-
Notifications
You must be signed in to change notification settings - Fork 41
/
optim.py
315 lines (274 loc) · 13.7 KB
/
optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import torch
import trimesh
import shutil, argparse, time, os, glob
import numpy as np; np.set_printoptions(precision=4)
import open3d as o3d
from torch.utils.tensorboard import SummaryWriter
from torchvision.utils import save_image
from torchvision.io import write_video
from src.optimization import Trainer
from src.utils import load_config, update_config, initialize_logger, \
get_learning_rate_schedules, adjust_learning_rate, AverageMeter,\
update_optimizer, export_pointcloud
from skimage import measure
from plyfile import PlyData
from pytorch3d.ops import sample_points_from_meshes
from pytorch3d.io import load_objs_as_meshes
from pytorch3d.structures import Meshes
def main():
parser = argparse.ArgumentParser(description='MNIST toy experiment')
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no_cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1457, metavar='S',
help='random seed')
args, unknown = parser.parse_known_args()
cfg = load_config(args.config, 'configs/default.yaml')
cfg = update_config(cfg, unknown)
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
data_type = cfg['data']['data_type']
data_class = cfg['data']['class']
print(cfg['train']['out_dir'])
# PYTORCH VERSION > 1.0.0
assert(float(torch.__version__.split('.')[-3]) > 0)
# boiler-plate
if cfg['train']['timestamp']:
cfg['train']['out_dir'] += '_' + time.strftime("%Y_%m_%d_%H_%M_%S")
logger = initialize_logger(cfg)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
shutil.copyfile(args.config,
os.path.join(cfg['train']['out_dir'], 'config.yaml'))
# tensorboardX writer
tblogdir = os.path.join(cfg['train']['out_dir'], "tensorboard_log")
if not os.path.exists(tblogdir):
os.makedirs(tblogdir)
writer = SummaryWriter(log_dir=tblogdir)
# initialize o3d visualizer
vis = None
if cfg['train']['o3d_show']:
vis = o3d.visualization.Visualizer()
vis.create_window(width=cfg['train']['o3d_window_size'],
height=cfg['train']['o3d_window_size'])
# initialize dataset
if data_type == 'point':
if cfg['data']['object_id'] != -1:
data_paths = sorted(glob.glob(cfg['data']['data_path']))
data_path = data_paths[cfg['data']['object_id']]
print('Loaded %d/%d object' % (cfg['data']['object_id']+1, len(data_paths)))
else:
data_path = cfg['data']['data_path']
print('Data loaded')
ext = data_path.split('.')[-1]
if ext == 'obj': # have GT mesh
mesh = load_objs_as_meshes([data_path], device=device)
# scale the mesh into unit cube
verts = mesh.verts_packed()
N = verts.shape[0]
center = verts.mean(0)
mesh.offset_verts_(-center.expand(N, 3))
scale = max((verts - center).abs().max(0)[0])
mesh.scale_verts_((1.0 / float(scale)))
# important for our DPSR to have the range in [0, 1), not reaching 1
mesh.scale_verts_(0.9)
target_pts, target_normals = sample_points_from_meshes(mesh,
num_samples=200000, return_normals=True)
elif ext == 'ply': # only have the point cloud
plydata = PlyData.read(data_path)
vertices = np.stack([plydata['vertex']['x'],
plydata['vertex']['y'],
plydata['vertex']['z']], axis=1)
normals = np.stack([plydata['vertex']['nx'],
plydata['vertex']['ny'],
plydata['vertex']['nz']], axis=1)
N = vertices.shape[0]
center = vertices.mean(0)
scale = np.max(np.max(np.abs(vertices - center), axis=0))
vertices -= center
vertices /= scale
vertices *= 0.9
target_pts = torch.tensor(vertices, device=device)[None].float()
target_normals = torch.tensor(normals, device=device)[None].float()
mesh = None # no GT mesh
if not torch.is_tensor(center):
center = torch.from_numpy(center)
if not torch.is_tensor(scale):
scale = torch.from_numpy(np.array([scale]))
data = {'target_points': target_pts,
'target_normals': target_normals, # normals are never used
'gt_mesh': mesh}
else:
raise NotImplementedError
# save the input point cloud
if 'target_points' in data.keys():
outdir_pcl = os.path.join(cfg['train']['out_dir'], 'target_pcl.ply')
if 'target_normals' in data.keys():
export_pointcloud(outdir_pcl, data['target_points'], data['target_normals'])
else:
export_pointcloud(outdir_pcl, data['target_points'])
# save oracle PSR mesh (mesh from our PSR using GT point+normals)
if data.get('gt_mesh') is not None:
gt_verts, gt_faces = data['gt_mesh'].get_mesh_verts_faces(0)
pts_gt, norms_gt = sample_points_from_meshes(data['gt_mesh'],
num_samples=500000, return_normals=True)
pts_gt = (pts_gt + 1) / 2
from src.dpsr import DPSR
dpsr_tmp = DPSR(res=(cfg['model']['grid_res'],
cfg['model']['grid_res'],
cfg['model']['grid_res']),
sig=cfg['model']['psr_sigma']).to(device)
target = dpsr_tmp(pts_gt, norms_gt).unsqueeze(1).to(device)
target = torch.tanh(target)
s = target.shape[-1] # size of psr_grid
psr_grid_numpy = target.squeeze().detach().cpu().numpy()
verts, faces, _, _ = measure.marching_cubes(psr_grid_numpy)
verts = verts / s * 2. - 1 # [-1, 1]
mesh = o3d.geometry.TriangleMesh()
mesh.vertices = o3d.utility.Vector3dVector(verts)
mesh.triangles = o3d.utility.Vector3iVector(faces)
outdir_mesh = os.path.join(cfg['train']['out_dir'], 'oracle_mesh.ply')
o3d.io.write_triangle_mesh(outdir_mesh, mesh)
# initialize the source point cloud given an input mesh
if 'input_mesh' in cfg['train'].keys() and \
os.path.isfile(cfg['train']['input_mesh']):
if cfg['train']['input_mesh'].split('/')[-2] == 'mesh':
mesh_tmp = trimesh.load_mesh(cfg['train']['input_mesh'])
verts = torch.from_numpy(mesh_tmp.vertices[None]).float().to(device)
faces = torch.from_numpy(mesh_tmp.faces[None]).to(device)
mesh = Meshes(verts=verts, faces=faces)
points, normals = sample_points_from_meshes(mesh,
num_samples=cfg['data']['num_points'], return_normals=True)
# mesh is saved in the original scale of the gt
points -= center.float().to(device)
points /= scale.float().to(device)
points *= 0.9
# make sure the points are within the range of [0, 1)
points = points / 2. + 0.5
else:
# directly initialize from a point cloud
pcd = o3d.io.read_point_cloud(cfg['train']['input_mesh'])
points = torch.from_numpy(np.array(pcd.points)[None]).float().to(device)
normals = torch.from_numpy(np.array(pcd.normals)[None]).float().to(device)
points -= center.float().to(device)
points /= scale.float().to(device)
points *= 0.9
points = points / 2. + 0.5
else: #! initialize our source point cloud from a sphere
sphere_radius = cfg['model']['sphere_radius']
sphere_mesh = trimesh.creation.uv_sphere(radius=sphere_radius,
count=[256,256])
points, idx = sphere_mesh.sample(cfg['data']['num_points'],
return_index=True)
points += 0.5 # make sure the points are within the range of [0, 1)
normals = sphere_mesh.face_normals[idx]
points = torch.from_numpy(points).unsqueeze(0).to(device)
normals = torch.from_numpy(normals).unsqueeze(0).to(device)
points = torch.log(points/(1-points)) # inverse sigmoid
inputs = torch.cat([points, normals], axis=-1).float()
inputs.requires_grad = True
model = None # no network
# initialize optimizer
cfg['train']['schedule']['pcl']['initial'] = cfg['train']['lr_pcl']
print('Initial learning rate:', cfg['train']['schedule']['pcl']['initial'])
if 'schedule' in cfg['train']:
lr_schedules = get_learning_rate_schedules(cfg['train']['schedule'])
else:
lr_schedules = None
optimizer = update_optimizer(inputs, cfg,
epoch=0, model=model, schedule=lr_schedules)
try:
# load model
state_dict = torch.load(os.path.join(cfg['train']['out_dir'], 'model.pt'))
if ('pcl' in state_dict.keys()) & (state_dict['pcl'] is not None):
inputs = state_dict['pcl'].to(device)
inputs.requires_grad = True
optimizer = update_optimizer(inputs, cfg,
epoch=state_dict.get('epoch'), schedule=lr_schedules)
out = "Load model from epoch %d" % state_dict.get('epoch', 0)
print(out)
logger.info(out)
except:
state_dict = dict()
start_epoch = state_dict.get('epoch', -1)
trainer = Trainer(cfg, optimizer, device=device)
runtime = {}
runtime['all'] = AverageMeter()
# training loop
for epoch in range(start_epoch+1, cfg['train']['total_epochs']+1):
# schedule the learning rate
if (epoch>0) & (lr_schedules is not None):
if (epoch % lr_schedules[0].interval == 0):
adjust_learning_rate(lr_schedules, optimizer, epoch)
if len(lr_schedules) >1:
print('[epoch {}] net_lr: {}, pcl_lr: {}'.format(epoch,
lr_schedules[0].get_learning_rate(epoch),
lr_schedules[1].get_learning_rate(epoch)))
else:
print('[epoch {}] adjust pcl_lr to: {}'.format(epoch,
lr_schedules[0].get_learning_rate(epoch)))
start = time.time()
loss, loss_each = trainer.train_step(data, inputs, model, epoch)
runtime['all'].update(time.time() - start)
if epoch % cfg['train']['print_every'] == 0:
log_text = ('[Epoch %02d] loss=%.5f') %(epoch, loss)
if loss_each is not None:
for k, l in loss_each.items():
if l.item() != 0.:
log_text += (' loss_%s=%.5f') % (k, l.item())
log_text += (' time=%.3f / %.3f') % (runtime['all'].val,
runtime['all'].sum)
logger.info(log_text)
print(log_text)
# visualize point clouds and meshes
if (epoch % cfg['train']['visualize_every'] == 0) & (vis is not None):
trainer.visualize(data, inputs, model, epoch, o3d_vis=vis)
# save outputs
if epoch % cfg['train']['save_every'] == 0:
trainer.save_mesh_pointclouds(inputs, epoch,
center.cpu().numpy(),
scale.cpu().numpy()*(1/0.9))
# save checkpoints
if (epoch > 0) & (epoch % cfg['train']['checkpoint_every'] == 0):
state = {'epoch': epoch}
pcl = None
if isinstance(inputs, torch.Tensor):
state['pcl'] = inputs.detach().cpu()
torch.save(state, os.path.join(cfg['train']['dir_model'],
'%04d' % epoch + '.pt'))
print("Save new model at epoch %d" % epoch)
logger.info("Save new model at epoch %d" % epoch)
torch.save(state, os.path.join(cfg['train']['out_dir'], 'model.pt'))
# resample and gradually add new points to the source pcl
if (epoch > 0) & \
(cfg['train']['resample_every']!=0) & \
(epoch % cfg['train']['resample_every'] == 0) & \
(epoch < cfg['train']['total_epochs']):
inputs = trainer.point_resampling(inputs)
optimizer = update_optimizer(inputs, cfg,
epoch=epoch, model=model, schedule=lr_schedules)
trainer = Trainer(cfg, optimizer, device=device)
# visualize the Open3D outputs
if cfg['train']['o3d_show']:
out_video_dir = os.path.join(cfg['train']['out_dir'],
'vis/o3d/video.mp4')
if os.path.isfile(out_video_dir):
os.system('rm {}'.format(out_video_dir))
os.system('ffmpeg -framerate 30 \
-start_number 0 \
-i {}/vis/o3d/%04d.jpg \
-pix_fmt yuv420p \
-crf 17 {}'.format(cfg['train']['out_dir'], out_video_dir))
out_video_dir = os.path.join(cfg['train']['out_dir'],
'vis/o3d/video_pcd.mp4')
if os.path.isfile(out_video_dir):
os.system('rm {}'.format(out_video_dir))
os.system('ffmpeg -framerate 30 \
-start_number 0 \
-i {}/vis/o3d/%04d_pcd.jpg \
-pix_fmt yuv420p \
-crf 17 {}'.format(cfg['train']['out_dir'], out_video_dir))
print('Video saved.')
if __name__ == '__main__':
main()