (available on all
nodes), or any Hadoop-supported file system URI, and return it as an
RDD of Strings.
If use_unicode is False, the strings will be kept as `str` (encoding
as `utf-8`), which is faster and smaller than unicode. (Added in
Spark 1.2)
>>> path = os.path.join(tempdir, "sample-text.txt")
>>> with open(path, "w") as testFile:
... _ = testFile.write("Hello world!")
>>> textFile = sc.textFile(path)
>>> textFile.collect()
[u'Hello world!']
"""
minPartitions = minPartitions or min(self.defaultParallelism, 2)
return RDD(self._jsc.textFile(name, minPartitions), self,
UTF8Deserializer(use_unicode))
@ignore_unicode_prefix
def wholeTextFiles(self, path, minPartitions=None, use_unicode=True):
"""
Read a directory of text files from HDFS, a local file system
(available on all nodes), or any Hadoop-supported file system
URI. Each file is read as a single record and returned in a
key-value pair, where the key is the path of each file, the
value is the content of each file.
If use_unicode is False, the strings will be kept as `str` (encoding
as `utf-8`), which is faster and smaller than unicode. (Added in
Spark 1.2)
For example, if you have the following files::
hdfs://a-hdfs-path/part-00000
hdfs://a-hdfs-path/part-00001
...
hdfs://a-hdfs-path/part-nnnnn
Do C{rdd = sparkContext.wholeTextFiles("hdfs://a-hdfs-path")},
then C{rdd} contains::
(a-hdfs-path/part-00000, its content)
(a-hdfs-path/part-00001, its content)
...
(a-hdfs-path/part-nnnnn, its content)
.. note:: Small files are preferred, as each file will be loaded
fully in memory.
>>> dirPath = os.path.join(tempdir, "files")
>>> os.mkdir(dirPath)
>>> with open(os.path.join(dirPath, "1.txt"), "w") as file1:
... _ = file1.write("1")
>>> with open(os.path.join(dirPath, "2.txt"), "w") as file2:
... _ = file2.write("2")
>>> textFiles = sc.wholeTextFiles(dirPath)
>>> sorted(textFiles.collect())
[(u'.../1.txt', u'1'), (u'.../2.txt', u'2')]
"""
minPartitions = minPartitions or self.defaultMinPartitions
return RDD(self._jsc.wholeTextFiles(path, minPartitions), self,
PairDeserializer(UTF8Deserializer(use_unicode), UTF8Deserializer(use_unicode)))
def binaryFiles(self, path, minPartitions=None):
"""
.. note:: Experimental
Read a directory of binary files from HDFS, a local file system
(available on all nodes), or any Hadoop-supported file system URI
as a byte array. Each file is read as a single record and returned
in a key-value pair, where the key is the path of each file, the
value is the content of each file.
.. note:: Small files are preferred, large file is also allowable, but
may cause bad performance.
"""
minPartitions = minPartitions or self.defaultMinPartitions
return RDD(self._jsc.binaryFiles(path, minPartitions), self,
PairDeserializer(UTF8Deserializer(), NoOpSerializer()))
def binaryRecords(self, path, recordLength):
"""
.. note:: Experimental
Load data from a flat binary file, assuming each record is a set of numbers
with the specified numerical format (see ByteBuffer), and the number of
bytes per record is constant.
:param path: Directory to the input data files
:param recordLength: The length at which to split the records
"""
return RDD(self._jsc.binaryRecords(path, recordLength), self, NoOpSerializer())
def _dictToJavaMap(self, d):
jm = self._jvm.java.util.HashMap()
if not d:
d = {}
for k, v in d.items():
jm[k] = v
return jm
def sequenceFile(self, path, keyClass=None, valueClass=None, keyConverter=None,
valueConverter=None, minSplits=None, batchSize=0):
"""
Read a Hadoop SequenceFile with arbitrary key and value Writable class from HDFS,
a local file system (available on all nodes), or any Hadoop-supported file system URI.
The mechanism is as follows:
1. A Java RDD is created from the SequenceFile or other InputFormat, and the key
and value Writable classes
2. Serialization is attempted via Pyrolite pickling
3. If this fails, the fallback is to call 'toString' on each key and value
4. C{PickleSerializer} is used to deserialize pickled objects on the Python side
:param path: path to sequncefile
:param keyClass: fully qualified classname of key Writable class
(e.g. "org.apache.hadoop.io.Text")
:param valueClass: fully qualified classname of value Writable class
(e.g. "org.apache.hadoop.io.LongWritable")
:param keyConverter:
:param valueConverter:
:param minSplits: minimum splits in dataset
(default min(2, sc.defaultParallelism))
:param batchSize: The number of Python objects represented as a single
Java object. (default 0, choose batchSize automatically)
"""
minSplits = minSplits or min(self.defaultParallelism, 2)
jrdd = self._jvm.PythonRDD.sequenceFile(self._jsc, path, keyClass, valueClass,
keyConverter, valueConverter, minSplits, batchSize)
return RDD(jrdd, self)
def newAPIHadoopFile(self, path, inputFormatClass, keyClass, valueClass, keyConverter=None,
valueConverter=None, conf=None, batchSize=0):
"""
Read a 'new API' Hadoop InputFormat with arbitrary key and value class from HDFS,
a local file system (available on all nodes), or any Hadoop-supported file system URI.
The mechanism is the same as for sc.sequenceFile.
A Hadoop configuration can be passed in as a Python dict. This will be converted into a
Configuration in Java
:param path: path to Hadoop file
:param inputFormatClass: fully qualified classname of Hadoop InputFormat
(e.g. "org.apache.hadoop.mapreduce.lib.input.TextInputFormat")
:param keyClass: fully qualified classname of key Writable class
(e.g. "org.apache.hadoop.io.Text")
:param valueClass: fully qualified classname of value Writable class
(e.g. "org.apache.hadoop.io.LongWritable")
:param keyConverter: (None by default)
:param valueConverter: (None by default)
:param conf: Hadoop configuration, passed in as a dict
(None by default)
:param batchSize: The number of Python objects represented as a single
Java object. (default 0, choose batchSize automatically)
"""
jconf = self._dictToJavaMap(conf)
jrdd = self._jvm.PythonRDD.newAPIHadoopFile(self._jsc, path, inputFormatClass, keyClass,
valueClass, keyConverter, valueConverter,
jconf, batchSize)
return RDD(jrdd, self)
def newAPIHadoopRDD(self, inputFormatClass, keyClass, valueClass, keyConverter=None,
valueConverter=None, conf=None, batchSize=0):
"""
Read a 'new API' Hadoop InputFormat with arbitrary key and value class, from an arbitrary
Hadoop configuration, which is passed in as a Python dict.
This will be converted into a Configuration in Java.
The mechanism is the same as for sc.sequenceFile.
:param inputFormatClass: fully qualified classname of Hadoop InputFormat
(e.g. "org.apache.hadoop.mapreduce.lib.input.TextInputFormat")
:param keyClass: fully qualified classname of key Writable class
(e.g. "org.apache.hadoop.io.Text")
:param valueClass: fully qualified classname of value Writable class
(e.g. "org.apache.hadoop.io.LongWritable")
:param keyConverter: (None by default)
:param valueConverter: (None by default)
:param conf: Hadoop configuration, passed in as a dict
(None by default)
:param batchSize: The number of Python objects represented as a single
Java object. (default 0, choose batchSize automatically)
"""
jconf = self._dictToJavaMap(conf)
jrdd = self._jvm.PythonRDD.newAPIHadoopRDD(self._jsc, inputFormatClass, keyClass,
valueClass, keyConverter, valueConverter,
jconf, batchSize)
return RDD(jrdd, self)
def hadoopFile(self, path, inputFormatClass, keyClass, valueClass, keyConverter=None,
valueConverter=None, conf=None, batchSize=0):
"""
Read an 'old' Hadoop InputFormat with arbitrary key and value class from HDFS,
a local file system (available on all nodes), or any Hadoop-supported file system URI.
The mechanism is the same as for sc.sequenceFile.
A Hadoop configuration can be passed in as a Python dict. This will be converted into a
Configuration in Java.
:param path: path to Hadoop file
:param inputFormatClass: fully qualified classname of Hadoop InputFormat
(e.g. "org.apache.hadoop.mapred.TextInputFormat")
:param keyClass: fully qualified classname of key Writable class
(e.g. "org.apache.hadoop.io.Text")
:param valueClass: fully qualified classname of value Writable class
(e.g. "org.apache.hadoop.io.LongWritable")
:param keyConverter: (None by default)
:param valueConverter: (None by default)
:param conf: Hadoop configuration, passed in as a dict
(None by default)
:param batchSize: The number of Python objects represented as a single
Java object. (default 0, choose batchSize automatically)
"""
jconf = self._dictToJavaMap(conf)
jrdd = self._jvm.PythonRDD.hadoopFile(self._jsc, path, inputFormatClass, keyClass,
valueClass, keyConverter, valueConverter,
jconf, batchSize)
return RDD(jrdd, self)
def hadoopRDD(self, inputFormatClass, keyClass, valueClass, keyConverter=None,
valueConverter=None, conf=None, batchSize=0):
"""
Read an 'old' Hadoop InputFormat with arbitrary key and value class, from an arbitrary
Hadoop configuration, which is passed in as a Python dict.
This will be converted into a Configuration in Java.
The mechanism is the same as for sc.sequenceFile.
:param inputFormatClass: fully qualified classname of Hadoop InputFormat
(e.g. "org.apache.hadoop.mapred.TextInputFormat")
:param keyClass: fully qualified classname of key Writable class
(e.g. "org.apache.hadoop.io.Text")
:param valueClass: fully qualified classname of value Writable class
(e.g. "org.apache.hadoop.io.LongWritable")
:param keyConverter: (None by default)
:param valueConverter: (None by default)
:param conf: Hadoop configuration, passed in as a dict
(None by default)
:param batchSize: The number of Python objects represented as a single
Java object. (default 0, choose batchSize automatically)
"""
jconf = self._dictToJavaMap(conf)
jrdd = self._jvm.PythonRDD.hadoopRDD(self._jsc, inputFormatClass, keyClass,
valueClass, keyConverter, valueConverter,
jconf, batchSize)
return RDD(jrdd, self)
def _checkpointFile(self, name, input_deserializer):
jrdd = self._jsc.checkpointFile(name)
return RDD(jrdd, self, input_deserializer)
@ignore_unicode_prefix
def union(self, rdds):
"""
Build the union of a list of RDDs.
This supports unions() of RDDs with different serialized formats,
although this forces them to be reserialized using the default
serializer:
>>> path = os.path.join(tempdir, "union-text.txt")
>>> with open(path, "w") as testFile:
... _ = testFile.write("Hello")
>>> textFile = sc.textFile(path)
>>> textFile.collect()
[u'Hello']
>>> parallelized = sc.parallelize(["World!"])
>>> sorted(sc.union([textFile, parallelized]).collect())
[u'Hello', 'World!']
"""
first_jrdd_deserializer = rdds[0]._jrdd_deserializer
if any(x._jrdd_deserializer != first_jrdd_deserializer for x in rdds):
rdds = [x._reserialize() for x in rdds]
first = rdds[0]._jrdd
rest = [x._jrdd for x in rdds[1:]]
return RDD(self._jsc.union(first, rest), self, rdds[0]._jrdd_deserializer)
def broadcast(self, value):
"""
Broadcast a read-only variable to the cluster, returning a
L{Broadcast<pyspark.broadcast.Broadcast>}
object for reading it in distributed functions. The variable will
be sent to each cluster only once.
"""
return Broadcast(self, value, self._pickled_broadcast_vars)
def accumulator(self, value, accum_param=None):
"""
Create an L{Accumulator} with the given initial value, using a given
L{AccumulatorParam} helper object to define how to add values of the
data type if provided. Default AccumulatorParams are used for integers
and floating-point numbers if you do not provide one. For other types,
a custom AccumulatorParam can be used.
"""
if accum_param is None:
if isinstance(value, int):
accum_param = accumulators.INT_ACCUMULATOR_PARAM
elif isinstance(value, float):
accum_param = accumulators.FLOAT_ACCUMULATOR_PARAM
elif isinstance(value, complex):
accum_param = accumulators.COMPLEX_ACCUMULATOR_PARAM
else:
raise TypeError("No default accumulator param for type %s" % type(value))
SparkContext._next_accum_id += 1
return Accumulator(SparkContext._next_accum_id - 1, value, accum_param)
def addFile(self, path, recursive=False):
"""
Add a file to be downloaded with this Spark job on every node.
The C{path} passed can be either a local file, a file in HDFS
(or other Hadoop-supported filesystems), or an HTTP, HTTPS or
FTP URI.
To access the file in Spark jobs, use
L{SparkFiles.get(fileName)<pyspark.files.SparkFiles.get>} with the
filename to find its download location.
A directory can be given if the recursive option is set to True.
Currently directories are only supported for Hadoop-supported filesystems.
>>> from pyspark import SparkFiles
>>> path = os.path.join(tempdir, "test.txt")
>>> with open(path, "w") as testFile:
... _ = testFile.write("100")
>>> sc.addFile(path)
>>> def func(iterator):
... with open(SparkFiles.get("test.txt")) as testFile:
... fileVal = int(testFile.readline())
... return [x * fileVal for x in iterator]
>>> sc.parallelize([1, 2, 3, 4]).mapPartitions(func).collect()
[100, 200, 300, 400]
"""
self._jsc.sc().addFile(path, recursive)
def addPyFile(self, path):
"""
Add a .py or .zip dependency for all tasks to be executed on this
SparkContext in the future. The C{path} passed can be either a local
file, a file in HDFS (or other Hadoop-supported filesystems), or an
HTTP, HTTPS or FTP URI.
"""
self.addFile(path)
(dirname, filename) = os.path.split(path) # dirname may be directory or HDFS/S3 prefix
if filename[-4:].lower() in self.PACKAGE_EXTENSIONS:
self._python_includes.append(filename)
# for tests in local mode
sys.path.insert(1, os.path.join(SparkFiles.getRootDirectory(), filename))
if sys.version > '3':
import importlib
importlib.invalidate_caches()
def setCheckpointDir(self, dirName):
"""
Set the directory under which RDDs are going to be checkpointed. The
directory must be a HDFS path if running on a cluster.
"""
self._jsc.sc().setCheckpointDir(dirName)
def _getJavaStorageLevel(self, storageLevel):
"""
Returns a Java StorageLevel based on a pyspark.StorageLevel.
"""
if not isinstance(storageLevel, StorageLevel):
raise Exception("storageLevel must be of type pyspark.StorageLevel")
newStorageLevel = self._jvm.org.apache.spark.storage.StorageLevel
return newStorageLevel(storageLevel.useDisk,
storageLevel.useMemory,
storageLevel.useOffHeap,
storageLevel.deserialized,
storageLevel.replication)
def setJobGroup(self, groupId, description, interruptOnCancel=False):
"""
Assigns a group ID to all the jobs started by this thread until the group ID is set to a
different value or cleared.
Often, a unit of execution in an application consists of multiple Spark actions or jobs.
Application programmers can use this method to group all those jobs together and give a
group description. Once set, the Spark web UI will associate such jobs with this group.
The application can use L{SparkContext.cancelJobGroup} to cancel all
running jobs in this group.
>>> import threading
>>> from time import sleep
>>> result = "Not Set"
>>> lock = threading.Lock()
>>> def map_func(x):
... sleep(100)
... raise Exception("Task should have been cancelled")
>>> def start_job(x):
... global result
... try:
... sc.setJobGroup("job_to_cancel", "some description")
... result = sc.parallelize(range(x)).map(map_func).collect()
... except Exception as e:
... result = "Cancelled"
... lock.release()
>>> def stop_job():
... sleep(5)
... sc.cancelJobGroup("job_to_cancel")
>>> supress = lock.acquire()
>>> supress = threading.Thread(target=start_job, args=(10,)).start()
>>> supress = threading.Thread(target=stop_job).start()
>>> supress = lock.acquire()
>>> print(result)
Cancelled
If interruptOnCancel is set to true for the job group, then job cancellation will result
in Thread.interrupt() being called on the job's executor threads. This is useful to help
ensure that the tasks are actually stopped in a timely manner, but is off by default due
to HDFS-1208, where HDFS may respond to Thread.interrupt() by marking nodes as dead.
"""
self._jsc.setJobGroup(groupId, description, interruptOnCancel)
def setLocalProperty(self, key, value):
"""
Set a local property that affects jobs submitted from this thread, such as the
Spark fair scheduler pool.
"""
self._jsc.setLocalProperty(key, value)
def getLocalProperty(self, key):
"""
Get a local property set in this thread, or null if it is missing. See
L{setLocalProperty}
"""
return self._jsc.getLocalProperty(key)
def setJobDescription(self, value):
"""
Set a human readable description of the current job.
"""
self._jsc.setJobDescription(value)
def sparkUser(self):
"""
Get SPARK_USER for user who is running SparkContext.
"""
return self._jsc.sc().sparkUser()
def cancelJobGroup(self, groupId):
"""
Cancel active jobs for the specified group. See L{SparkContext.setJobGroup}
for more information.
"""
self._jsc.sc().cancelJobGroup(groupId)
def cancelAllJobs(self):
"""
Cancel all jobs that have been scheduled or are running.
"""
self._jsc.sc().cancelAllJobs()
def statusTracker(self):
"""
Return :class:`StatusTracker` object
"""
return StatusTracker(self._jsc.statusTracker())
def runJob(self, rdd, partitionFunc, partitions=None, allowLocal=False):
"""
Executes the given partitionFunc on the specified set of partitions,
returning the result as an array of elements.
If 'partitions' is not specified, this will run over all partitions.
>>> myRDD = sc.parallelize(range(6), 3)
>>> sc.runJob(myRDD, lambda part: [x * x for x in part])
[0, 1, 4, 9, 16, 25]
>>> myRDD = sc.parallelize(range(6), 3)
>>> sc.runJob(myRDD, lambda part: [x * x for x in part], [0, 2], True)
[0, 1, 16, 25]
"""
if partitions is None:
partitions = range(rdd._jrdd.partitions().size())
# Implementation note: This is implemented as a mapPartitions followed
# by runJob() in order to avoid having to pass a Python lambda into
# SparkContext#runJob.
mappedRDD = rdd.mapPartitions(partitionFunc)
port = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)
return list(_load_from_socket(port, mappedRDD._jrdd_deserializer))
def show_profiles(self):
""" Print the profile stats to stdout """
if self.profiler_collector is not None: