diff --git a/autoPyTorch/pipeline/tabular_classification.py b/autoPyTorch/pipeline/tabular_classification.py index bb4cb10ac..d0a99d3e0 100644 --- a/autoPyTorch/pipeline/tabular_classification.py +++ b/autoPyTorch/pipeline/tabular_classification.py @@ -18,6 +18,9 @@ from autoPyTorch.pipeline.components.preprocessing.tabular_preprocessing.TabularColumnTransformer import ( TabularColumnTransformer ) +from autoPyTorch.pipeline.components.preprocessing.tabular_preprocessing.coalescer import ( + CoalescerChoice +) from autoPyTorch.pipeline.components.preprocessing.tabular_preprocessing.encoding.base_encoder_choice import ( EncoderChoice ) @@ -246,6 +249,7 @@ def _get_pipeline_steps(self, dataset_properties: Optional[Dict[str, Any]], steps.extend([ ("imputer", SimpleImputer(random_state=self.random_state)), + ("coalescer", CoalescerChoice(default_dataset_properties, random_state=self.random_state)), ("encoder", EncoderChoice(default_dataset_properties, random_state=self.random_state)), ("scaler", ScalerChoice(default_dataset_properties, random_state=self.random_state)), ("feature_preprocessor", FeatureProprocessorChoice(default_dataset_properties, diff --git a/autoPyTorch/pipeline/tabular_regression.py b/autoPyTorch/pipeline/tabular_regression.py index af8702695..ce861d01e 100644 --- a/autoPyTorch/pipeline/tabular_regression.py +++ b/autoPyTorch/pipeline/tabular_regression.py @@ -16,6 +16,9 @@ from autoPyTorch.pipeline.components.preprocessing.tabular_preprocessing.TabularColumnTransformer import ( TabularColumnTransformer ) +from autoPyTorch.pipeline.components.preprocessing.tabular_preprocessing.coalescer import ( + CoalescerChoice +) from autoPyTorch.pipeline.components.preprocessing.tabular_preprocessing.encoding.base_encoder_choice import ( EncoderChoice ) @@ -190,6 +193,7 @@ def _get_pipeline_steps(self, dataset_properties: Optional[Dict[str, Any]]) -> L steps.extend([ ("imputer", SimpleImputer(random_state=self.random_state)), + ("coalescer", CoalescerChoice(default_dataset_properties, random_state=self.random_state)), ("encoder", EncoderChoice(default_dataset_properties, random_state=self.random_state)), ("scaler", ScalerChoice(default_dataset_properties, random_state=self.random_state)), ("feature_preprocessor", FeatureProprocessorChoice(default_dataset_properties,