-
Notifications
You must be signed in to change notification settings - Fork 21
/
Redundant Connection.java
executable file
·146 lines (121 loc) · 5.06 KB
/
Redundant Connection.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
M
1534222102
tags: Tree, Union Find, Graph, DFS, BFS
#### unionFind
- keyword: tree has no `cycle`.
- 一旦两个node在edge中出现, 并且parent相同, 说明这两个node不union, 也在同一个tree里面, 所以可以break them.
#### Graph, DFS
- Add graph using adjacent list, and verify cycle alone the way
- IMPORTANT: use `pre` node in dfs to prevent backward dfs
- similar to `Graph Valid Tree` where it validates cycle and also needs to validate if all nodes are connected
#### BFS
- same concept as DFS, find first redundant edge that alreay exists in graph map.
```
/*
In this problem, a tree is an undirected graph that is connected and has no cycles.
The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.
The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.
Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.
Example 1:
Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
1
/ \
2 - 3
Example 2:
Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Explanation: The given undirected graph will be like this:
5 - 1 - 2
| |
4 - 3
Note:
The size of the input 2D-array will be between 3 and 1000.
Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.
Update (2017-09-26):
We have overhauled the problem description + test cases and specified clearly the graph is an undirected graph. For the directed graph follow up please see Redundant Connection II). We apologize for any inconvenience caused.
*/
/*
UnionFind
keyword: tree does not have cycle; if there is cycle, there must be a redundant edge that can be removed.
Goal: find that edge.
Simply write union-find methods. When parents of two nodes are the same, that means they have been visited and in same union: we can break this edge
*/
class Solution {
int[] parent;
public int[] findRedundantConnection(int[][] edges) {
parent = new int[2001]; // at most 1000 edges, so at most 1000*2 + 1 nodes
// init unionFind
for (int i = 0; i < parent.length; i++) parent[i] = i;
// Union
for (int[] edge : edges) {
int x = edge[0], y = edge[1];
int parentX = find(x), parentY = find(y);
if (parentX == parentY) return edge;
parent[parentX] = parentY;
}
return new int[] {-1, -1};
}
public int find(int x) {
int parentX = parent[x];
if (parentX == x) return parentX;
return parent[x] = find(parentX);
}
}
// DFS
class Solution {
public int[] findRedundantConnection(int[][] edges) {
Map<Integer, Set<Integer>> graph = new HashMap<>();
for (int[] edge : edges) {
int x = edge[0], y = edge[1];
if (graph.containsKey(x) && hasCycle(graph, x, y, -1)) return edge;
graph.putIfAbsent(x, new HashSet<>());
graph.putIfAbsent(y, new HashSet<>());
graph.get(x).add(y);
graph.get(y).add(x);
}
return new int[] {-1, -1};
}
private boolean hasCycle(Map<Integer, Set<Integer>> graph, int curr, int target, int pre) {
if (graph.get(curr).contains(target)) return true;
for (int num : graph.get(curr)) {
if (num == pre) continue;
if (hasCycle(graph, num, target, curr)) return true;
}
return false;
}
}
/*
BFS, same concept: keep adding into graph.
If item already added once, then redundant edge detected
*/
class Solution {
public int[] findRedundantConnection(int[][] edges) {
Map<Integer, Set<Integer>> graph = new HashMap<>();
for (int[] edge : edges) {
int x = edge[0], y = edge[1];
Set<Integer> visited = new HashSet<>();
Queue<Integer> queue = new LinkedList<>();
queue.offer(x);
// BFS all possible nodes see if node y has been added
while (!queue.isEmpty()) {
int node = queue.poll();
if (!graph.containsKey(node)) continue;
if (graph.get(node).contains(y)) return edge;
for (int num : graph.get(node)) {
if (visited.contains(num)) continue;
queue.offer(num);
visited.add(num);
}
}
// passed test, add graph nodes
graph.putIfAbsent(x, new HashSet<>());
graph.putIfAbsent(y, new HashSet<>());
graph.get(x).add(y);
graph.get(y).add(x);
}
return new int[] {-1, -1};
}
}
```