-
Notifications
You must be signed in to change notification settings - Fork 0
/
sim_frontpanel.h
647 lines (500 loc) · 24.2 KB
/
sim_frontpanel.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
/* sim_frontpanel.h: simulator frontpanel API definitions
Copyright (c) 2015, Mark Pizzolato
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
MARK PIZZOLATO BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Mark Pizzolato shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Mark Pizzolato.
15-Jan-15 MP Initial implementation
01-Apr-15 MP Added register indirect, mem_examine and mem_deposit
03-Apr-15 MP Added logic to pass simulator startup messages in
panel error text if the connection to the simulator
shuts down while it is starting.
04-Apr-15 MP Added mount and dismount routines to connect and
disconnect removable media
This module defines interface between a front panel application and a simh
simulator. Facilities provide ways to gather information from and to
observe and control the state of a simulator.
Any application which wants to use this API needs to:
1) include this file in the application code
2) compile sim_frontpanel.c and sim_sock.c from the top level directory
of the simh source.
3) link the sim_frontpanel and sim_sock object modules and libpthreads
into the application.
4) Use a simh simulator built from the same version of simh that the
sim_frontpanel and sim_sock modules came from.
*/
#ifndef SIM_FRONTPANEL_H_
#define SIM_FRONTPANEL_H_ 0
#ifdef __cplusplus
extern "C" {
#endif
#include <stdlib.h>
#if !defined(__VAX) /* Unsupported platform */
#define SIM_FRONTPANEL_VERSION 15
/**
sim_panel_start_simulator A starts a simulator with a particular
configuration
sim_path the path to the simulator binary
sim_config the configuration to run the simulator with
device_panel_count the number of sub panels for connected devices
Note 1: - The path specified must be either a fully specified path or
it could be merely the simulator name if the simulator binary
is located in the current PATH.
- The simulator binary must be built from the same version
simh source code that the frontpanel API was acquired fron
(the API and the simh framework must speak the same language)
Note 2: - Configuration file specified should contain device setup
statements (enable, disable, CPU types and attach commands).
It should not start a simulator running.
*/
typedef struct PANEL PANEL;
PANEL *
sim_panel_start_simulator (const char *sim_path,
const char *sim_config,
size_t device_panel_count);
PANEL *
sim_panel_start_simulator_debug (const char *sim_path,
const char *sim_config,
size_t device_panel_count,
const char *debug_file);
/**
sim_panel_add_device_panel - creates a sub panel associated
with a specific simulator panel
simulator_panel the simulator panel to connect to
device_name the simulator's name for the device
*/
PANEL *
sim_panel_add_device_panel (PANEL *simulator_panel,
const char *device_name);
/**
sim_panel_destroy to shutdown a panel or sub panel.
Note: destroying a simulator panel will also destroy any
related sub panels
*/
int
sim_panel_destroy (PANEL **ppanel);
/**
The frontpanel API exposes the state of a simulator via access to
simh register variables that the simulator and its devices define.
These registers certainly include any architecturally described
registers (PC, PSL, SP, etc.), but also include anything else
the simulator uses as internal state to implement the running
simulator.
The registers that a particular frontpanel application mught need
access to are specified by the application when it calls:
sim_panel_add_register
sim_panel_add_register_bits
sim_panel_add_register_array
and
sim_panel_add_register_indirect
sim_panel_add_register_indirect_bits
name the name the simulator knows this register by
device_name the device this register is part of. Defaults to
the device of the panel (in a device panel) or the
default device in the simulator (usually the CPU).
element_count number of elements in the register array
size the size (in local storage) of the buffer which will
receive the data in the simulator's register
addr a pointer to the location of the buffer which will
be loaded with the data in the simulator's register
bit_width the number of values to populate in the bits array
bits an array of integers which is bit_width long that
will receive each bit's current accumulated value.
The accumulated value will range from 0 thru the
the sample_depth specified when calling
sim_panel_set_sampling_parameters().
Notes: There are two categories of REGisters in simulators:
1) Many simulators contain every interesting simh REGisters
in single variables and use those variables directly
throughout the simulator as needed by the system being
simulated.
2) Some simulators have some of their REGisters in a single
variable, but during instruction execution, the actual
contents of that REGister is split into possibly multiple
pieces which are assembled into the single variable when
the simulator stops instruction execution and split apart
again when simulation starts executing instructions again.
An example of this case is the PSL on the VAX simulator.
In the VAX architecture, the PSL register contains the
condition code information which is a field in the PSL.
For efficiency sake, while sim_instr() is executing
instructions, the condition code is stored a separate
variable CC. Whenever sim_instr() exits, the pieces
that comprise this register are put together into the
PSL variable. This allows the PSL register to be examined
and/or deposited to directly from SCP as needed. The PDP11
simulator handles its PSW in a similar way breaking it
into pieces during sim_instr() execution and reassembling
it upon exit.
Therefore, if every REGister that an application that
uses the sim_frontpanel register APIs is always stored
in single variables (case 1 above), then front panel
access to registers can be most efficient if, at
initialization time, the simulator calls the
sim_set_stable_registers_state() API.
Having called this API allows the internals of the
frontpanel access activities to be significantly more
efficient.
*/
int
sim_panel_add_register (PANEL *panel,
const char *name,
const char *device_name,
size_t size,
void *addr);
int
sim_panel_add_register_bits (PANEL *panel,
const char *name,
const char *device_name,
size_t bit_width,
int *bits);
int
sim_panel_add_register_array (PANEL *panel,
const char *name,
const char *device_name,
size_t element_count,
size_t size,
void *addr);
int
sim_panel_add_register_indirect (PANEL *panel,
const char *name,
const char *device_name,
size_t size,
void *addr);
int
sim_panel_add_register_indirect_bits (PANEL *panel,
const char *name,
const char *device_name,
size_t bit_width,
int *bits);
/**
A panel application has a choice of two different methods of getting
the values contained in the set of registers it has declared interest in via
the sim_panel_add_register APIs.
1) The values can be polled (whenever it is desired) by calling
sim_panel_get_registers().
2) The panel can call sim_panel_set_display_callback_interval() to
specify a callback routine and a periodic rate that the callback
routine should be called. The panel API will make a best effort
to deliver the current register state at the desired rate.
Note 1: The buffers described in a panel's register set will be
dynamically revised as soon as data is available from the
simulator. The callback routine merely serves as a notification
that a complete register set has arrived.
Note 2: The callback routine should, in general, not run for a long time
or frontpanel interactions with the simulator may be disrupted.
Setting a flag, signaling an event or posting a message are
reasonable activities to perform in a callback routine.
*/
int
sim_panel_get_registers (PANEL *panel, unsigned long long *simulation_time);
typedef void (*PANEL_DISPLAY_PCALLBACK)(PANEL *panel,
unsigned long long simulation_time,
void *context);
int
sim_panel_set_display_callback_interval (PANEL *panel,
PANEL_DISPLAY_PCALLBACK callback,
void *context,
int usecs_between_callbacks);
/**
When a front panel application wants to get averaged bit sample
values, it must first declare the sampling parameters that will
be used while collecting the bit values. The dithering
percentage must be 25% or less and when non 0 causes the sample
frequency to vary by plus or minus a random percentage value up
to the specified value.
sim_panel_set_sampling_parameters
sim_panel_set_sampling_parameters_ex
sample_frequency cycles/instructions between sample captures
sample_dither_pct percentage of sample_frequency to vary randomly
sample_depth how many samples to accumulate in the rolling
average for each bit sample. Returned bit
sample values will range from 0 thru this
value.
*/
int
sim_panel_set_sampling_parameters_ex (PANEL *panel,
unsigned int sample_frequency,
unsigned int sample_dither_pct,
unsigned int sample_depth);
int
sim_panel_set_sampling_parameters (PANEL *panel,
unsigned int sample_frequency,
unsigned int sample_depth);
/**
When a front panel application needs to change the running
state of a simulator one of the following routines should
be called:
sim_panel_exec_halt - Stop instruction execution
sim_panel_exec_boot - Boot a simulator from a specific device
sim_panel_exec_run - Start/Resume a simulator running instructions
sim_panel_exec_start - Start a simulator running instructions
after resetting all devices
sim_panel_exec_step - Have a simulator execute a single step
*/
int
sim_panel_exec_halt (PANEL *panel);
int
sim_panel_exec_boot (PANEL *panel, const char *device);
int
sim_panel_exec_start (PANEL *panel);
int
sim_panel_exec_run (PANEL *panel);
int
sim_panel_exec_step (PANEL *panel);
/**
A simulator often displays some useful information as it stops
executing instructions.
sim_panel_halt_text - Returns the simulator output immediately prior
to the most recent transition to the Halt state.
*/
const char *
sim_panel_halt_text (PANEL *panel);
/**
When a front panel application wants to describe conditions that
should stop instruction execution an execution or an output
breakpoint should be used. To established or clear a breakpoint,
one of the following routines should be called:
sim_panel_break_set - Establish a simulation breakpoint
sim_panel_break_clear - Cancel/Delete a previously defined
breakpoint
sim_panel_break_output_set - Establish a simulator output
breakpoint
sim_panel_break_output_clear - Cancel/Delete a previously defined
output breakpoint
Note: Any breakpoint switches/flags must be located at the
beginning of the condition string
*/
int
sim_panel_break_set (PANEL *panel, const char *condition);
int
sim_panel_break_clear (PANEL *panel, const char *condition);
int
sim_panel_break_output_set (PANEL *panel, const char *condition);
int
sim_panel_break_output_clear (PANEL *panel, const char *condition);
/**
When a front panel application needs to change or access
memory or a register one of the following routines should
be called:
sim_panel_gen_examine - Examine register or memory
sim_panel_gen_deposit - Deposit to register or memory
sim_panel_mem_examine - Examine memory location
sim_panel_mem_deposit - Deposit to memory location
sim_panel_mem_deposit_instruction - Deposit instruction to memory
location
sim_panel_set_register_value - Deposit to a register or memory
location
*/
/**
sim_panel_gen_examine
name_or_addr the name the simulator knows this register by
size the size (in local storage) of the buffer which will
receive the data returned when examining the simulator
value a pointer to the buffer which will be loaded with the
data returned when examining the simulator
*/
int
sim_panel_gen_examine (PANEL *panel,
const char *name_or_addr,
size_t size,
void *value);
/**
sim_panel_gen_deposit
name_or_addr the name the simulator knows this register by
size the size (in local storage) of the buffer which
contains the data to be deposited into the simulator
value a pointer to the buffer which contains the data to
be deposited into the simulator
*/
int
sim_panel_gen_deposit (PANEL *panel,
const char *name_or_addr,
size_t size,
const void *value);
/**
sim_panel_mem_examine
addr_size the size (in local storage) of the buffer which
contains the memory address of the data to be examined
in the simulator
addr a pointer to the buffer containing the memory address
of the data to be examined in the simulator
value_size the size (in local storage) of the buffer which will
receive the data returned when examining the simulator
value a pointer to the buffer which will be loaded with the
data returned when examining the simulator
*/
int
sim_panel_mem_examine (PANEL *panel,
size_t addr_size,
const void *addr,
size_t value_size,
void *value);
/**
sim_panel_mem_deposit
addr_size the size (in local storage) of the buffer which
contains the memory address of the data to be deposited
into the simulator
addr a pointer to the buffer containing the memory address
of the data to be deposited into the simulator
value_size the size (in local storage) of the buffer which will
contains the data to be deposited into the simulator
value a pointer to the buffer which contains the data to be
deposited into the simulator
*/
int
sim_panel_mem_deposit (PANEL *panel,
size_t addr_size,
const void *addr,
size_t value_size,
const void *value);
/**
sim_panel_mem_deposit_instruction
addr_size the size (in local storage) of the buffer which
contains the memory address of the data to be deposited
into the simulator
addr a pointer to the buffer containing the memory address
of the data to be deposited into the simulator
instruction a pointer to the buffer that contains the mnemonic
instruction to be deposited at the indicated address
*/
int
sim_panel_mem_deposit_instruction (PANEL *panel,
size_t addr_size,
const void *addr,
const char *instruction);
/**
sim_panel_set_register_value
name the name of a simulator register or a memory address
which is to receive a new value
value the new value in character string form. The string
must be in the native/natural radix that the simulator
uses when referencing that register
*/
int
sim_panel_set_register_value (PANEL *panel,
const char *name,
const char *value);
/**
A front panel application might want to have access to the
instruction execution history that a simulator may be capable
of providing. If this functionality is desired, enabling of
recording instruction history should be explicitly enabled
in the sim_config file that the simulator is started with.
*/
/**
sim_panel_get_history
count the number of instructions to return
size the size (in local storage) of the buffer which will
receive the data returned when examining the simulator
buffer a pointer to the buffer which will be loaded with the
instruction history returned from the simulator
*/
int
sim_panel_get_history (PANEL *panel,
int count,
size_t size,
char *buffer);
/**
A front panel application might want some details of simulator
and/or device behavior that is provided by a particular simulator
via debug information. Debugging for particular device(s)
and/or simulator debug settings can be controlled via the
sim_panel_device_debug_mode API.
*/
/**
sim_panel_device_debug_mode
device the device whose debug mode is to change
set_untset 1 to set debug flags, 0 to clear debug flags
mode_bits character string with different debug mode bits
to enable or disable. An empty string will
enable or disable all mode bits for the specified
device
*/
int
sim_panel_device_debug_mode (PANEL *panel,
const char *device,
int set_unset,
const char *mode_bits);
/**
When a front panel application needs to change the media
in a simulated removable media device one of the following
routines should be called:
sim_panel_mount - mounts the indicated media file on a device
sim_panel_dismount - dismounts the currently mounted media file
from a device
*/
/**
sim_panel_mount
device the name of a simulator device/unit
switches any switches appropriate for the desire attach
path the path on the local system to be attached
*/
int
sim_panel_mount (PANEL *panel,
const char *device,
const char *switches,
const char *path);
/**
sim_panel_dismount
device the name of a simulator device/unit
*/
int
sim_panel_dismount (PANEL *panel,
const char *device);
typedef enum {
Halt, /* Simulation is halted (instructions not being executed) */
Run, /* Simulation is executing instructions */
Error /* Panel simulator is in an error state and should be */
/* closed (destroyed). sim_panel_get_error might help */
/* explain why */
} OperationalState;
OperationalState
sim_panel_get_state (PANEL *panel);
/**
All API routines which return an int return 0 for
success and -1 for an error.
An API which returns an error (-1), will not change the panel state
except to possibly set the panel state to Error if the panel
condition is no longer useful.
sim_panel_get_error - the details of the most recent error
sim_panel_clear_error - clears the error buffer
*/
const char *sim_panel_get_error (void);
void sim_panel_clear_error (void);
/**
The panek<->simulator wire protocol can be traced if protocol problems arise.
sim_panel_set_debug_mode - Specifies the debug detail to be recorded
sim_panel_flush_debug - Flushes debug output to disk
sim_panel_debug - Write message to the debug file
*/
#define DBG_XMT 1 /* Transmit Data */
#define DBG_RCV 2 /* Receive Data */
#define DBG_REQ 4 /* Request Data */
#define DBG_RSP 8 /* Response Data */
#define DBG_THR 16 /* Thread Activities */
#define DBG_APP 32 /* Application Activities */
void
sim_panel_set_debug_mode (PANEL *panel, int debug_bits);
void
sim_panel_debug (PANEL *panel, const char *fmt, ...);
void
sim_panel_flush_debug (PANEL *panel);
#endif /* !defined(__VAX) */
#ifdef __cplusplus
}
#endif
#endif /* SIM_FRONTPANEL_H_ */