-
Notifications
You must be signed in to change notification settings - Fork 22
/
monodepth_dataloader.py
268 lines (225 loc) · 11.2 KB
/
monodepth_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright UCL Business plc 2017. Patent Pending. All rights reserved.
#
# The MonoDepth Software is licensed under the terms of the UCLB ACP-A licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
#
# For any other use of the software not covered by the UCLB ACP-A Licence,
# please contact [email protected]
"""
Adopted from https://github.com/mrharicot/monodepth
Please see LICENSE_monodepth for details
"""
from __future__ import absolute_import, division, print_function
import tensorflow as tf
def string_length_tf(t):
return tf.py_func(len, [t], [tf.int64])
def rescale_intrinsics(raw_cam_mat, opt, orig_height, orig_width):
fx = raw_cam_mat[0, 0]
fy = raw_cam_mat[1, 1]
cx = raw_cam_mat[0, 2]
cy = raw_cam_mat[1, 2]
r1 = tf.stack(
[fx * opt.img_width / orig_width, 0, cx * opt.img_width / orig_width])
r2 = tf.stack([
0, fy * opt.img_height / orig_height, cy * opt.img_height / orig_height
])
r3 = tf.constant([0., 0., 1.])
return tf.stack([r1, r2, r3])
def get_multi_scale_intrinsics(raw_cam_mat, num_scales):
proj_cam2pix = []
# Scale the intrinsics accordingly for each scale
for s in range(num_scales):
fx = raw_cam_mat[0, 0] / (2**s)
fy = raw_cam_mat[1, 1] / (2**s)
cx = raw_cam_mat[0, 2] / (2**s)
cy = raw_cam_mat[1, 2] / (2**s)
r1 = tf.stack([fx, 0, cx])
r2 = tf.stack([0, fy, cy])
r3 = tf.constant([0., 0., 1.])
proj_cam2pix.append(tf.stack([r1, r2, r3]))
proj_cam2pix = tf.stack(proj_cam2pix)
proj_pix2cam = tf.matrix_inverse(proj_cam2pix)
proj_cam2pix.set_shape([num_scales, 3, 3])
proj_pix2cam.set_shape([num_scales, 3, 3])
return proj_cam2pix, proj_pix2cam
def make_intrinsics_matrix(fx, fy, cx, cy):
# Assumes batch input
batch_size = fx.get_shape().as_list()[0]
zeros = tf.zeros_like(fx)
r1 = tf.stack([fx, zeros, cx], axis=1)
r2 = tf.stack([zeros, fy, cy], axis=1)
r3 = tf.constant([0., 0., 1.], shape=[1, 3])
r3 = tf.tile(r3, [batch_size, 1])
intrinsics = tf.stack([r1, r2, r3], axis=1)
return intrinsics
def data_augmentation(im, intrinsics, out_h, out_w):
# Random scaling
def random_scaling(im, intrinsics):
batch_size, in_h, in_w, _ = im.get_shape().as_list()
scaling = tf.random_uniform([2], 1, 1.15)
x_scaling = scaling[0]
y_scaling = scaling[1]
out_h = tf.cast(in_h * y_scaling, dtype=tf.int32)
out_w = tf.cast(in_w * x_scaling, dtype=tf.int32)
im = tf.image.resize_area(im, [out_h, out_w])
fx = intrinsics[:, 0, 0] * x_scaling
fy = intrinsics[:, 1, 1] * y_scaling
cx = intrinsics[:, 0, 2] * x_scaling
cy = intrinsics[:, 1, 2] * y_scaling
intrinsics = make_intrinsics_matrix(fx, fy, cx, cy)
return im, intrinsics
# Random cropping
def random_cropping(im, intrinsics, out_h, out_w):
# batch_size, in_h, in_w, _ = im.get_shape().as_list()
batch_size, in_h, in_w, _ = tf.unstack(tf.shape(im))
offset_y = tf.random_uniform(
[1], 0, in_h - out_h + 1, dtype=tf.int32)[0]
offset_x = tf.random_uniform(
[1], 0, in_w - out_w + 1, dtype=tf.int32)[0]
im = tf.image.crop_to_bounding_box(im, offset_y, offset_x, out_h,
out_w)
fx = intrinsics[:, 0, 0]
fy = intrinsics[:, 1, 1]
cx = intrinsics[:, 0, 2] - tf.cast(offset_x, dtype=tf.float32)
cy = intrinsics[:, 1, 2] - tf.cast(offset_y, dtype=tf.float32)
intrinsics = make_intrinsics_matrix(fx, fy, cx, cy)
return im, intrinsics
im, intrinsics = random_scaling(im, intrinsics)
im, intrinsics = random_cropping(im, intrinsics, out_h, out_w)
return im, intrinsics
class MonodepthDataloader(object):
"""monodepth dataloader"""
def __init__(self, opt):
self.data_path = opt.data_dir
self.opt = opt
filenames_file = opt.train_file
input_queue = tf.train.string_input_producer(
[filenames_file], shuffle=False)
line_reader = tf.TextLineReader()
_, line = line_reader.read(input_queue)
split_line = tf.string_split([line]).values
# we load only one image for test, except if we trained a stereo model
left_image_path = tf.string_join([self.data_path, split_line[0]])
right_image_path = tf.string_join([self.data_path, split_line[1]])
next_left_image_path = tf.string_join([self.data_path, split_line[2]])
next_right_image_path = tf.string_join([self.data_path, split_line[3]])
cam_intrinsic_path = tf.string_join([self.data_path, split_line[4]])
left_image_o, orig_height, orig_width = self.read_image(
left_image_path, get_shape=True)
right_image_o = self.read_image(right_image_path)
next_left_image_o = self.read_image(next_left_image_path)
next_right_image_o = self.read_image(next_right_image_path)
# randomly flip images
do_flip = tf.random_uniform([], 0, 1)
left_image = tf.cond(do_flip > 0.5,
lambda: tf.image.flip_left_right(right_image_o),
lambda: left_image_o)
right_image = tf.cond(do_flip > 0.5,
lambda: tf.image.flip_left_right(left_image_o),
lambda: right_image_o)
next_left_image = tf.cond(
do_flip > 0.5,
lambda: tf.image.flip_left_right(next_right_image_o),
lambda: next_left_image_o)
next_right_image = tf.cond(
do_flip > 0.5, lambda: tf.image.flip_left_right(next_left_image_o),
lambda: next_right_image_o)
do_flip_fb = tf.random_uniform([], 0, 1)
left_image, right_image, next_left_image, next_right_image = tf.cond(
do_flip_fb > 0.5,
lambda: (next_left_image, next_right_image, left_image, right_image),
lambda: (left_image, right_image, next_left_image, next_right_image)
)
# randomly augment images
# do_augment = tf.random_uniform([], 0, 0)
# image_list = [left_image, right_image, next_left_image, next_right_image]
# left_image, right_image, next_left_image, next_right_image = tf.cond(do_augment > 0.5,
# lambda: self.augment_image_list(image_list),
# lambda: image_list)
left_image.set_shape([None, None, 3])
right_image.set_shape([None, None, 3])
next_left_image.set_shape([None, None, 3])
next_right_image.set_shape([None, None, 3])
raw_cam_contents = tf.read_file(cam_intrinsic_path)
last_line = tf.string_split(
[raw_cam_contents], delimiter="\n").values[-1]
raw_cam_vec = tf.string_to_number(
tf.string_split([last_line]).values[1:])
raw_cam_mat = tf.reshape(raw_cam_vec, [3, 4])
raw_cam_mat = raw_cam_mat[0:3, 0:3]
raw_cam_mat = rescale_intrinsics(raw_cam_mat, opt, orig_height,
orig_width)
# Scale and crop augmentation
# im_batch = tf.concat([tf.expand_dims(left_image, 0),
# tf.expand_dims(right_image, 0),
# tf.expand_dims(next_left_image, 0),
# tf.expand_dims(next_right_image, 0)], axis=3)
# raw_cam_mat_batch = tf.expand_dims(raw_cam_mat, axis=0)
# im_batch, raw_cam_mat_batch = data_augmentation(im_batch, raw_cam_mat_batch, self.opt.img_height, self.opt.img_width)
# left_image, right_image, next_left_image, next_right_image = tf.split(im_batch[0,:,:,:], num_or_size_splits=4, axis=2)
# raw_cam_mat = raw_cam_mat_batch[0,:,:]
proj_cam2pix, proj_pix2cam = get_multi_scale_intrinsics(raw_cam_mat,
opt.num_scales)
# capacity = min_after_dequeue + (num_threads + a small safety margin) * batch_size
min_after_dequeue = 2048
capacity = min_after_dequeue + 4 * opt.batch_size
self.data_batch = tf.train.shuffle_batch([
left_image, right_image, next_left_image, next_right_image,
proj_cam2pix, proj_pix2cam
], opt.batch_size, capacity, min_after_dequeue, 10)
def augment_image_pair(self, left_image, right_image):
# randomly shift gamma
random_gamma = tf.random_uniform([], 0.8, 1.2)
left_image_aug = left_image**random_gamma
right_image_aug = right_image**random_gamma
# randomly shift brightness
random_brightness = tf.random_uniform([], 0.5, 2.0)
left_image_aug = left_image_aug * random_brightness
right_image_aug = right_image_aug * random_brightness
# randomly shift color
random_colors = tf.random_uniform([3], 0.8, 1.2)
white = tf.ones([tf.shape(left_image)[0], tf.shape(left_image)[1]])
color_image = tf.stack(
[white * random_colors[i] for i in range(3)], axis=2)
left_image_aug *= color_image
right_image_aug *= color_image
# saturate
left_image_aug = tf.clip_by_value(left_image_aug, 0, 1)
right_image_aug = tf.clip_by_value(right_image_aug, 0, 1)
return left_image_aug, right_image_aug
def augment_image_list(self, image_list):
# randomly shift gamma
random_gamma = tf.random_uniform([], 0.8, 1.2)
image_list = [img**random_gamma for img in image_list]
# randomly shift brightness
random_brightness = tf.random_uniform([], 0.5, 2.0)
image_list = [img * random_brightness for img in image_list]
# randomly shift color
random_colors = tf.random_uniform([3], 0.8, 1.2)
white = tf.ones(
[tf.shape(image_list[0])[0], tf.shape(image_list[0])[1]])
color_image = tf.stack(
[white * random_colors[i] for i in range(3)], axis=2)
image_list = [img * color_image for img in image_list]
# saturate
image_list = [tf.clip_by_value(img, 0, 1) for img in image_list]
return image_list
def read_image(self, image_path, get_shape=False):
# tf.decode_image does not return the image size, this is an ugly workaround to handle both jpeg and png
path_length = string_length_tf(image_path)[0]
file_extension = tf.substr(image_path, path_length - 3, 3)
file_cond = tf.equal(file_extension, 'jpg')
image = tf.cond(
file_cond, lambda: tf.image.decode_jpeg(tf.read_file(image_path)),
lambda: tf.image.decode_png(tf.read_file(image_path)))
orig_height = tf.cast(tf.shape(image)[0], "float32")
orig_width = tf.cast(tf.shape(image)[1], "float32")
image = tf.image.convert_image_dtype(image, tf.float32)
image = tf.image.resize_images(
image, [self.opt.img_height, self.opt.img_width],
tf.image.ResizeMethod.AREA)
if get_shape:
return image, orig_height, orig_width
else:
return image