-
Notifications
You must be signed in to change notification settings - Fork 6
/
run_commands.txt
103 lines (57 loc) · 5.38 KB
/
run_commands.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
CUDA_VISIBLE_DEVICES=1 python train.py --workers=10 --lr=0.01 --arch=AlexNetSobel -v=2 --sobel_normalized
CUDA_VISIBLE_DEVICES=4 python train.py --arch=AlexNetSobel --unsupervised --workers=8 -nc=10000 -v=2 --sobel_normalized --reset_fc
CUDA_VISIBLE_DEVICES=4 python train.py --arch=AlexNetSobel --unsupervised --workers=8 -nc=10000 -v=2 --sobel_normalized -l=fc6
CUDA_VISIBLE_DEVICES=5 python train.py --arch=AlexNetSobel --unsupervised --workers=8 -nc=1000 -v=2 --sobel_normalized
CUDA_VISIBLE_DEVICES=5 python train.py --arch=AlexNetSobel --unsupervised --workers=8 -nc=1000 -v=2 --sobel_normalized --lr=0.0011
-- hcigpu01
CUDA_VISIBLE_DEVICES=1 python train.py --workers=16 --lr=0.1 -fdf
CUDA_VISIBLE_DEVICES=3 python train.py --lr=0.01 --workers=8 -fdf
-- hcigpi02
CUDA_VISIBLE_DEVICES=2 python train.py --arch=AlexNetSobel --unsupervised --workers=12 -nc=10000 --sobel_normalized -dp7=0 -fdf
-- compvisgpu03
CUDA_VISIBLE_DEVICES=0 python train.py --arch=AlexNetSobel --unsupervised --workers=20 -nc=10000 --lr=0.001 -scheduler=cyclic --decay_step=25 --reset_lr --decay_gamma=0.3 --cycle=105 -o results/AlexNetSobel_lr0.01_unsup_nc10000_lfc7_rec1_
-- compvisgpu04
CUDA_VISIBLE_DEVICES=3 python train.py --arch=AlexNetSobel --unsupervised --workers=12 -nc=10000 --sobel_normalized --reset_fc -dp7=0
CUDA_VISIBLE_DEVICES=1 python train.py --workers=6 --lr=0.01 --arch=AlexNetSobel -v=1 -o results/AlexNetSobel_lr0.01_labels_v1_ -fdf -dp7=0.3
CUDA_VISIBLE_DEVICES=0 python train.py --arch=AlexNetSobel --unsupervised --workers=10 -nc=10000 -v=1 --sobel_normalized -l=fc6 -fdf
-
-- hgsgpu01
python train.py --arch=AlexNetSobel --unsupervised --workers=12 -nc=10000 -v=1 --sobel_normalized +
python train.py --arch=AlexNetSobel --unsupervised --workers=12 -nc=10000 -v=1 --sobel_normalized --reset_fc +
python train.py --arch=AlexNetSobel --unsupervised --workers=12 -nc=1000 -v=1 --sobel_normalized +
python train.py --arch=AlexNetSobel --unsupervised --workers=10 -nc=10000 -v=1 --sobel_normalized --lr=0.1 --reset_fc -o results/AlexNetSobel_lr0.1_unsup_v1_normed_nc10000_lfc7_rec1_reset-fc_ -fdf
-- hgsgpu02
python train.py --arch=AlexNetSobel --unsupervised --workers=12 -nc=10000 --sobel_normalized -l=fc6 --reset_fc -fdf
python train.py --arch=AlexNetSobel --unsupervised --workers=12 -nc=10000 --scheduler=multi_step2 --sobel_normalized -fdf -suf=clean
python train.py --arch=AlexNetSobel --unsupervised --workers=12 -nc=10000 --scheduler=multi_step2 -fdf -suf=clean
python train.py --workers=8 --lr=0.1 --arch=AlexNetSobel -v=2 --sobel_normalized --decay_step=20 -suf="decstep20" +
--stopped (HCI)
python train.py --workers=8 --lr=0.01 --arch=AlexNetSobel -v=1 --sobel_normalized -fdf --scheduler=cyclic --decay_step=1 --reset_lr --decay_gamma=0.6 --cycle=12
CUDA_VISIBLE_DEVICES=0 python train.py --arch=AlexNetSobel --unsupervised --workers=12 -nc=10000 -v2
CUDA_VISIBLE_DEVICES=3 python train.py --workers=12 --lr=0.1 --arch=AlexNetSobel -fdf -o ~/workspace/deep_clustering/results/AlexNetSobel_lr0.01_labels_
python train.py --arch=AlexNetSobel --unsupervised --workers=10 -nc=10000 -v=2 --lr=0.001 +
--killed
GOOOD
--------
-- hgsgpu01
CUDA_VISIBLE_DEVICES=0 python train.py --arch=AlexNetSobel --unsupervised --workers=8 -nc=10000 --lr=0.01 --scheduler=step --decay_step=100 --decay_gamma=0.1 -fdf --buffer_size=1500 -suf="good"
CUDA_VISIBLE_DEVICES=4 python train.py --arch=AlexNetSobel --unsupervised --workers=8 -nc=10000 --lr=0.1 --scheduler=step --decay_step=100 --decay_gamma=0.1 -fdf --buffer_size=1500 -suf="good"
-- hgsgpu02
python train.py --arch=AlexNetSobel --unsupervised --workers=12 -nc=10000 --scheduler=multi_step2 --sobel_normalized -fdf -suf=clean
python train.py --arch=AlexNetSobel --unsupervised --workers=12 -nc=10000 --scheduler=multi_step2 -fdf -suf=clean
-- compvisgpu03
CUDA_VISIBLE_DEVICES=0 python train.py --arch=AlexNetSobel --unsupervised --workers=12 -nc=10000 --lr=0.0003 --scheduler=cyclic --decay_step=30 --reset_lr --decay_gamma=0.3 --cycle=63 -o results/AlexNetSobel_lr0.01_unsup_nc10000_lfc7_rec1_
CUDA_VISIBLE_DEVICES=1 python train.py --arch=AlexNetSobel --unsupervised --workers=8 -nc=10000 --lr=0.1 --scheduler=step --decay_step=100 --decay_gamma=0.1 -fdf --buffer_size=1500 -suf="good" --reset_fc (stopped)
-- compvisgpu04
CUDA_VISIBLE_DEVICES=3 python train.py --arch=AlexNetSobel --unsupervised --workers=12 -nc=10000 --sobel_normalized --reset_fc -dp7=0
-- hcigpu01
python train.py --arch=AlexNetSobel --unsupervised --workers=8 -nc=10000 --sobel_normalized --reset_fc --scheduler=step --lr=0.01 --min_lr=0.001 --reset_lr --decay_step=20 --decay_gamma=0.1 --from_best (TO BE RUN)
-- hcigpu02
CUDA_VISIBLE_DEVICES=2 python train.py --arch=AlexNetSobel --unsupervised --workers=8 -nc=10000 --lr=0.1 --scheduler=step --decay_step=100 --decay_gamma=0.1 -fdf --buffer_size=1500 -suf="good2" --reset_fc
-- compgpu2
CUDA_VISIBLE_DEVICES=1 python train.py --arch=AlexNetSobel --unsupervised --workers=10 -nc=10000 --sobel_normalized --reset_fc -dp7=0 --buffer_size=1900 -o results/AlexNetSobel_lr0.01_unsup_normed_nc10000_lfc7_rec1_reset-fc_2
compgpu3
CUDA_VISIBLE_DEVICES=0 python train.py --arch=AlexNetSobel --unsupervised --workers=20 -nc=1000 --lr=0.01 --scheduler=step --decay_step=100 --decay_gamma=0.1 --buffer_size=1500 --epochs_train_linear=6 -suf="good3" -o results/AlexNetSobel_lr0.01_unsup_nc10000_lfc7_rec1
------
NOTES:
If reset fc every epoch, then do not go lower than lr=0.001 (10**-3)