Skip to content

Latest commit

 

History

History
 
 

free_anchor

FreeAnchor: Learning to Match Anchors for Visual Object Detection

Abstract

Modern CNN-based object detectors assign anchors for ground-truth objects under the restriction of object-anchor Intersection-over-Unit (IoU). In this study, we propose a learning-to-match approach to break IoU restriction, allowing objects to match anchors in a flexible manner. Our approach, referred to as FreeAnchor, updates hand-crafted anchor assignment to "free" anchor matching by formulating detector training as a maximum likelihood estimation (MLE) procedure. FreeAnchor targets at learning features which best explain a class of objects in terms of both classification and localization. FreeAnchor is implemented by optimizing detection customized likelihood and can be fused with CNN-based detectors in a plug-and-play manner. Experiments on COCO demonstrate that FreeAnchor consistently outperforms their counterparts with significant margins.

Citation

@inproceedings{zhang2019freeanchor,
  title   =  {{FreeAnchor}: Learning to Match Anchors for Visual Object Detection},
  author  =  {Zhang, Xiaosong and Wan, Fang and Liu, Chang and Ji, Rongrong and Ye, Qixiang},
  booktitle =  {Neural Information Processing Systems},
  year    =  {2019}
}

Results and Models

Backbone Style Lr schd Mem (GB) Inf time (fps) box AP Config Download
R-50 pytorch 1x 4.9 18.4 38.7 config model | log
R-101 pytorch 1x 6.8 14.9 40.3 config model | log
X-101-32x4d pytorch 1x 8.1 11.1 41.9 config model | log

Notes:

  • We use 8 GPUs with 2 images/GPU.
  • For more settings and models, please refer to the official repo.