This repository has been archived by the owner on Apr 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
run_detection.py
142 lines (108 loc) · 4.34 KB
/
run_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import matplotlib.pyplot as plt
import os
import numpy as np
import sys
if len(sys.argv)!=2:
print(f'USAGE: {sys.argv[0]} <path_to_image>')
exit()
import tensorflow as tf
from PIL import Image
from object_detection.utils import label_map_util
from object_detection.utils import config_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.builders import model_builder
from helpers.bb_helper import get_bb
from imageio import imread
if not os.path.isdir(f'crop_images'):
os.mkdir(f'crop_images')
def get_keypoint_tuples(eval_config):
"""Return a tuple list of keypoint edges from the eval config.
Args:
eval_config: an eval config containing the keypoint edges
Returns:
a list of edge tuples, each in the format (start, end)
"""
tuple_list = []
kp_list = eval_config.keypoint_edge
for edge in kp_list:
tuple_list.append((edge.start, edge.end))
return tuple_list
pipeline_config = 'model/inference_graph/pipeline.config'
model_dir = 'model/detection_model/inference_graph/checkpoint'
configs = config_util.get_configs_from_pipeline_file(pipeline_config)
model_config = configs['model']
detection_model = model_builder.build(
model_config=model_config, is_training=False)
ckpt = tf.compat.v2.train.Checkpoint(
model=detection_model)
ckpt.restore(os.path.join(model_dir, 'ckpt-0')).expect_partial()
def get_model_detection_function(model):
"""Get a tf.function for detection."""
@tf.function
def detect_fn(image):
"""Detect objects in image."""
image, shapes = model.preprocess(image)
prediction_dict = model.predict(image, shapes)
detections = model.postprocess(prediction_dict, shapes)
return detections, prediction_dict, tf.reshape(shapes, [-1])
return detect_fn
detect_fn = get_model_detection_function(detection_model)
image_np = imread(sys.argv[1]).astype('uint8')
input_tensor = tf.convert_to_tensor(
np.expand_dims(image_np, 0), dtype=tf.float32)
detections, predictions_dict, shapes = detect_fn(input_tensor)
label_id_offset = 1
image_np_with_detections = image_np.copy()
keypoints, keypoint_scores = None, None
if 'detection_keypoints' in detections:
keypoints = detections['detection_keypoints'][0].numpy()
keypoint_scores = detections['detection_keypoint_scores'][0].numpy()
label_map_path = os.path.join("model/detection_model/", configs['eval_input_config'].label_map_path)
label_map = label_map_util.load_labelmap(label_map_path)
categories = label_map_util.convert_label_map_to_categories(
label_map,
max_num_classes=label_map_util.get_max_label_map_index(label_map),
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
label_map_dict = label_map_util.get_label_map_dict(
label_map, use_display_name=True)
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections,
detections['detection_boxes'][0].numpy(),
(detections['detection_classes'][0].numpy() + label_id_offset).astype(int),
detections['detection_scores'][0].numpy(),
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.50,
agnostic_mode=False,
keypoints=keypoints,
keypoint_scores=keypoint_scores,
keypoint_edges=get_keypoint_tuples(configs['eval_config']))
boxes = get_bb(
image_np_with_detections,
detections['detection_boxes'][0].numpy(),
(detections['detection_classes'][0].numpy() + label_id_offset).astype(int),
detections['detection_scores'][0].numpy(),
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.50,
agnostic_mode=False,
keypoints=keypoints,
keypoint_scores=keypoint_scores,
keypoint_edges=get_keypoint_tuples(configs['eval_config']))
for idx, (box, _) in enumerate(boxes.items()):
ymin, xmin, ymax, xmax = box
bb_image = tf.image.crop_to_bounding_box(
input_tensor[0],
int(ymin*input_tensor[0].shape[0]),
int(xmin*input_tensor[0].shape[1]),
int((ymax - ymin)*input_tensor[0].shape[0]),
int((xmax - xmin)*input_tensor[0].shape[1])
)
image = Image.fromarray(tf.cast(bb_image, tf.uint8).numpy())
image.save(f"crop_images/{idx}.jpg")
plt.figure(figsize=(12, 16))
plt.imshow(image_np_with_detections)
plt.savefig('crop_images/out.png')