-
Notifications
You must be signed in to change notification settings - Fork 21
/
Path Sum II.java
executable file
·261 lines (219 loc) · 6.62 KB
/
Path Sum II.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
E
1526525774
tags: Tree, DFS, Backtracking
给一个inputSum, 然后dfs, 找到所有path, 满足: path sum 跟 inputSum 一样.
#### DFS, Backtracking
- 用remaining sum 来检测是否满足 input path sum 条件
- 满足的时候add to result list
- 两种backtracking:
- 1. backtrack 当下node, 加进list, 然后dfs. dfs结束后删掉之前加进去的元素. 非常clean.
- 2. backtrack 下一个dfs level增加的value. dfs return 之后, 删掉list里面的末尾元素: 但是删掉的dfs余下的value.
- 第一种backtrack更加好掌握.
#### Previous Notes:
- Binary Tree的一个基本题: 找到所有满足条件的path
- 遍历到底,比较sum vs. target
- 注意divide的情况。要把遍历的例子写写
```
/*
LeetCode
Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum.
For example:
Given the below binary tree and sum = 22,
5
/ \
4 8
/ / \
11 13 4
/ \ / \
7 2 5 1
return
[
[5,4,11,2],
[5,8,4,5]
]
*/
// Back tracking current node whenever after use
class Solution {
public List<List<Integer>> pathSum(TreeNode root, int sum) {
List<List<Integer>> result = new ArrayList<>();
if (root == null) {
return result;
}
dfs(result, new ArrayList<>(), root, sum);
return result;
}
private void dfs(List<List<Integer>> result, List<Integer> list, TreeNode node, int sum) {
if (node == null) return;
list.add(node.val);
// check leaf
if (node.left == null && node.right == null && node.val == sum) {
result.add(new ArrayList<>(list));
list.remove(list.size() - 1);
return;
}
dfs(result, list, node.left, sum - node.val);
dfs(result, list, node.right, sum - node.val);
// backtracking
list.remove(list.size() - 1);
}
}
// Backtracking the next level, whenever after dfs
class Solution {
public List<List<Integer>> pathSum(TreeNode root, int sum) {
List<List<Integer>> result = new ArrayList<>();
if (root == null) {
return result;
}
dfs(result, new ArrayList<>(), root, sum);
return result;
}
private void dfs(List<List<Integer>> result, List<Integer> list, TreeNode node, int sum) {
if (node == null) {
return;
}
list.add(node.val);
// leaf
if (node.left == null && node.right == null) {
if (node.val == sum) {
result.add(new ArrayList<>(list));
}
return;
}
if (node.left != null) {
dfs(result, list, node.left, sum - node.val);
list.remove(list.size() - 1);
}
if (node.right != null) { // 2
dfs(result, list, node.right, sum - node.val);
list.remove(list.size() - 1);
}
}
}
/*
// LintCode: Binary Tree Path Sum
Given a binary tree, find all paths that sum of the nodes in the path equals to a given number target.
A valid path is from root node to any of the leaf nodes.
Example
Given a binary tree, and target = 5:
1
/ \
2 4
/ \
2 3
return
[
[1, 2, 2],
[1, 4]
]
Tags Expand
Binary Tree Binary Tree Traversal
*/
/*
Recursively: list<list> rst, path, currSum, sum
*/
class Solution {
public List<List<Integer>> pathSum(TreeNode root, int sum) {
List<List<Integer>> rst = new ArrayList<>();
if (root == null) {
return rst;
}
dfs(rst, new ArrayList<>(), root, 0, sum);
return rst;
}
private void dfs (List<List<Integer>> rst, List<Integer> path, TreeNode root, int currSum, int sum) {
path.add(root.val);
if (root.left == null && root.right == null) {
if (currSum + root.val == sum) {
rst.add(new ArrayList<>(path));
}
return;
}
if (root.left != null) {
dfs(rst, path, root.left, currSum + root.val, sum);
path.remove(path.size() - 1);
}
if (root.right != null) {
dfs(rst, path, root.right, currSum + root.val, sum);
path.remove(path.size() - 1);
}
}
}
/*
Thoughts:
path: has to be from root to leaf.
binary tree: no order logic in the tree.
DPS on all nodes. If final sum == target, add list of nodes into rst
*/
/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/
/*
3.1.2016 Recap
Same approach
*/
public class Solution {
public List<List<Integer>> pathSum(TreeNode root, int sum) {
List<List<Integer>> rst = new ArrayList<List<Integer>>();
if (root == null) {
return rst;
}
dfs(rst, new ArrayList<Integer>(), root, 0, sum);
return rst;
}
public void dfs(List<List<Integer>> rst, ArrayList<Integer> list, TreeNode node, int add, int sum) {
list.add(node.val);
if (node.left == null && node.right == null) {
if (add + node.val == sum) {
rst.add(new ArrayList<Integer>(list));
}
return;
}
if (node.left != null) {
dfs(rst, list, node.left, add + node.val, sum);
list.remove(list.size() - 1);
}
if (node.right != null) {
dfs(rst, list, node.right, add + node.val, sum);
list.remove(list.size() - 1);
}
}
}
public class Solution {
public List<List<Integer>> binaryTreePathSum(TreeNode root, int target) {
List<List<Integer>> rst = new ArrayList<List<Integer>>();
if (root == null) {
return rst;
}
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(root.val);
traversal(rst, list, root, root.val, target);
return rst;
}
public void traversal(List<List<Integer>> rst, ArrayList<Integer> list, TreeNode node, int sum, int target) {
if (node.left == null && node.right == null) {
if (sum == target) {
rst.add(new ArrayList<Integer>(list));
}
return;
}
if (node.left != null) {
list.add(node.left.val);
traversal(rst, list, node.left, sum + node.left.val, target);
list.remove(list.size() - 1);
}
if (node.right != null) {
list.add(node.right.val);
traversal(rst, list, node.right, sum + node.right.val, target);
list.remove(list.size() - 1);
}
}
}
```