-
Notifications
You must be signed in to change notification settings - Fork 14.9k
/
linear_regression_eager_api.py
69 lines (51 loc) · 1.92 KB
/
linear_regression_eager_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
''' Linear Regression with Eager API.
A linear regression learning algorithm example using TensorFlow's Eager API.
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
'''
from __future__ import absolute_import, division, print_function
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
# Set Eager API
tf.enable_eager_execution()
tfe = tf.contrib.eager
# Training Data
train_X = [3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167,
7.042, 10.791, 5.313, 7.997, 5.654, 9.27, 3.1]
train_Y = [1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221,
2.827, 3.465, 1.65, 2.904, 2.42, 2.94, 1.3]
n_samples = len(train_X)
# Parameters
learning_rate = 0.01
display_step = 100
num_steps = 1000
# Weight and Bias
W = tfe.Variable(np.random.randn())
b = tfe.Variable(np.random.randn())
# Linear regression (Wx + b)
def linear_regression(inputs):
return inputs * W + b
# Mean square error
def mean_square_fn(model_fn, inputs, labels):
return tf.reduce_sum(tf.pow(model_fn(inputs) - labels, 2)) / (2 * n_samples)
# SGD Optimizer
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
# Compute gradients
grad = tfe.implicit_gradients(mean_square_fn)
# Initial cost, before optimizing
print("Initial cost= {:.9f}".format(
mean_square_fn(linear_regression, train_X, train_Y)),
"W=", W.numpy(), "b=", b.numpy())
# Training
for step in range(num_steps):
optimizer.apply_gradients(grad(linear_regression, train_X, train_Y))
if (step + 1) % display_step == 0 or step == 0:
print("Epoch:", '%04d' % (step + 1), "cost=",
"{:.9f}".format(mean_square_fn(linear_regression, train_X, train_Y)),
"W=", W.numpy(), "b=", b.numpy())
# Graphic display
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.plot(train_X, np.array(W * train_X + b), label='Fitted line')
plt.legend()
plt.show()