Skip to content

Latest commit

 

History

History
 
 

tools

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tooling docs

Add a Python tool

To demonstrate adding a Python tool to the Envoy tooling lets go through the steps.

For this example a tool with the name mytool.py will be added to the /tools/sometools directory.

We will assume that sometools does not yet exist and will also need a requirements.txt file, and bazel rule to configure the dependencies.

In most cases of adding a tool, it is likely you will not need to create a new set of dependencies, and you can skip to the "Add Python requirements" section.

We will also assume that you have python3 and pip installed and working in your local environment.

The tool must be runnable with bazel, but we can also make it runnable directly without bazel, although the user will then have to ensure they have the necessary dependencies locally installed themselves.

Create the bazel boilerplate for a new set of Python requirements

All Python requirements for Envoy tooling must be pinned with hashes to ensure the integrity of the dependencies.

Let's add the bazel boilerplate to setup a new requirements.txt file. This uses rules_python.

Open bazel/repositories_extra.bzl with your editor, and find the _python_deps function.

To this function, add the following bazel target:

    pip_install(
        name = "sometools_pip3",
        requirements = "@envoy//tools/sometools:requirements.txt",
        extra_pip_args = ["--require-hashes"],
    )

Let's add an empty tools/sometools/requirements.txt:

$ mkdir tools/sometools
$ touch tools/sometools/requirements.txt

We can now use sometools_pip3 in the BUILD file for our Python tool, although we will need some actual requirements for it to be useful.

In order to ensure that this requirements.txt stays up-to-date we will also need to add an entry in .github/dependabot.yml.

This example requires the following entry:

  - package-ecosystem: "pip"
    directory: "/tools/sometools"
    schedule:
      interval: "daily"

Add Python requirements

For the purpose of this example, mytool.py will have dependencies on the requests and pyyaml libraries.

Check on pypi for the most recent versions.

At the time of writing these were 2.25.1 and 5.4.1 for requests and pyyaml respectively.

Add the pinned dependencies to the tools/sometools/requirements.txt file:

$ echo pyyaml==5.4.1 >> tools/sometools/requirements.txt
$ echo requests==2.25.1 >> tools/sometools/requirements.txt

So far we have not set the hashes for the requirements.

The easiest way to add the necessary hashes and dependencies is to use pip-compile from pip-tools.

This will pin all dependencies of these libraries too.

Run the following to update the requirements.txt:

$ pip install pip-tools
$ pip-compile --generate-hashes tools/sometools/requirements.txt

Add the Python tool

For the purpose of this example we will add a trivial tool that dumps information about a Python package as yaml

Create a file tools/sometools/mytool.py with the following content:

#!/usr/bin/env python3

import sys

import requests
import yaml


def main(*args) -> int:
    sys.stdout.write(
        yaml.dump(
            requests.get(f"https://pypi.python.org/pypi/{args[0]}/json").json()))
    return 0


if __name__ == "__main__":
    sys.exit(main(*sys.argv[1:]))

Create the BUILD file for sometools

If you are adding a tool to an existing toolset you may be able skip this step - just make sure that load lines are present.

Add the following content to the file tools/sometools/BUILD

load("//tools/base:envoy_python.bzl", "envoy_py_binary")
load("@sometools_pip3//:requirements.bzl", "requirement")

licenses(["notice"])  # Apache 2

Note the loading of requirement from @sometools_pip3, and the loading of envoy_py_binary.

We will use these in the next section.

Create the bazel target for the tool

Add mytool.py as an envoy_py_binary to the tools/sometools/BUILD file.

This will make the mytool.py file runnable as a bazel target, and will add a test runner to ensure the file is tested.

envoy_py_binary(
    name = "tools.sometools.mytool",
    deps = [
        requirement("requests"),
        requirement("pyyaml"),
    ],
)

Note that the envoy_py_binary expects the full dotted name of the module - in this case, tools.sometool.mytool.

This will create a runnable target with the name of just mytool.

With this added users that have bazel installed can run the tool with the following command:

$ bazel run //tools/sometools:mytool PACKAGENAME

Make the tool runnable without bazel

If you want users to be able to run the tool directly without bazel, you will need to make it executable:

$ chmod +x tools/sometools/mytool.py

With this, users that have the necessary Python dependencies locally installed can run the tool directly with the following command:

$ ./tools/sometools/mytool.py PACKAGENAME

Add unit tests for the tool

Envoy tooling is tested with pytest.

The test runner expects a test file, in this case tools/sometools/tests/test_mytool.py.

First, create the required directory if it is not present.

$ mkdir tools/sometools/tests

Now add the following content to the tools/sometools/tests/test_mytool.py file:

from unittest.mock import patch

from tools.sometools import mytool


def test_mytool_main():
    with patch("tools.sometools.mytool.requests.get") as m_get:
        with patch("tools.sometools.mytool.yaml.dump") as m_yaml:
            with patch("tools.sometools.mytool.sys.stdout.write") as m_stdout:
                assert mytool.main("PACKAGENAME") == 0
    assert (
        list(m_get.call_args)
        == [('https://pypi.python.org/pypi/PACKAGENAME/json',), {}])
    assert (
        list(m_get.return_value.json.call_args)
        == [(), {}])
    assert (
        list(m_yaml.call_args)
        == [(m_get.return_value.json.return_value,), {}])
    assert (
        list(m_stdout.call_args)
        == [(m_yaml.return_value,), {}])

This example use the mock library to patch all of the method calls, and then tests that they have been called with the expected values.

You can run the test using the (automatically generated) //tools/sometools:pytest_mytool target as follows:

$ bazel run //tools/sometools:pytest_mytool
INFO: Analyzed target //tools/sometools:pytest_mytool (0 packages loaded, 0 targets configured).
INFO: Found 1 target...
Target //tools/sometools:pytest_mytool up-to-date:
  bazel-bin/tools/sometools/pytest_mytool
INFO: Elapsed time: 0.247s, Critical Path: 0.07s
INFO: 1 process: 1 internal.
INFO: Build completed successfully, 1 total action
================================ test session starts ===========================
platform linux -- python 3.8.1, pytest-6.2.3, py-1.10.0, pluggy-0.13.1 -- /usr/bin/python3
cachedir: .pytest_cache
rootdir: /root/.cache/bazel/_bazel_root/f704bab1b165ed1368cb88f9f49e7532/execroot/envoy/bazel-out/k8-fastbuild/bin/tools/sometools/pytest_mytool.runfiles/envoy, configfile: pytest.ini
plugins: cov-2.11.1
collected 1 item

tools/sometools/tests/test_mytool.py::test_mytool_main PASSED                                                                                                                             [100%]

----------- coverage: platform linux, python 3.8.1-final-0 -----------
Name                                                        Stmts   Miss  Cover
-------------------------------------------------------------------------------
/src/workspace/envoy/tools/sometools/mytool.py                  7      0   100%
/src/workspace/envoy/tools/sometools/pytest_mytool.py           4      4     0%
/src/workspace/envoy/tools/sometools/tests/test_mytool.py      11      0   100%
-------------------------------------------------------------------------------
TOTAL                                                          22      4    82%


================================ 1 passed in 0.46s ============================

The patches pytest fixture

When writing unit tests its not uncommon to need to patch a lot of different code.

A patches fixture has been added to make this easier.

The above test can be rewritten to make use of it as follows:

from tools.sometools import mytool


def test_mytool_main(patches):
    patched = patches(
        "requests.get",
        "yaml.dump",
        "sys.stdout.write",
        prefix="tools.sometools.mytool")

    with patched as (m_get, m_yaml, m_stdout):
        assert mytool.main("PACKAGENAME") == 0
    assert (
        list(m_get.call_args)
        == [('https://pypi.python.org/pypi/PACKAGENAME/json',), {}])
    assert (
        list(m_get.return_value.json.call_args)
        == [(), {}])
    assert (
        list(m_yaml.call_args)
        == [(m_get.return_value.json.return_value,), {}])
    assert (
        list(m_stdout.call_args)
        == [(m_yaml.return_value,), {}])

Debugging your code and tests

You will most likely want to make use of source-level debugging when writing tests.

Add a breakpoint anywhere in your code or tests as follows:

breakpoint()

This will drop you into the Python debugger (pdb) at the breakpoint.

Using the tools.base.runner.Runner class

A base class for writing tools that need to parse command line arguments has been provided.

To make use of it in this example we will need to add the runner as a dependency to the tools.sometools.mytool target.

Edit tools/sometools/BUILD and change the tools.sometools.mytool target to the following:

envoy_py_binary(
    name = "tools.sometools.mytool",
    deps = [
        "//tools/base:runner",
        requirement("requests"),
        requirement("pyyaml"),
    ],
)

With this dependency in place we could rewrite the tool as follows:

#!/usr/bin/env python3

import sys

import requests
import yaml

from tools.base.runner import Runner


class Mytool(Runner):

    def add_arguments(self, parser):
        parser.add_argument("package", help="Package to fetch info for")

    def run(self) -> int:
        sys.stdout.write(
            yaml.dump(
                requests.get(
                    f"https://pypi.python.org/pypi/{self.args.package}/json").json()))
        return 0


def main(*args) -> int:
    return Mytool(*args).run()


if __name__ == "__main__":
    sys.exit(main(*sys.argv[1:]))

This will add help to the tool and improve the end users experience of using it.

You can invoke the help menu using bazel:

$ bazel run //tools/sometools:mytool -- -h
...
usage: mytool.py [-h] package

positional arguments:
  package     Package to fetch info for

optional arguments:
  -h, --help  show this help message and exit

or directly with python:

$ ./tools/sometools/mytool.py -h
...

Using the tools.base.checker.Checker class

A base class for writing checkers (for example, linting tools) has also been provided.

Any classes subclassing tools.base.checker.Checker should provide a tuple of __class__.checks.

For each named check in checks the Checker will expect a method of the same name with the prefix check_.

For example, setting checks to the tuple ("check1", "check2") the Checker will run the methods check_check1 and check_check2 in order.

Let's look at an example.

First, we need to add the bazel target.

Edit tools/sometools/BUILD and add a tools.sometools.mychecker target with a dependency on the base Checker.

envoy_py_binary(
    name = "tools.sometools.mychecker",
    deps = [
        "//tools/base:checker",
    ],
)

Next add the MyChecker class to tools/sometools/mychecker.py as follows:

#!/usr/bin/env python3

import sys

from tools.base.checker import Checker


class MyChecker(Checker):
    checks = ("check1", "check2")

    def check_check1(self) -> None:
        # checking code for check1
        try:
            do_something()
        except NotSuchABadError:
            self.warn("check1", ["Doing something didn't work out quite as expected 8/"])
        except ATerribleError:
            self.error("check1", ["Oh noes, something went badly wrong! 8("])
        else:
            self.succeed("check1", ["All good 8)"])

    def check_check2(self) -> None:
        # checking code for check2
        try:
            do_something_else()
        except NotSuchABadError:
            self.warn("check2", ["Doing something else didn't work out quite as expected 8/"])
        except ATerribleError:
            self.error("check2", ["Oh noes, something else went badly wrong! 8("])
        else:
            self.succeed("check2", ["All good 8)"])


def main(*args) -> int:
    return MyChecker(*args).run()


if __name__ == "__main__":
    sys.exit(main(*sys.argv[1:]))

Just like with the Runner class described above you can use both with and without bazel. To use without, you will need make it executable, and the end user will need to have any dependencies locally installed.

Notice in the check methods the results of the check are logged to one of self.error, self.warn, or self.succeed. Each takes a list of outcomes. The results will be summarized to the user at the end of all checks.

Just like with Runner a help menu is automatically created, and you can add custom arguments if required.

Also like Runner, any added Checker classes are expected to have unit tests, and a pytest_mychecker bazel target is automatically added. With the above example, the test file should be located at tools/sometools/tests/test_mychecker.py.

One key difference with the Checker tools and its derivatives is that it expects a path either specified with --path or as an argument. This is used as a context (for example the Envoy src directory) for running the checks.