-
Notifications
You must be signed in to change notification settings - Fork 0
/
worker_runpod.py
136 lines (122 loc) · 5.64 KB
/
worker_runpod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os, json, requests, runpod
import torch
import random
import math
import time
from typing import Union, List
import PIL.Image
from datetime import datetime
import numpy as np
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import export_to_video
from diffusers import CogVideoXPipeline, CogVideoXDDIMScheduler,CogVideoXDPMScheduler
import moviepy.editor as mp
def convert_to_gif(video_path):
clip = mp.VideoFileClip(video_path)
clip = clip.set_fps(8)
clip = clip.resize(height=240)
gif_path = video_path.replace(".mp4", ".gif")
clip.write_gif(gif_path, fps=8)
return gif_path
def save_video(tensor: Union[List[np.ndarray], List[PIL.Image.Image]], fps: int = 8):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
video_path = f"{timestamp}.mp4"
export_to_video(tensor, video_path, fps=fps)
return video_path
with torch.inference_mode():
pipe = CogVideoXPipeline.from_pretrained("/content/model", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
# pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# pipe.transformer.to(memory_format=torch.channels_last)
# pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
@torch.inference_mode()
def generate(input):
values = input["input"]
prompt = values['prompt']
seed = values['seed']
width = values['width']
height = values['height']
num_inference_steps = values['num_inference_steps']
num_frames = values['num_frames']
use_dynamic_cfg = values['use_dynamic_cfg']
guidance_scale = values['guidance_scale']
if seed == 0:
random.seed(int(time.time()))
seed = random.randint(0, 18446744073709551615)
print(seed)
video_pt = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=num_inference_steps,
num_frames=num_frames,
use_dynamic_cfg=use_dynamic_cfg,
output_type="pt",
guidance_scale=guidance_scale,
generator=torch.Generator(device="cpu").manual_seed(seed),
).frames
batch_size = video_pt.shape[0]
batch_video_frames = []
for batch_idx in range(batch_size):
pt_image = video_pt[batch_idx]
pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])])
image_np = VaeImageProcessor.pt_to_numpy(pt_image)
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
batch_video_frames.append(image_pil)
video_path = save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6))
# gif_path = convert_to_gif(video_path)
result = video_path
try:
notify_uri = values['notify_uri']
del values['notify_uri']
notify_token = values['notify_token']
del values['notify_token']
discord_id = values['discord_id']
del values['discord_id']
if(discord_id == "discord_id"):
discord_id = os.getenv('com_camenduru_discord_id')
discord_channel = values['discord_channel']
del values['discord_channel']
if(discord_channel == "discord_channel"):
discord_channel = os.getenv('com_camenduru_discord_channel')
discord_token = values['discord_token']
del values['discord_token']
if(discord_token == "discord_token"):
discord_token = os.getenv('com_camenduru_discord_token')
job_id = values['job_id']
del values['job_id']
default_filename = os.path.basename(result)
with open(result, "rb") as file:
files = {default_filename: file.read()}
payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
response = requests.post(
f"https://discord.com/api/v9/channels/{discord_channel}/messages",
data=payload,
headers={"Authorization": f"Bot {discord_token}"},
files=files
)
response.raise_for_status()
result_url = response.json()['attachments'][0]['url']
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
web_notify_token = os.getenv('com_camenduru_web_notify_token')
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
return {"jobId": job_id, "result": result_url, "status": "DONE"}
except Exception as e:
error_payload = {"jobId": job_id, "status": "FAILED"}
try:
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
except:
pass
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
finally:
if os.path.exists(result):
os.remove(result)
runpod.serverless.start({"handler": generate})