-
Notifications
You must be signed in to change notification settings - Fork 0
/
MersenneTwister.h
466 lines (410 loc) · 15.2 KB
/
MersenneTwister.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
// MersenneTwister.h
// Mersenne Twister random number generator -- a C++ class MTRand
// Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
// Richard J. Wagner v1.1 28 September 2009 [email protected]
// The Mersenne Twister is an algorithm for generating random numbers. It
// was designed with consideration of the flaws in various other generators.
// The period, 2^19937-1, and the order of equidistribution, 623 dimensions,
// are far greater. The generator is also fast; it avoids multiplication and
// division, and it benefits from caches and pipelines. For more information
// see the inventors' web page at
// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
// Reference
// M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally
// Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on
// Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
// Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
// Copyright (C) 2000 - 2009, Richard J. Wagner
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. The names of its contributors may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
// The original code included the following notice:
//
// When you use this, send an email to: [email protected]
// with an appropriate reference to your work.
//
// It would be nice to CC: [email protected] and [email protected]
// when you write.
#ifndef MERSENNETWISTER_H
#define MERSENNETWISTER_H
// Not thread safe (unless auto-initialization is avoided and each thread has
// its own MTRand object)
#include <iostream>
#include <climits>
#include <cstdio>
#include <ctime>
#include <cmath>
class MTRand {
// Data
public:
typedef unsigned long uint32; // unsigned integer type, at least 32 bits
enum { N = 624 }; // length of state vector
enum { SAVE = N + 1 }; // length of array for save()
protected:
enum { M = 397 }; // period parameter
uint32 state[N]; // internal state
uint32 *pNext; // next value to get from state
int left; // number of values left before reload needed
// Methods
public:
MTRand( const uint32 oneSeed ); // initialize with a simple uint32
MTRand( uint32 *const bigSeed, uint32 const seedLength = N ); // or array
MTRand(); // auto-initialize with /dev/urandom or time() and clock()
MTRand( const MTRand& o ); // copy
// Do NOT use for CRYPTOGRAPHY without securely hashing several returned
// values together, otherwise the generator state can be learned after
// reading 624 consecutive values.
// Access to 32-bit random numbers
uint32 randInt(); // integer in [0,2^32-1]
uint32 randInt( const uint32 n ); // integer in [0,n] for n < 2^32
double rand(); // real number in [0,1]
double rand( const double n ); // real number in [0,n]
double randExc(); // real number in [0,1)
double randExc( const double n ); // real number in [0,n)
double randDblExc(); // real number in (0,1)
double randDblExc( const double n ); // real number in (0,n)
double operator()(); // same as rand()
// Access to 53-bit random numbers (capacity of IEEE double precision)
double rand53(); // real number in [0,1)
// Access to nonuniform random number distributions
double randNorm( const double mean = 0.0, const double stddev = 1.0 );
// Re-seeding functions with same behavior as initializers
void seed( const uint32 oneSeed );
void seed( uint32 *const bigSeed, const uint32 seedLength = N );
void seed();
// Saving and loading generator state
void save( uint32* saveArray ) const; // to array of size SAVE
void load( uint32 *const loadArray ); // from such array
friend std::ostream& operator<<( std::ostream& os, const MTRand& mtrand );
friend std::istream& operator>>( std::istream& is, MTRand& mtrand );
MTRand& operator=( const MTRand& o );
protected:
void initialize( const uint32 oneSeed );
void reload();
uint32 hiBit( const uint32 u ) const { return u & 0x80000000UL; }
uint32 loBit( const uint32 u ) const { return u & 0x00000001UL; }
uint32 loBits( const uint32 u ) const { return u & 0x7fffffffUL; }
uint32 mixBits( const uint32 u, const uint32 v ) const
{ return hiBit(u) | loBits(v); }
uint32 magic( const uint32 u ) const
{ return loBit(u) ? 0x9908b0dfUL : 0x0UL; }
uint32 twist( const uint32 m, const uint32 s0, const uint32 s1 ) const
{ return m ^ (mixBits(s0,s1)>>1) ^ magic(s1); }
static uint32 hash( time_t t, clock_t c );
};
// Functions are defined in order of usage to assist inlining
inline MTRand::uint32 MTRand::hash( time_t t, clock_t c )
{
// Get a uint32 from t and c
// Better than uint32(x) in case x is floating point in [0,1]
// Based on code by Lawrence Kirby ([email protected])
static uint32 differ = 0; // guarantee time-based seeds will change
uint32 h1 = 0;
unsigned char *p = (unsigned char *) &t;
for( size_t i = 0; i < sizeof(t); ++i )
{
h1 *= UCHAR_MAX + 2U;
h1 += p[i];
}
uint32 h2 = 0;
p = (unsigned char *) &c;
for( size_t j = 0; j < sizeof(c); ++j )
{
h2 *= UCHAR_MAX + 2U;
h2 += p[j];
}
return ( h1 + differ++ ) ^ h2;
}
inline void MTRand::initialize( const uint32 seed )
{
// Initialize generator state with seed
// See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
// In previous versions, most significant bits (MSBs) of the seed affect
// only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto.
register uint32 *s = state;
register uint32 *r = state;
register int i = 1;
*s++ = seed & 0xffffffffUL;
for( ; i < N; ++i )
{
*s++ = ( 1812433253UL * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffUL;
r++;
}
}
inline void MTRand::reload()
{
// Generate N new values in state
// Made clearer and faster by Matthew Bellew ([email protected])
static const int MmN = int(M) - int(N); // in case enums are unsigned
register uint32 *p = state;
register int i;
for( i = N - M; i--; ++p )
*p = twist( p[M], p[0], p[1] );
for( i = M; --i; ++p )
*p = twist( p[MmN], p[0], p[1] );
*p = twist( p[MmN], p[0], state[0] );
left = N, pNext = state;
}
inline void MTRand::seed( const uint32 oneSeed )
{
// Seed the generator with a simple uint32
initialize(oneSeed);
reload();
}
inline void MTRand::seed( uint32 *const bigSeed, const uint32 seedLength )
{
// Seed the generator with an array of uint32's
// There are 2^19937-1 possible initial states. This function allows
// all of those to be accessed by providing at least 19937 bits (with a
// default seed length of N = 624 uint32's). Any bits above the lower 32
// in each element are discarded.
// Just call seed() if you want to get array from /dev/urandom
initialize(19650218UL);
register int i = 1;
register uint32 j = 0;
register int k = ( N > seedLength ? N : seedLength );
for( ; k; --k )
{
state[i] =
state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1664525UL );
state[i] += ( bigSeed[j] & 0xffffffffUL ) + j;
state[i] &= 0xffffffffUL;
++i; ++j;
if( i >= N ) { state[0] = state[N-1]; i = 1; }
if( j >= seedLength ) j = 0;
}
for( k = N - 1; k; --k )
{
state[i] =
state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL );
state[i] -= i;
state[i] &= 0xffffffffUL;
++i;
if( i >= N ) { state[0] = state[N-1]; i = 1; }
}
state[0] = 0x80000000UL; // MSB is 1, assuring non-zero initial array
reload();
}
inline void MTRand::seed()
{
// Seed the generator with an array from /dev/urandom if available
// Otherwise use a hash of time() and clock() values
// First try getting an array from /dev/urandom
#if _WIN32
FILE* urandom;
fopen_s(&urandom, "/dev/urandom", "rb" );
#else
FILE* urandom = fopen( "/dev/urandom", "rb" );
#endif
if( urandom )
{
uint32 bigSeed[N];
register uint32 *s = bigSeed;
register int i = N;
register bool success = true;
while( success && (bool)((i--)!=0) )
success = (bool)(fread( s++, sizeof(uint32), 1, urandom ) != 0);
fclose(urandom);
if( success ) { seed( bigSeed, N ); return; }
}
// Was not successful, so use time() and clock() instead
seed( hash( time(NULL), clock() ) );
}
inline MTRand::MTRand( const uint32 oneSeed )
{ seed(oneSeed); }
inline MTRand::MTRand( uint32 *const bigSeed, const uint32 seedLength )
{ seed(bigSeed,seedLength); }
inline MTRand::MTRand()
{ seed(); }
inline MTRand::MTRand( const MTRand& o )
{
register const uint32 *t = o.state;
register uint32 *s = state;
register int i = N;
for( ; i--; *s++ = *t++ ) {}
left = o.left;
pNext = &state[N-left];
}
inline MTRand::uint32 MTRand::randInt()
{
// Pull a 32-bit integer from the generator state
// Every other access function simply transforms the numbers extracted here
if( left == 0 ) reload();
--left;
register uint32 s1;
s1 = *pNext++;
s1 ^= (s1 >> 11);
s1 ^= (s1 << 7) & 0x9d2c5680UL;
s1 ^= (s1 << 15) & 0xefc60000UL;
return ( s1 ^ (s1 >> 18) );
}
inline MTRand::uint32 MTRand::randInt( const uint32 n )
{
// Find which bits are used in n
// Optimized by Magnus Jonsson ([email protected])
uint32 used = n;
used |= used >> 1;
used |= used >> 2;
used |= used >> 4;
used |= used >> 8;
used |= used >> 16;
// Draw numbers until one is found in [0,n]
uint32 i;
do
i = randInt() & used; // toss unused bits to shorten search
while( i > n );
return i;
}
inline double MTRand::rand()
{ return double(randInt()) * (1.0/4294967295.0); }
inline double MTRand::rand( const double n )
{ return rand() * n; }
inline double MTRand::randExc()
{ return double(randInt()) * (1.0/4294967296.0); }
inline double MTRand::randExc( const double n )
{ return randExc() * n; }
inline double MTRand::randDblExc()
{ return ( double(randInt()) + 0.5 ) * (1.0/4294967296.0); }
inline double MTRand::randDblExc( const double n )
{ return randDblExc() * n; }
inline double MTRand::rand53()
{
uint32 a = randInt() >> 5, b = randInt() >> 6;
return ( a * 67108864.0 + b ) * (1.0/9007199254740992.0); // by Isaku Wada
}
inline double MTRand::randNorm( const double mean, const double stddev )
{
// Return a real number from a normal (Gaussian) distribution with given
// mean and standard deviation by polar form of Box-Muller transformation
double x, y, r;
do
{
x = 2.0 * rand() - 1.0;
y = 2.0 * rand() - 1.0;
r = x * x + y * y;
}
while ( r >= 1.0 || r == 0.0 );
double s = sqrt( -2.0 * log(r) / r );
return mean + x * s * stddev;
}
inline double MTRand::operator()()
{
return rand();
}
inline void MTRand::save( uint32* saveArray ) const
{
register const uint32 *s = state;
register uint32 *sa = saveArray;
register int i = N;
for( ; i--; *sa++ = *s++ ) {}
*sa = left;
}
inline void MTRand::load( uint32 *const loadArray )
{
register uint32 *s = state;
register uint32 *la = loadArray;
register int i = N;
for( ; i--; *s++ = *la++ ) {}
left = *la;
pNext = &state[N-left];
}
inline std::ostream& operator<<( std::ostream& os, const MTRand& mtrand )
{
register const MTRand::uint32 *s = mtrand.state;
register int i = mtrand.N;
for( ; i--; os << *s++ << "\t" ) {}
return os << mtrand.left;
}
inline std::istream& operator>>( std::istream& is, MTRand& mtrand )
{
register MTRand::uint32 *s = mtrand.state;
register int i = mtrand.N;
for( ; i--; is >> *s++ ) {}
is >> mtrand.left;
mtrand.pNext = &mtrand.state[mtrand.N-mtrand.left];
return is;
}
inline MTRand& MTRand::operator=( const MTRand& o )
{
if( this == &o ) return (*this);
register const uint32 *t = o.state;
register uint32 *s = state;
register int i = N;
for( ; i--; *s++ = *t++ ) {}
left = o.left;
pNext = &state[N-left];
return (*this);
}
#endif // MERSENNETWISTER_H
// Change log:
//
// v0.1 - First release on 15 May 2000
// - Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
// - Translated from C to C++
// - Made completely ANSI compliant
// - Designed convenient interface for initialization, seeding, and
// obtaining numbers in default or user-defined ranges
// - Added automatic seeding from /dev/urandom or time() and clock()
// - Provided functions for saving and loading generator state
//
// v0.2 - Fixed bug which reloaded generator one step too late
//
// v0.3 - Switched to clearer, faster reload() code from Matthew Bellew
//
// v0.4 - Removed trailing newline in saved generator format to be consistent
// with output format of built-in types
//
// v0.5 - Improved portability by replacing static const int's with enum's and
// clarifying return values in seed(); suggested by Eric Heimburg
// - Removed MAXINT constant; use 0xffffffffUL instead
//
// v0.6 - Eliminated seed overflow when uint32 is larger than 32 bits
// - Changed integer [0,n] generator to give better uniformity
//
// v0.7 - Fixed operator precedence ambiguity in reload()
// - Added access for real numbers in (0,1) and (0,n)
//
// v0.8 - Included time.h header to properly support time_t and clock_t
//
// v1.0 - Revised seeding to match 26 Jan 2002 update of Nishimura and Matsumoto
// - Allowed for seeding with arrays of any length
// - Added access for real numbers in [0,1) with 53-bit resolution
// - Added access for real numbers from normal (Gaussian) distributions
// - Increased overall speed by optimizing twist()
// - Doubled speed of integer [0,n] generation
// - Fixed out-of-range number generation on 64-bit machines
// - Improved portability by substituting literal constants for long enum's
// - Changed license from GNU LGPL to BSD
//
// v1.1 - Corrected parameter label in randNorm from "variance" to "stddev"
// - Changed randNorm algorithm from basic to polar form for efficiency
// - Updated includes from deprecated <xxxx.h> to standard <cxxxx> forms
// - Cleaned declarations and definitions to please Intel compiler
// - Revised twist() operator to work on ones'-complement machines
// - Fixed reload() function to work when N and M are unsigned
// - Added copy constructor and copy operator from Salvador Espana