-
Notifications
You must be signed in to change notification settings - Fork 0
/
vectors.h
267 lines (237 loc) · 7.53 KB
/
vectors.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#ifndef _VECTORS_H_
#define _VECTORS_H_
//
// originally implemented by Justin Legakis
//
#include <iostream>
#include <cassert>
#include <cmath>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
class Matrix;
// ====================================================================
// ====================================================================
class Vec3f {
public:
// -----------------------------------------------
// CONSTRUCTORS, ASSIGNMENT OPERATOR, & DESTRUCTOR
Vec3f() { data[0] = data[1] = data[2] = 0; }
Vec3f(const Vec3f &V) {
data[0] = V.data[0];
data[1] = V.data[1];
data[2] = V.data[2]; }
Vec3f(double d0, double d1, double d2) {
data[0] = d0;
data[1] = d1;
data[2] = d2; }
const Vec3f& operator=(const Vec3f &V) {
data[0] = V.data[0];
data[1] = V.data[1];
data[2] = V.data[2];
return *this; }
// ----------------------------
// SIMPLE ACCESSORS & MODIFIERS
double operator[](int i) const {
assert (i >= 0 && i < 3);
return data[i]; }
double x() const { return data[0]; }
double y() const { return data[1]; }
double z() const { return data[2]; }
double r() const { return data[0]; }
double g() const { return data[1]; }
double b() const { return data[2]; }
void setx(double x) { data[0]=x; }
void sety(double y) { data[1]=y; }
void setz(double z) { data[2]=z; }
void set(double d0, double d1, double d2) {
data[0] = d0;
data[1] = d1;
data[2] = d2; }
// ------------------------
// COMMON VECTOR OPERATIONS
double Length() const {
return sqrt(data[0]*data[0]+data[1]*data[1]+data[2]*data[2]); }
void Normalize() {
double length = Length();
if (length > 0) { Scale (1/length); } }
void Scale(double d) { Scale(d,d,d); }
void Scale(double d0, double d1, double d2) {
data[0] *= d0;
data[1] *= d1;
data[2] *= d2; }
void Negate() { Scale(-1.0); }
double Dot3(const Vec3f &V) const {
return data[0] * V.data[0] +
data[1] * V.data[1] +
data[2] * V.data[2] ; }
static void Cross3(Vec3f &c, const Vec3f &v1, const Vec3f &v2) {
double x = v1.data[1]*v2.data[2] - v1.data[2]*v2.data[1];
double y = v1.data[2]*v2.data[0] - v1.data[0]*v2.data[2];
double z = v1.data[0]*v2.data[1] - v1.data[1]*v2.data[0];
c.data[0] = x; c.data[1] = y; c.data[2] = z; }
// ---------------------
// VECTOR MATH OPERATORS
Vec3f& operator+=(const Vec3f &V) {
data[0] += V.data[0];
data[1] += V.data[1];
data[2] += V.data[2];
return *this; }
Vec3f& operator-=(const Vec3f &V) {
data[0] -= V.data[0];
data[1] -= V.data[1];
data[2] -= V.data[2];
return *this; }
Vec3f& operator*=(double d) {
data[0] *= d;
data[1] *= d;
data[2] *= d;
return *this; }
Vec3f& operator/=(double d) {
data[0] /= d;
data[1] /= d;
data[2] /= d;
return *this; }
friend Vec3f operator+(const Vec3f &v1, const Vec3f &v2) {
Vec3f v3 = v1; v3 += v2; return v3; }
friend Vec3f operator-(const Vec3f &v1) {
Vec3f v2 = v1; v2.Negate(); return v2; }
friend Vec3f operator-(const Vec3f &v1, const Vec3f &v2) {
Vec3f v3 = v1; v3 -= v2; return v3; }
friend Vec3f operator*(const Vec3f &v1, double d) {
Vec3f v2 = v1; v2.Scale(d); return v2; }
friend Vec3f operator*(const Vec3f &v1, const Vec3f &v2) {
Vec3f v3 = v1; v3.Scale(v2.x(),v2.y(),v2.z()); return v3; }
friend Vec3f operator*(double d, const Vec3f &v1) {
return v1 * d; }
friend Vec3f operator/(const Vec3f &v1, double d) {
Vec3f v2 = v1; v2.Scale(1/d); return v2; }
// --------------
// INPUT / OUTPUT
friend std::ostream& operator<< (std::ostream &ostr, const Vec3f &v) {
ostr << v.data[0] << " " << v.data[1] << " " << v.data[2] << std::endl;
return ostr; }
friend std::istream& operator>> (std::istream &istr, Vec3f &v) {
istr >> v.data[0] >> v.data[1] >> v.data[2];
return istr; }
private:
friend class Matrix;
// REPRESENTATION
double data[3];
};
// ====================================================================
// ====================================================================
class Vec4f {
public:
// CONSTRUCTORS, ASSIGNMENT OPERATOR, & DESTRUCTOR
Vec4f() { data[0] = data[1] = data[2] = data[3] = 0; }
Vec4f(const Vec4f &V) {
data[0] = V.data[0];
data[1] = V.data[1];
data[2] = V.data[2];
data[3] = V.data[3]; }
Vec4f(double d0, double d1, double d2, double d3) {
data[0] = d0;
data[1] = d1;
data[2] = d2;
data[3] = d3; }
Vec4f& operator=(const Vec4f &V) {
data[0] = V.data[0];
data[1] = V.data[1];
data[2] = V.data[2];
data[3] = V.data[3];
return *this; }
// SIMPLE ACCESSORS & MODIFIERS
double operator[](int i) const {
assert (i >= 0 && i < 4);
return data[i]; }
double x() const { return data[0]; }
double y() const { return data[1]; }
double z() const { return data[2]; }
double w() const { return data[3]; }
double r() const { return data[0]; }
double g() const { return data[1]; }
double b() const { return data[2]; }
double a() const { return data[3]; }
void set(double d0, double d1, double d2, double d3) {
data[0] = d0;
data[1] = d1;
data[2] = d2;
data[3] = d3; }
// ------------------------
// COMMON VECTOR OPERATIONS
double Length() const {
return (double)sqrt(data[0]*data[0]+data[1]*data[1]+data[2]*data[2]+data[3]*data[3]); }
void Normalize() {
double l = Length();
if (l > 0) {
data[0] /= l;
data[1] /= l;
data[2] /= l; }}
void Scale(double d) { Scale(d,d,d,d); }
void Scale(double d0, double d1, double d2, double d3) {
data[0] *= d0;
data[1] *= d1;
data[2] *= d2;
data[3] *= d3; }
void Negate() { Scale(-1.0); }
double Dot4(const Vec4f &V) const {
return data[0] * V.data[0] +
data[1] * V.data[1] +
data[2] * V.data[2] +
data[3] * V.data[3]; }
static void Cross3(Vec4f &c, const Vec4f &v1, const Vec4f &v2) {
double x = v1.data[1]*v2.data[2] - v1.data[2]*v2.data[1];
double y = v1.data[2]*v2.data[0] - v1.data[0]*v2.data[2];
double z = v1.data[0]*v2.data[1] - v1.data[1]*v2.data[0];
c.data[0] = x; c.data[1] = y; c.data[2] = z; c.data[3] = 1; }
void DivideByW() {
if (data[3] != 0) {
data[0] /= data[3];
data[1] /= data[3];
data[2] /= data[3];
} else {
data[0] = data[1] = data[2] = 0; }
data[3] = 1; }
// ---------------------
// VECTOR MATH OPERATORS
Vec4f& operator+=(const Vec4f &V) {
data[0] += V.data[0];
data[1] += V.data[1];
data[2] += V.data[2];
data[3] += V.data[3];
return *this; }
Vec4f& operator-=(const Vec4f &V) {
data[0] -= V.data[0];
data[1] -= V.data[1];
data[2] -= V.data[2];
data[3] -= V.data[3];
return *this; }
Vec4f& operator*=(double d) {
data[0] *= d;
data[1] *= d;
data[2] *= d;
data[3] *= d;
return *this; }
Vec4f& operator/=(double d) {
data[0] /= d;
data[1] /= d;
data[2] /= d;
data[3] /= d;
return *this; }
// --------------
// INPUT / OUTPUT
friend std::ostream& operator<< (std::ostream &ostr, const Vec4f &v) {
ostr << v.data[0] << " " << v.data[1] << " " << v.data[2] << " " << v.data[3] << std::endl;
return ostr; }
friend std::istream& operator>> (std::istream &istr, Vec4f &v) {
istr >> v.data[0] >> v.data[1] >> v.data[2] >> v.data[3];
return istr; }
private:
friend class Matrix;
// REPRESENTATION
double data[4];
};
// ====================================================================
// ====================================================================
#endif