-
Notifications
You must be signed in to change notification settings - Fork 446
/
noam.rs
92 lines (78 loc) · 2.39 KB
/
noam.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
use crate as burn;
use super::LRScheduler;
use crate::{config::Config, LearningRate};
/// Configuration to create a [noam](NoamLRScheduler) learning rate scheduler.
#[derive(Config)]
pub struct NoamLRSchedulerConfig {
/// The initial learning rate.
init_lr: LearningRate,
/// The number of steps before the exponential decay stats.
#[config(default = 4000)]
warmup_steps: usize,
/// The size of the model.
#[config(default = 512)]
model_size: usize,
}
/// Noam learning rate scheduler as described in [Attention Is All You Need](https://arxiv.org/abs/1706.03762).
#[derive(Clone, Debug)]
pub struct NoamLRScheduler {
warmup_steps: f64,
embedding_size: f64,
init_lr: LearningRate,
step: f64,
}
impl NoamLRSchedulerConfig {
/// Initialize a new [noam](NoamLRScheduler) learning rate scheduler.
pub fn init(&self) -> NoamLRScheduler {
NoamLRScheduler {
warmup_steps: self.warmup_steps as f64,
embedding_size: self.model_size as f64,
init_lr: self.init_lr,
step: 0.0,
}
}
}
impl LRScheduler for NoamLRScheduler {
type Record = usize;
fn step(&mut self) -> LearningRate {
self.step += 1.0;
let arg1 = self.step.powf(-0.5);
let arg2 = self.step * self.warmup_steps.powf(-1.5);
self.init_lr * self.embedding_size.powf(-0.5) * f64::min(arg1, arg2)
}
fn to_record(&self) -> Self::Record {
self.step as usize
}
fn load_record(mut self, record: Self::Record) -> Self {
self.step = record as f64;
self
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_function_increase_and_decrease() {
let warmup_steps = 100;
let mut scheduler = NoamLRSchedulerConfig::new(10.0)
.with_warmup_steps(warmup_steps)
.init();
let mut lr_current = 0.0;
for _ in 0..warmup_steps {
let lr = scheduler.step();
assert!(
lr > lr_current,
"Learning rate should increase before the warmup_steps is reached."
);
lr_current = lr;
}
for _ in 0..warmup_steps {
let lr = scheduler.step();
assert!(
lr < lr_current,
"Learning rate should decrease after the warmup_steps is reached."
);
lr_current = lr;
}
}
}