- model:
- type:
dict
argument path:model
- type_map:
- type:
list
, optionalargument path:model/type_map
A list of strings. Give the name to each type of atoms. It is noted that the number of atom type of training system must be less than 128 in a GPU environment.
- data_stat_nbatch:
- type:
int
, optional, default:10
argument path:model/data_stat_nbatch
The model determines the normalization from the statistics of the data. This key specifies the number of frames in each system used for statistics.
- data_stat_protect:
- type:
float
, optional, default:0.01
argument path:model/data_stat_protect
Protect parameter for atomic energy regression.
- use_srtab:
- type:
str
, optionalargument path:model/use_srtab
The table for the short-range pairwise interaction added on top of DP. The table is a text data file with (N_t + 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from 2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.
- smin_alpha:
- type:
float
, optionalargument path:model/smin_alpha
The short-range tabulated interaction will be swithed according to the distance of the nearest neighbor. This distance is calculated by softmin. This parameter is the decaying parameter in the softmin. It is only required when use_srtab is provided.
- sw_rmin:
- type:
float
, optionalargument path:model/sw_rmin
The lower boundary of the interpolation between short-range tabulated interaction and DP. It is only required when use_srtab is provided.
- sw_rmax:
- type:
float
, optionalargument path:model/sw_rmax
The upper boundary of the interpolation between short-range tabulated interaction and DP. It is only required when use_srtab is provided.
- type_embedding:
- type:
dict
, optionalargument path:model/type_embedding
The type embedding.
- neuron:
- type:
list
, optional, default:[2, 4, 8]
argument path:model/type_embedding/neuron
Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.
- activation_function:
- type:
str
, optional, default:tanh
argument path:model/type_embedding/activation_function
The activation function in the embedding net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".
- resnet_dt:
- type:
bool
, optional, default:False
argument path:model/type_embedding/resnet_dt
Whether to use a "Timestep" in the skip connection
- precision:
- type:
str
, optional, default:float64
argument path:model/type_embedding/precision
The precision of the embedding net parameters, supported options are "default", "float16", "float32", "float64".
- trainable:
- type:
bool
, optional, default:True
argument path:model/type_embedding/trainable
If the parameters in the embedding net are trainable
- seed:
- type:
int
|NoneType
, optionalargument path:model/type_embedding/seed
Random seed for parameter initialization
- descriptor:
- type:
dict
argument path:model/descriptor
The descriptor of atomic environment.
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:model/descriptor/type
The type of the descritpor. See explanation below.
- loc_frame: Defines a local frame at each atom, and the compute the descriptor as local coordinates under this frame.
- se_e2_a: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor.
- se_e2_r: Used by the smooth edition of Deep Potential. Only the distance between atoms is used to construct the descriptor.
- se_e3: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Three-body embedding will be used by this descriptor.
- se_a_tpe: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Type embedding will be used by this descriptor.
- hybrid: Concatenate of a list of descriptors as a new descriptor.
When type is set to
loc_frame
:- sel_a:
- type:
list
argument path:model/descriptor[loc_frame]/sel_a
A list of integers. The length of the list should be the same as the number of atom types in the system. sel_a[i] gives the selected number of type-i neighbors. The full relative coordinates of the neighbors are used by the descriptor.
- sel_r:
- type:
list
argument path:model/descriptor[loc_frame]/sel_r
A list of integers. The length of the list should be the same as the number of atom types in the system. sel_r[i] gives the selected number of type-i neighbors. Only relative distance of the neighbors are used by the descriptor. sel_a[i] + sel_r[i] is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius.
- rcut:
- type:
float
, optional, default:6.0
argument path:model/descriptor[loc_frame]/rcut
The cut-off radius. The default value is 6.0
- axis_rule:
- type:
list
argument path:model/descriptor[loc_frame]/axis_rule
A list of integers. The length should be 6 times of the number of types.
- axis_rule[i*6+0]: class of the atom defining the first axis of type-i atom. 0 for neighbors with full coordinates and 1 for neighbors only with relative distance.
- axis_rule[i*6+1]: type of the atom defining the first axis of type-i atom.
- axis_rule[i*6+2]: index of the axis atom defining the first axis. Note that the neighbors with the same class and type are sorted according to their relative distance.
- axis_rule[i*6+3]: class of the atom defining the first axis of type-i atom. 0 for neighbors with full coordinates and 1 for neighbors only with relative distance.
- axis_rule[i*6+4]: type of the atom defining the second axis of type-i atom.
- axis_rule[i*6+5]: class of the atom defining the second axis of type-i atom. 0 for neighbors with full coordinates and 1 for neighbors only with relative distance.
When type is set to
se_e2_a
(or its aliasse_a
):- sel:
- type:
list
|str
, optional, default:auto
argument path:model/descriptor[se_e2_a]/sel
This parameter set the number of selected neighbors for each type of atom. It can be:
- List[int]. The length of the list should be the same as the number of atom types in the system. sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel value must be less than 4096 in a GPU environment.
- str. Can be "auto:factor" or "auto". "factor" is a float number larger than 1. This option will automatically determine the sel. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the "factor". Finally the number is wraped up to 4 divisible. The option "auto" is equivalent to "auto:1.1".
- rcut:
- type:
float
, optional, default:6.0
argument path:model/descriptor[se_e2_a]/rcut
The cut-off radius.
- rcut_smth:
- type:
float
, optional, default:0.5
argument path:model/descriptor[se_e2_a]/rcut_smth
Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth
- neuron:
- type:
list
, optional, default:[10, 20, 40]
argument path:model/descriptor[se_e2_a]/neuron
Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.
- axis_neuron:
- type:
int
, optional, default:4
, alias: n_axis_neuronargument path:model/descriptor[se_e2_a]/axis_neuron
Size of the submatrix of G (embedding matrix).
- activation_function:
- type:
str
, optional, default:tanh
argument path:model/descriptor[se_e2_a]/activation_function
The activation function in the embedding net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".
- resnet_dt:
- type:
bool
, optional, default:False
argument path:model/descriptor[se_e2_a]/resnet_dt
Whether to use a "Timestep" in the skip connection
- type_one_side:
- type:
bool
, optional, default:False
argument path:model/descriptor[se_e2_a]/type_one_side
Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets
- precision:
- type:
str
, optional, default:float64
argument path:model/descriptor[se_e2_a]/precision
The precision of the embedding net parameters, supported options are "default", "float16", "float32", "float64".
- trainable:
- type:
bool
, optional, default:True
argument path:model/descriptor[se_e2_a]/trainable
If the parameters in the embedding net is trainable
- seed:
- type:
int
|NoneType
, optionalargument path:model/descriptor[se_e2_a]/seed
Random seed for parameter initialization
- exclude_types:
- type:
list
, optional, default:[]
argument path:model/descriptor[se_e2_a]/exclude_types
The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.
- set_davg_zero:
- type:
bool
, optional, default:False
argument path:model/descriptor[se_e2_a]/set_davg_zero
Set the normalization average to zero. This option should be set when atom_ener in the energy fitting is used
When type is set to
se_e2_r
(or its aliasse_r
):- sel:
- type:
list
|str
, optional, default:auto
argument path:model/descriptor[se_e2_r]/sel
This parameter set the number of selected neighbors for each type of atom. It can be:
- List[int]. The length of the list should be the same as the number of atom types in the system. sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel value must be less than 4096 in a GPU environment.
- str. Can be "auto:factor" or "auto". "factor" is a float number larger than 1. This option will automatically determine the sel. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the "factor". Finally the number is wraped up to 4 divisible. The option "auto" is equivalent to "auto:1.1".
- rcut:
- type:
float
, optional, default:6.0
argument path:model/descriptor[se_e2_r]/rcut
The cut-off radius.
- rcut_smth:
- type:
float
, optional, default:0.5
argument path:model/descriptor[se_e2_r]/rcut_smth
Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth
- neuron:
- type:
list
, optional, default:[10, 20, 40]
argument path:model/descriptor[se_e2_r]/neuron
Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.
- activation_function:
- type:
str
, optional, default:tanh
argument path:model/descriptor[se_e2_r]/activation_function
The activation function in the embedding net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".
- resnet_dt:
- type:
bool
, optional, default:False
argument path:model/descriptor[se_e2_r]/resnet_dt
Whether to use a "Timestep" in the skip connection
- type_one_side:
- type:
bool
, optional, default:False
argument path:model/descriptor[se_e2_r]/type_one_side
Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets
- precision:
- type:
str
, optional, default:float64
argument path:model/descriptor[se_e2_r]/precision
The precision of the embedding net parameters, supported options are "default", "float16", "float32", "float64".
- trainable:
- type:
bool
, optional, default:True
argument path:model/descriptor[se_e2_r]/trainable
If the parameters in the embedding net are trainable
- seed:
- type:
int
|NoneType
, optionalargument path:model/descriptor[se_e2_r]/seed
Random seed for parameter initialization
- exclude_types:
- type:
list
, optional, default:[]
argument path:model/descriptor[se_e2_r]/exclude_types
The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.
- set_davg_zero:
- type:
bool
, optional, default:False
argument path:model/descriptor[se_e2_r]/set_davg_zero
Set the normalization average to zero. This option should be set when atom_ener in the energy fitting is used
When type is set to
se_e3
(or its aliasesse_at
,se_a_3be
,se_t
):- sel:
- type:
list
|str
, optional, default:auto
argument path:model/descriptor[se_e3]/sel
This parameter set the number of selected neighbors for each type of atom. It can be:
- List[int]. The length of the list should be the same as the number of atom types in the system. sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel value must be less than 4096 in a GPU environment.
- str. Can be "auto:factor" or "auto". "factor" is a float number larger than 1. This option will automatically determine the sel. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the "factor". Finally the number is wraped up to 4 divisible. The option "auto" is equivalent to "auto:1.1".
- rcut:
- type:
float
, optional, default:6.0
argument path:model/descriptor[se_e3]/rcut
The cut-off radius.
- rcut_smth:
- type:
float
, optional, default:0.5
argument path:model/descriptor[se_e3]/rcut_smth
Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth
- neuron:
- type:
list
, optional, default:[10, 20, 40]
argument path:model/descriptor[se_e3]/neuron
Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.
- activation_function:
- type:
str
, optional, default:tanh
argument path:model/descriptor[se_e3]/activation_function
The activation function in the embedding net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".
- resnet_dt:
- type:
bool
, optional, default:False
argument path:model/descriptor[se_e3]/resnet_dt
Whether to use a "Timestep" in the skip connection
- precision:
- type:
str
, optional, default:float64
argument path:model/descriptor[se_e3]/precision
The precision of the embedding net parameters, supported options are "default", "float16", "float32", "float64".
- trainable:
- type:
bool
, optional, default:True
argument path:model/descriptor[se_e3]/trainable
If the parameters in the embedding net are trainable
- seed:
- type:
int
|NoneType
, optionalargument path:model/descriptor[se_e3]/seed
Random seed for parameter initialization
- set_davg_zero:
- type:
bool
, optional, default:False
argument path:model/descriptor[se_e3]/set_davg_zero
Set the normalization average to zero. This option should be set when atom_ener in the energy fitting is used
When type is set to
se_a_tpe
(or its aliasse_a_ebd
):- sel:
- type:
list
|str
, optional, default:auto
argument path:model/descriptor[se_a_tpe]/sel
This parameter set the number of selected neighbors for each type of atom. It can be:
- List[int]. The length of the list should be the same as the number of atom types in the system. sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel value must be less than 4096 in a GPU environment.
- str. Can be "auto:factor" or "auto". "factor" is a float number larger than 1. This option will automatically determine the sel. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the "factor". Finally the number is wraped up to 4 divisible. The option "auto" is equivalent to "auto:1.1".
- rcut:
- type:
float
, optional, default:6.0
argument path:model/descriptor[se_a_tpe]/rcut
The cut-off radius.
- rcut_smth:
- type:
float
, optional, default:0.5
argument path:model/descriptor[se_a_tpe]/rcut_smth
Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth
- neuron:
- type:
list
, optional, default:[10, 20, 40]
argument path:model/descriptor[se_a_tpe]/neuron
Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.
- axis_neuron:
- type:
int
, optional, default:4
, alias: n_axis_neuronargument path:model/descriptor[se_a_tpe]/axis_neuron
Size of the submatrix of G (embedding matrix).
- activation_function:
- type:
str
, optional, default:tanh
argument path:model/descriptor[se_a_tpe]/activation_function
The activation function in the embedding net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".
- resnet_dt:
- type:
bool
, optional, default:False
argument path:model/descriptor[se_a_tpe]/resnet_dt
Whether to use a "Timestep" in the skip connection
- type_one_side:
- type:
bool
, optional, default:False
argument path:model/descriptor[se_a_tpe]/type_one_side
Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets
- precision:
- type:
str
, optional, default:float64
argument path:model/descriptor[se_a_tpe]/precision
The precision of the embedding net parameters, supported options are "default", "float16", "float32", "float64".
- trainable:
- type:
bool
, optional, default:True
argument path:model/descriptor[se_a_tpe]/trainable
If the parameters in the embedding net is trainable
- seed:
- type:
int
|NoneType
, optionalargument path:model/descriptor[se_a_tpe]/seed
Random seed for parameter initialization
- exclude_types:
- type:
list
, optional, default:[]
argument path:model/descriptor[se_a_tpe]/exclude_types
The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.
- set_davg_zero:
- type:
bool
, optional, default:False
argument path:model/descriptor[se_a_tpe]/set_davg_zero
Set the normalization average to zero. This option should be set when atom_ener in the energy fitting is used
- type_nchanl:
- type:
int
, optional, default:4
argument path:model/descriptor[se_a_tpe]/type_nchanl
number of channels for type embedding
- type_nlayer:
- type:
int
, optional, default:2
argument path:model/descriptor[se_a_tpe]/type_nlayer
number of hidden layers of type embedding net
- numb_aparam:
- type:
int
, optional, default:0
argument path:model/descriptor[se_a_tpe]/numb_aparam
dimension of atomic parameter. if set to a value > 0, the atomic parameters are embedded.
When type is set to
hybrid
:- list:
- type:
list
argument path:model/descriptor[hybrid]/list
A list of descriptor definitions
- fitting_net:
- type:
dict
argument path:model/fitting_net
The fitting of physical properties.
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key), default:ener
argument path:model/fitting_net/type
The type of the fitting. See explanation below.
- ener: Fit an energy model (potential energy surface).
- dipole: Fit an atomic dipole model. Global dipole labels or atomic dipole labels for all the selected atoms (see sel_type) should be provided by dipole.npy in each data system. The file either has number of frames lines and 3 times of number of selected atoms columns, or has number of frames lines and 3 columns. See loss parameter.
- polar: Fit an atomic polarizability model. Global polarizazbility labels or atomic polarizability labels for all the selected atoms (see sel_type) should be provided by polarizability.npy in each data system. The file eith has number of frames lines and 9 times of number of selected atoms columns, or has number of frames lines and 9 columns. See loss parameter.
When type is set to
ener
:- numb_fparam:
- type:
int
, optional, default:0
argument path:model/fitting_net[ener]/numb_fparam
The dimension of the frame parameter. If set to >0, file fparam.npy should be included to provided the input fparams.
- numb_aparam:
- type:
int
, optional, default:0
argument path:model/fitting_net[ener]/numb_aparam
The dimension of the atomic parameter. If set to >0, file aparam.npy should be included to provided the input aparams.
- neuron:
- type:
list
, optional, default:[120, 120, 120]
, alias: n_neuronargument path:model/fitting_net[ener]/neuron
The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the same size, a skip connection is built.
- activation_function:
- type:
str
, optional, default:tanh
argument path:model/fitting_net[ener]/activation_function
The activation function in the fitting net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".
- precision:
- type:
str
, optional, default:float64
argument path:model/fitting_net[ener]/precision
The precision of the fitting net parameters, supported options are "default", "float16", "float32", "float64".
- resnet_dt:
- type:
bool
, optional, default:True
argument path:model/fitting_net[ener]/resnet_dt
Whether to use a "Timestep" in the skip connection
- trainable:
- type:
list
|bool
, optional, default:True
argument path:model/fitting_net[ener]/trainable
Whether the parameters in the fitting net are trainable. This option can be
- bool: True if all parameters of the fitting net are trainable, False otherwise.
- list of bool: Specifies if each layer is trainable. Since the fitting net is composed by hidden layers followed by a output layer, the length of tihs list should be equal to len(neuron)+1.
- rcond:
- type:
float
, optional, default:0.001
argument path:model/fitting_net[ener]/rcond
The condition number used to determine the inital energy shift for each type of atoms.
- seed:
- type:
int
|NoneType
, optionalargument path:model/fitting_net[ener]/seed
Random seed for parameter initialization of the fitting net
- atom_ener:
- type:
list
, optional, default:[]
argument path:model/fitting_net[ener]/atom_ener
Specify the atomic energy in vacuum for each type
When type is set to
dipole
:- neuron:
- type:
list
, optional, default:[120, 120, 120]
, alias: n_neuronargument path:model/fitting_net[dipole]/neuron
The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the same size, a skip connection is built.
- activation_function:
- type:
str
, optional, default:tanh
argument path:model/fitting_net[dipole]/activation_function
The activation function in the fitting net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".
- resnet_dt:
- type:
bool
, optional, default:True
argument path:model/fitting_net[dipole]/resnet_dt
Whether to use a "Timestep" in the skip connection
- precision:
- type:
str
, optional, default:float64
argument path:model/fitting_net[dipole]/precision
The precision of the fitting net parameters, supported options are "default", "float16", "float32", "float64".
- sel_type:
- type:
list
|int
|NoneType
, optional, alias: dipole_typeargument path:model/fitting_net[dipole]/sel_type
The atom types for which the atomic dipole will be provided. If not set, all types will be selected.
- seed:
- type:
int
|NoneType
, optionalargument path:model/fitting_net[dipole]/seed
Random seed for parameter initialization of the fitting net
When type is set to
polar
:- neuron:
- type:
list
, optional, default:[120, 120, 120]
, alias: n_neuronargument path:model/fitting_net[polar]/neuron
The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the same size, a skip connection is built.
- activation_function:
- type:
str
, optional, default:tanh
argument path:model/fitting_net[polar]/activation_function
The activation function in the fitting net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".
- resnet_dt:
- type:
bool
, optional, default:True
argument path:model/fitting_net[polar]/resnet_dt
Whether to use a "Timestep" in the skip connection
- precision:
- type:
str
, optional, default:float64
argument path:model/fitting_net[polar]/precision
The precision of the fitting net parameters, supported options are "default", "float16", "float32", "float64".
- fit_diag:
- type:
bool
, optional, default:True
argument path:model/fitting_net[polar]/fit_diag
Fit the diagonal part of the rotational invariant polarizability matrix, which will be converted to normal polarizability matrix by contracting with the rotation matrix.
- scale:
- type:
float
|list
, optional, default:1.0
argument path:model/fitting_net[polar]/scale
The output of the fitting net (polarizability matrix) will be scaled by
scale
- shift_diag:
- type:
bool
, optional, default:True
argument path:model/fitting_net[polar]/shift_diag
Whether to shift the diagonal of polar, which is beneficial to training. Default is true.
- sel_type:
- type:
list
|int
|NoneType
, optional, alias: pol_typeargument path:model/fitting_net[polar]/sel_type
The atom types for which the atomic polarizability will be provided. If not set, all types will be selected.
- seed:
- type:
int
|NoneType
, optionalargument path:model/fitting_net[polar]/seed
Random seed for parameter initialization of the fitting net
- modifier:
- type:
dict
, optionalargument path:model/modifier
The modifier of model output.
Depending on the value of type, different sub args are accepted.
- type:
-
The type of modifier. See explanation below.
-dipole_charge: Use WFCC to model the electronic structure of the system. Correct the long-range interaction
When type is set to
dipole_charge
:- model_name:
- type:
str
argument path:model/modifier[dipole_charge]/model_name
The name of the frozen dipole model file.
- model_charge_map:
- type:
list
argument path:model/modifier[dipole_charge]/model_charge_map
The charge of the WFCC. The list length should be the same as the sel_type.
- sys_charge_map:
- type:
list
argument path:model/modifier[dipole_charge]/sys_charge_map
The charge of real atoms. The list length should be the same as the type_map
- ewald_beta:
- type:
float
, optional, default:0.4
argument path:model/modifier[dipole_charge]/ewald_beta
The splitting parameter of Ewald sum. Unit is A^-1
- ewald_h:
- type:
float
, optional, default:1.0
argument path:model/modifier[dipole_charge]/ewald_h
The grid spacing of the FFT grid. Unit is A
- compress:
- type:
dict
, optionalargument path:model/compress
Model compression configurations
Depending on the value of type, different sub args are accepted.
- type:
-
The type of model compression, which should be consistent with the descriptor type.
When type is set to
se_e2_a
(or its aliasse_a
):- compress:
- type:
bool
argument path:model/compress[se_e2_a]/compress
The name of the frozen model file.
- model_file:
- type:
str
argument path:model/compress[se_e2_a]/model_file
The input model file, which will be compressed by the DeePMD-kit.
- table_config:
- type:
list
argument path:model/compress[se_e2_a]/table_config
The arguments of model compression, including extrapolate(scale of model extrapolation), stride(uniform stride of tabulation's first and second table), and frequency(frequency of tabulation overflow check).
- min_nbor_dist:
- type:
float
argument path:model/compress[se_e2_a]/min_nbor_dist
The nearest distance between neighbor atoms saved in the frozen model.
- loss:
- type:
dict
, optionalargument path:loss
The definition of loss function. The loss type should be set to tensor, ener or left unset. .
Depending on the value of type, different sub args are accepted.
- type:
-
The type of the loss. When the fitting type is ener, the loss type should be set to ener or left unset. When the fitting type is dipole or polar, the loss type should be set to tensor. .
When type is set to
ener
:- start_pref_e:
- type:
float
|int
, optional, default:0.02
argument path:loss[ener]/start_pref_e
The prefactor of energy loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the energy label should be provided by file energy.npy in each data system. If both start_pref_energy and limit_pref_energy are set to 0, then the energy will be ignored.
- limit_pref_e:
- type:
float
|int
, optional, default:1.0
argument path:loss[ener]/limit_pref_e
The prefactor of energy loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.
- start_pref_f:
- type:
float
|int
, optional, default:1000
argument path:loss[ener]/start_pref_f
The prefactor of force loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the force label should be provided by file force.npy in each data system. If both start_pref_force and limit_pref_force are set to 0, then the force will be ignored.
- limit_pref_f:
- type:
float
|int
, optional, default:1.0
argument path:loss[ener]/limit_pref_f
The prefactor of force loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.
- start_pref_v:
- type:
float
|int
, optional, default:0.0
argument path:loss[ener]/start_pref_v
The prefactor of virial loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the virial label should be provided by file virial.npy in each data system. If both start_pref_virial and limit_pref_virial are set to 0, then the virial will be ignored.
- limit_pref_v:
- type:
float
|int
, optional, default:0.0
argument path:loss[ener]/limit_pref_v
The prefactor of virial loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.
- start_pref_ae:
- type:
float
|int
, optional, default:0.0
argument path:loss[ener]/start_pref_ae
The prefactor of atom_ener loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the atom_ener label should be provided by file atom_ener.npy in each data system. If both start_pref_atom_ener and limit_pref_atom_ener are set to 0, then the atom_ener will be ignored.
- limit_pref_ae:
- type:
float
|int
, optional, default:0.0
argument path:loss[ener]/limit_pref_ae
The prefactor of atom_ener loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.
- relative_f:
- type:
float
|NoneType
, optionalargument path:loss[ener]/relative_f
If provided, relative force error will be used in the loss. The difference of force will be normalized by the magnitude of the force in the label with a shift given by relative_f, i.e. DF_i / ( || F || + relative_f ) with DF denoting the difference between prediction and label and || F || denoting the L2 norm of the label.
When type is set to
tensor
:- pref:
- type:
float
|int
argument path:loss[tensor]/pref
The prefactor of the weight of global loss. It should be larger than or equal to 0. If controls the weight of loss corresponding to global label, i.e. 'polarizability.npy` or dipole.npy, whose shape should be #frames x [9 or 3]. If it's larger than 0.0, this npy should be included.
- pref_atomic:
- type:
float
|int
argument path:loss[tensor]/pref_atomic
The prefactor of the weight of atomic loss. It should be larger than or equal to 0. If controls the weight of loss corresponding to atomic label, i.e. atomic_polarizability.npy or atomic_dipole.npy, whose shape should be #frames x ([9 or 3] x #selected atoms). If it's larger than 0.0, this npy should be included. Both pref and pref_atomic should be provided, and either can be set to 0.0.
- learning_rate:
- type:
dict
argument path:learning_rate
The definitio of learning rate
Depending on the value of type, different sub args are accepted.
- type:
-
The type of the learning rate.
When type is set to
exp
:- start_lr:
- type:
float
, optional, default:0.001
argument path:learning_rate[exp]/start_lr
The learning rate the start of the training.
- stop_lr:
- type:
float
, optional, default:1e-08
argument path:learning_rate[exp]/stop_lr
The desired learning rate at the end of the training.
- decay_steps:
- type:
int
, optional, default:5000
argument path:learning_rate[exp]/decay_steps
The learning rate is decaying every this number of training steps.
- training:
- type:
dict
argument path:training
The training options.
- training_data:
- type:
dict
argument path:training/training_data
Configurations of training data.
- systems:
- type:
list
|str
argument path:training/training_data/systems
The data systems for training. This key can be provided with a list that specifies the systems, or be provided with a string by which the prefix of all systems are given and the list of the systems is automatically generated.
- set_prefix:
- type:
str
, optional, default:set
argument path:training/training_data/set_prefix
The prefix of the sets in the systems.
- batch_size:
- type:
list
|int
|str
, optional, default:auto
argument path:training/training_data/batch_size
This key can be
- list: the length of which is the same as the systems. The batch size of each system is given by the elements of the list.
- int: all systems use the same batch size.
- string "auto": automatically determines the batch size so that the batch_size times the number of atoms in the system is no less than 32.
- string "auto:N": automatically determines the batch size so that the batch_size times the number of atoms in the system is no less than N.
- auto_prob:
- type:
str
, optional, default:prob_sys_size
, alias: auto_prob_styleargument path:training/training_data/auto_prob
Determine the probability of systems automatically. The method is assigned by this key and can be
- "prob_uniform" : the probability all the systems are equal, namely 1.0/self.get_nsystems()
- "prob_sys_size" : the probability of a system is proportional to the number of batches in the system
- "prob_sys_size;stt_idx:end_idx:weight;stt_idx:end_idx:weight;..." : the list of systems is devided into blocks. A block is specified by stt_idx:end_idx:weight, where stt_idx is the starting index of the system, end_idx is then ending (not including) index of the system, the probabilities of the systems in this block sums up to weight, and the relatively probabilities within this block is proportional to the number of batches in the system.
- sys_probs:
- type:
list
|NoneType
, optional, default:None
, alias: sys_weightsargument path:training/training_data/sys_probs
A list of float if specified. Should be of the same length as systems, specifying the probability of each system.
- validation_data:
- type:
dict
|NoneType
, optional, default:None
argument path:training/validation_data
Configurations of validation data. Similar to that of training data, except that a numb_btch argument may be configured
- systems:
- type:
list
|str
argument path:training/validation_data/systems
The data systems for validation. This key can be provided with a list that specifies the systems, or be provided with a string by which the prefix of all systems are given and the list of the systems is automatically generated.
- set_prefix:
- type:
str
, optional, default:set
argument path:training/validation_data/set_prefix
The prefix of the sets in the systems.
- batch_size:
- type:
list
|int
|str
, optional, default:auto
argument path:training/validation_data/batch_size
This key can be
- list: the length of which is the same as the systems. The batch size of each system is given by the elements of the list.
- int: all systems use the same batch size.
- string "auto": automatically determines the batch size so that the batch_size times the number of atoms in the system is no less than 32.
- string "auto:N": automatically determines the batch size so that the batch_size times the number of atoms in the system is no less than N.
- auto_prob:
- type:
str
, optional, default:prob_sys_size
, alias: auto_prob_styleargument path:training/validation_data/auto_prob
Determine the probability of systems automatically. The method is assigned by this key and can be
- "prob_uniform" : the probability all the systems are equal, namely 1.0/self.get_nsystems()
- "prob_sys_size" : the probability of a system is proportional to the number of batches in the system
- "prob_sys_size;stt_idx:end_idx:weight;stt_idx:end_idx:weight;..." : the list of systems is devided into blocks. A block is specified by stt_idx:end_idx:weight, where stt_idx is the starting index of the system, end_idx is then ending (not including) index of the system, the probabilities of the systems in this block sums up to weight, and the relatively probabilities within this block is proportional to the number of batches in the system.
- sys_probs:
- type:
list
|NoneType
, optional, default:None
, alias: sys_weightsargument path:training/validation_data/sys_probs
A list of float if specified. Should be of the same length as systems, specifying the probability of each system.
- numb_btch:
- type:
int
, optional, default:1
, alias: numb_batchargument path:training/validation_data/numb_btch
An integer that specifies the number of systems to be sampled for each validation period.
- numb_steps:
- type:
int
, alias: stop_batchargument path:training/numb_steps
Number of training batch. Each training uses one batch of data.
- seed:
- type:
int
|NoneType
, optionalargument path:training/seed
The random seed for getting frames from the training data set.
- disp_file:
- type:
str
, optional, default:lcurve.out
argument path:training/disp_file
The file for printing learning curve.
- disp_freq:
- type:
int
, optional, default:1000
argument path:training/disp_freq
The frequency of printing learning curve.
- numb_test:
- type:
list
|int
|str
, optional, default:1
argument path:training/numb_test
Number of frames used for the test during training.
- save_freq:
- type:
int
, optional, default:1000
argument path:training/save_freq
The frequency of saving check point.
- save_ckpt:
- type:
str
, optional, default:model.ckpt
argument path:training/save_ckpt
The file name of saving check point.
- disp_training:
- type:
bool
, optional, default:True
argument path:training/disp_training
Displaying verbose information during training.
- time_training:
- type:
bool
, optional, default:True
argument path:training/time_training
Timing durining training.
- profiling:
- type:
bool
, optional, default:False
argument path:training/profiling
Profiling during training.
- profiling_file:
- type:
str
, optional, default:timeline.json
argument path:training/profiling_file
Output file for profiling.
- tensorboard:
- type:
bool
, optional, default:False
argument path:training/tensorboard
Enable tensorboard
- tensorboard_log_dir:
- type:
str
, optional, default:log
argument path:training/tensorboard_log_dir
The log directory of tensorboard outputs
- tensorboard_freq:
- type:
int
, optional, default:1
argument path:training/tensorboard_freq
The frequency of writing tensorboard events.