forked from IntelLabs/coach
-
Notifications
You must be signed in to change notification settings - Fork 0
/
e_greedy.py
102 lines (86 loc) · 4.73 KB
/
e_greedy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List
import numpy as np
from rl_coach.core_types import RunPhase, ActionType
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
from rl_coach.exploration_policies.exploration_policy import ExplorationParameters
from rl_coach.exploration_policies.exploration_policy import ExplorationPolicy
from rl_coach.schedules import Schedule, LinearSchedule
from rl_coach.spaces import ActionSpace, DiscreteActionSpace, BoxActionSpace
from rl_coach.utils import dynamic_import_and_instantiate_module_from_params
class EGreedyParameters(ExplorationParameters):
def __init__(self):
super().__init__()
self.epsilon_schedule = LinearSchedule(0.5, 0.01, 50000)
self.evaluation_epsilon = 0.05
self.continuous_exploration_policy_parameters = AdditiveNoiseParameters()
self.continuous_exploration_policy_parameters.noise_percentage_schedule = LinearSchedule(0.1, 0.1, 50000)
# for continuous control -
# (see http://www.cs.ubc.ca/~van/papers/2017-TOG-deepLoco/2017-TOG-deepLoco.pdf)
@property
def path(self):
return 'rl_coach.exploration_policies.e_greedy:EGreedy'
class EGreedy(ExplorationPolicy):
def __init__(self, action_space: ActionSpace, epsilon_schedule: Schedule,
evaluation_epsilon: float,
continuous_exploration_policy_parameters: ExplorationParameters=AdditiveNoiseParameters()):
"""
:param action_space: the action space used by the environment
:param epsilon_schedule: a schedule for the epsilon values
:param evaluation_epsilon: the epsilon value to use for evaluation phases
:param continuous_exploration_policy_parameters: the parameters of the continuous exploration policy to use
if the e-greedy is used for a continuous policy
"""
super().__init__(action_space)
self.epsilon_schedule = epsilon_schedule
self.evaluation_epsilon = evaluation_epsilon
if isinstance(self.action_space, BoxActionSpace):
# for continuous e-greedy (see http://www.cs.ubc.ca/~van/papers/2017-TOG-deepLoco/2017-TOG-deepLoco.pdf)
continuous_exploration_policy_parameters.action_space = action_space
self.continuous_exploration_policy = \
dynamic_import_and_instantiate_module_from_params(continuous_exploration_policy_parameters)
self.current_random_value = np.random.rand()
def requires_action_values(self):
epsilon = self.evaluation_epsilon if self.phase == RunPhase.TEST else self.epsilon_schedule.current_value
return self.current_random_value >= epsilon
def get_action(self, action_values: List[ActionType]) -> ActionType:
epsilon = self.evaluation_epsilon if self.phase == RunPhase.TEST else self.epsilon_schedule.current_value
if isinstance(self.action_space, DiscreteActionSpace):
top_action = np.argmax(action_values)
if self.current_random_value < epsilon:
chosen_action = self.action_space.sample()
else:
chosen_action = top_action
else:
if self.current_random_value < epsilon and self.phase == RunPhase.TRAIN:
chosen_action = self.action_space.sample()
else:
chosen_action = self.continuous_exploration_policy.get_action(action_values)
# step the epsilon schedule and generate a new random value for next time
if self.phase == RunPhase.TRAIN:
self.epsilon_schedule.step()
self.current_random_value = np.random.rand()
return chosen_action
def get_control_param(self):
if isinstance(self.action_space, DiscreteActionSpace):
return self.evaluation_epsilon if self.phase == RunPhase.TEST else self.epsilon_schedule.current_value
elif isinstance(self.action_space, BoxActionSpace):
return self.continuous_exploration_policy.get_control_param()
def change_phase(self, phase):
super().change_phase(phase)
if isinstance(self.action_space, BoxActionSpace):
self.continuous_exploration_policy.change_phase(phase)