forked from sccn/roiconnect
-
Notifications
You must be signed in to change notification settings - Fork 0
/
roi_network.m
283 lines (265 loc) · 13.3 KB
/
roi_network.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
% ****************************************************
% This function is mostly obsolete as it was replaced
% by roi_networkplot() which can plot any measure
% (instead of just coherence for this function)
% It might still be useful for real time calculation
% ****************************************************
%
% roi_network() - compute connectivity between ROIs
%
% Usage:
% EEG = roi_network(EEG, 'key', 'val', ...);
%
% Inputs:
% EEG - EEGLAB dataset with ROI activity computed
%
% Optional inputs (choose at least one):
% 'nfft' - [integer] FFT padding. Default is twice the sampling rate.
% 'freqdb' - ['on'|'off'] compute spctral activity in dB. Default is 'on'.
% 'freqrange' - [cell] frequency ranges. Default is { [4 6] [ 8 12] [18 22] }
% for theta (4 to 6 Hz), alpha and beta.
% 'processfreq' - [struct of func] how to process spectral data. Default is
% processfreq.theta = @(x)x(:,1);
% processfreq.alpha = @(x)x(:,2);
% processfreq.beta = @(x)x(:,3);
% 'processconnect' - [struct of func] how to process connectivity data.
% Default is (the diverder is the number of non zero values)
% processconnect.theta = @(x)sum(sum(x(:,:,1)))/((size(x,1).^2)-size(x,1));
% processconnect.alpha = @(x)sum(sum(x(:,:,2)))/((size(x,1).^2)-size(x,1));
% processconnect.beta = @(x)sum(sum(x(:,:,3)))/((size(x,1).^2)-size(x,1));
% 'plotmode' - ['2D'|'3D'|'both'] plot in 2-D, 3-D or both. Default
% is 2D.
%
% Output:
% EEG - EEG structure with EEG.roi field updated and now containing
% connectivity information.
% results - result with the fields defined as input.
% Copyright (C) Arnaud Delorme, [email protected]
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [EEG,results,loretaFile,imgFileName,txtFileName] = roi_network(EEG, varargin)
if EEG.trials == 1 % fast call
opt = struct(varargin{:});
if ~isfield(opt, 'networkfile')
error('No field networkfile given as input');
end
% other paratemers
if ~isfield(opt, 'roilist'), opt.roilist = []; end
if ~isfield(opt, 'nfft'), opt.nfft = EEG.srate*2; end
if ~isfield(opt, 'freqdb'), opt.freqdb = 1; end
if ~isfield(opt, 'freqrange') opt.freqrange = { [4 6] [ 8 12] [18 22] }; end
if ~isfield(opt, 'processfreq') opt.processfreq = []; end
if ~isfield(opt, 'processconnect') opt.processconnect = []; end
if ~isfield(opt, 'plotnetworkfile') opt.plotnetworkfile = ''; end
else
opt = finputcheck( varargin, { ...
'networkfile' '' {} '';
'nfft' 'integer' {} EEG.srate*2;
'freqdb' 'integer' {} 1;
'measureoutput' 'string' {'on' 'off'} 'off';
'roilist' 'integer' {} [];
'freqrange' 'cell' {} { [4 6] [ 8 12] [18 22] };
'freqname' 'cell' {} { 'theta' 'alpha' 'beta' };
'processfreq' '' {} [];
'precomputed' 'struct' {} struct([]);
'leadfield' 'string' {} '';
'sourcemodel' 'string' {} '';
'plotnetworkfile' '' {} '';
'plotmode' 'string' {'2D' '3D' 'both' 'off' } '2D';
'plotloretafile' '' {} '';
'loretalimits' '' {} [];
'processconnect' '' {} [] }, 'roi_network');
end
if ischar(opt), error(opt); end
if isempty(opt.processfreq)
for iFreq = 1:length(opt.freqrange)
opt.processfreq.(opt.freqname{iFreq}) = @(x)x(:,iFreq);
end
end
if isempty(opt.processconnect)
for iFreq = 1:length(opt.freqrange)
opt.processconnect.(opt.freqname{iFreq}) = @(x)sum(sum(x(:,:,iFreq)))/((size(x,1).^2)-size(x,1)); % the diverder is the number of non zero values
end
end
if isempty(opt.networkfile)
dipfitdefs;
EEG = pop_dipfit_settings( EEG, 'hdmfile', template_models(2).hdmfile,'coordformat','MNI', ...
'mrifile', template_models(2).mrifile,'chanfile',template_models(2).chanfile,...
'coord_transform',[0 0 0 0 0 -1.5708 1 1 1] ,'chansel',[1:EEG.nbchan] );
chans = { 'FP1','FP2','F3','F4','C3','C4','P3','P4','O1','O2','F7','F8','T3','T4','T5','T6','FZ','CZ','PZ' };
if ischar(opt.leadfield)
tmpLeadfield = load('-mat', opt.leadfield);
if isfield(tmpLeadfield, 'label') && ~isequal(upper({EEG.chanlocs.labels}), upper(tmpLeadfield.label))
error('Electrode name inconsistency');
end
end
options = { ...
'headmodel' template_models(2).hdmfile ...
'leadfield' opt.leadfield ...
'sourcemodel' opt.sourcemodel ... % 'sourcemodel' '/data/matlab/eeglab/plugins/roiconnect/LORETA-Talairach-BAs.mat' ...
'sourcemodel2mni' [] ...
'sourcemodelatlas' 'BrainDx' ... % 'sourcemodelatlas' 'LORETA-Talairach-BAs' ...
'downsample' 1 ...
'nPCA' 1 ...
'model' 'eLoreta' ...
'roiactivity' 'on', ...
'exportvoxact' 'on'
};
% 'trgc' 'off' ...
% 'crossspec' 'off' ...
% 'morder' 20 ...
EEG = pop_roi_activity(EEG, options{:});
source_voxel_data = EEG.roi.source_voxel_data;
if isempty(opt.roilist)
opt.roilist = 1:EEG.roi.nROI; % list of ROI necessary to compute connectivity
end
tmp = load('-mat', 'supportfiles\BrainDx_sourcemodel.mat');
loreta_ROIS = tmp.Atlas.Scouts;
loreta_Networks = [];
else
if ischar(opt.networkfile)
opt.networkfile = load('-mat', opt.networkfile);
end
loreta_P = opt.networkfile.loreta_P;
loreta_Networks = opt.networkfile.loreta_Networks;
loreta_ROIS = opt.networkfile.loreta_ROIS;
if isempty(opt.roilist)
opt.roilist = unique([loreta_Networks.ROI_inds]); % list of ROI necessary to compute connectivity
end
% project to source space
source_voxel_data = reshape(EEG.data(:, :)'*loreta_P(:, :), size(EEG.data,2)*size(EEG.data,3), size(loreta_P,2), 3);
end
% Computing spectrum
% ALSO IMPLEMENT USING ROI_ACTIVITY
sz = size(source_voxel_data);
tmpdata = reshape(source_voxel_data, sz(1), sz(2)*sz(3)); % THIS IS MOSTLY WRONG HERE AS EPOCHS ARE CONCATENATED
source_voxel_spec = pwelch(tmpdata, EEG.srate, EEG.srate/2, opt.nfft, EEG.srate); % assuming 1 second of data
source_voxel_spec = reshape(source_voxel_spec, size(source_voxel_spec,1), sz(2), sz(3));
source_voxel_spec = mean(source_voxel_spec(2:size(source_voxel_spec,1),:,:,:),length(sz)); % frequency selection 2 to 31 (1Hz to 30Hz)
freqs = linspace(0, EEG.srate/2, floor(opt.nfft/2)+1);
freqs = freqs(2:end); % remove DC (match the output of PSD)
% Plot loreta file
if ~isempty(opt.plotloretafile)
loretaFile = opt.plotloretafile;
options = { 'freqrange', opt.freqrange, 'limits', opt.loretalimits, 'saveasfile', opt.plotloretafile, 'precomputed', opt.precomputed };
if strcmpi(opt.plotmode, 'off') options = [ options { 'noplot' 'on' } ]; end
loretaMeasures = roi_sourceplot(freqs, source_voxel_spec', opt.sourcemodel, options{:});
end
% Compute ROI activity
for ind_roi = opt.roilist
% data used for connectivity analysis
spatiallyFilteredDataTmp = roi_getact( source_voxel_data, loreta_ROIS(ind_roi).Vertices, 1, 0); % Warning no zscore here; also PCA=1 is too low
spatiallyFilteredSpecTmp = roi_getact( source_voxel_spec, loreta_ROIS(ind_roi).Vertices, 1, 0);
if ind_roi == 1
spatiallyFilteredData = zeros(max(opt.roilist), length(spatiallyFilteredDataTmp));
spatiallyFilteredSpec = zeros(max(opt.roilist), length(spatiallyFilteredSpecTmp));
end
spatiallyFilteredData(ind_roi,:) = spatiallyFilteredDataTmp;
spatiallyFilteredSpec(ind_roi,:) = spatiallyFilteredSpecTmp;
end
loretaSpec = spatiallyFilteredSpec';
% select frequency bands
for iSpec = 1:length(opt.freqrange)
freqRangeTmp = intersect( find(freqs >= opt.freqrange{iSpec}(1)), find(freqs <= opt.freqrange{iSpec}(2)) );
loretaSpecSelect(:,iSpec) = mean(abs(loretaSpec(freqRangeTmp,:)).^2,1); % mean power in frequency range
if opt.freqdb
loretaSpecSelect(:,iSpec) = 10*log10(abs(loretaSpecSelect(:,iSpec)).^2);
end
end
% compute metric of interest
processfreqFields = fieldnames(opt.processfreq);
for iProcess = 1:length(processfreqFields)
results.(['loreta_regions_' processfreqFields{iProcess}]) = feval(opt.processfreq.(processfreqFields{iProcess}), loretaSpecSelect);
end
% compute cross-spectral density for each network
% -----------------------------------------------
if ~isempty(opt.processconnect)
for iNet = 1:length(loreta_Networks)
if 1
% ALSO IMPLEMENT USING ROI_CONNECT
[restmp,connectSpecSelect{iNet}] = roi_csnetworkact( spatiallyFilteredData, loreta_Networks(iNet).ROI_inds, 'nfft', opt.nfft, 'postprocess', opt.processconnect, 'freqranges', opt.freqrange);
% copy results
fields = fieldnames(restmp);
for iField = 1:length(fields)
meanField = [ loreta_Networks(iNet).name '_' fields{iField} ];
detailField = [ loreta_Networks(iNet).name '_' fields{iField} '_details' ];
results.(meanField) = restmp.(fields{iField});
results.(detailField) = connectSpecSelect{iNet}(:,:,iField);
% reuse data
if isfield(opt.precomputed, meanField)
restmp.(fields{iField}) = opt.precomputed.(meanField);
end
if isfield(opt.precomputed, detailField)
connectSpecSelect{iNet}(:,:,iField) = opt.precomputed.(detailField);
end
end
else
networkData = spatiallyFilteredData(loreta_Networks(iNet).ROI_inds,:);
S = cpsd_welch(networkData,size(networkData,2),0,g.measure.nfft);
[nchan, nchan, nfreq] = size(S);
% imaginary part of cross-spectral density
% ----------------------------------------
absiCOH = S;
for ifreq = 1:nfreq
absiCOH(:, :, ifreq) = squeeze(S(:, :, ifreq)) ./ sqrt(diag(squeeze(S(:, :, ifreq)))*diag(squeeze(S(:, :, ifreq)))');
end
absiCOH = abs(imag(absiCOH));
% frequency selection
% -------------------
connectSpecSelect = zeros(size(absiCOH,1), size(absiCOH,2), length(opt.freqrange));
for iSpec = 1:length(g.measure.freqrange)
freqRangeTmp = intersect( find(freqs >= opt.freqrange{iSpec}(1)), find(freqs <= opt.freqrange{iSpec}(2)) );
connectSpecSelect(:,:,iSpec) = mean(absiCOH(:,:,freqRangeTmp),3); % mean power in frequency range
end
connectprocessFields = fieldnames(opt.processconnect);
for iProcess = 1:length(connectprocessFields)
results.([ loreta_Networks(iNet).name '_' connectprocessFields{iProcess} ]) = feval(opt.processconnect.(connectprocessFields{iProcess}), connectSpecSelect);
end
end
end
if ~isempty(loreta_Networks) && ~isempty(opt.plotnetworkfile) && ~strcmpi(opt.plotmode, 'off')
imgFileName = {};
txtFileName = {};
for iField = 1:length(fields)
connectTmp = cellfun(@(x)x(:,:,iField), connectSpecSelect, 'uniformoutput', false);
[imgFileNameTmp,txtFileNameTmp] = roi_networkplot(opt.networkfile, connectTmp, 'title', fields{iField}, 'filename' ,[opt.plotnetworkfile '_' fields{iField} ], 'plotmode', opt.plotmode);
imgFileName = [ imgFileName imgFileNameTmp ];
txtFileName = [ txtFileName txtFileNameTmp ];
end
else
imgFileName = {};
txtFileName = {};
end
end
if strcmpi(opt.measureoutput, 'on')
out.measures = [];
fields = fieldnames(results);
for iField = 1:length(fields)
out.measures.(fields{iField}).mean = results.(fields{iField});
end
fields = fieldnames(loretaMeasures);
for iField = 1:length(fields)
out.measures.(fields{iField}).mean = loretaMeasures.(fields{iField});
end
results = out;
end