Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

it doesn't seem to improve in the test run #25

Open
jerronl opened this issue Feb 7, 2024 · 0 comments
Open

it doesn't seem to improve in the test run #25

jerronl opened this issue Feb 7, 2024 · 0 comments

Comments

@jerronl
Copy link

jerronl commented Feb 7, 2024

I test ran the code in google colab and so far I got output as following



2024-02-06 18:09:14,584 - INFO - Log directory: data/model/dcrnn_DR_2_h_12_64-64_lr_0.01_bs_192_0206180913/

INFO:model.pytorch.dcrnn_supervisor:Log directory: data/model/dcrnn_DR_2_h_12_64-64_lr_0.01_bs_192_0206180913/

2024-02-06 18:09:35,626 - INFO - Model created

INFO:model.pytorch.dcrnn_supervisor:Model created

2024-02-06 18:09:38,948 - INFO - Loaded model at 50

INFO:model.pytorch.dcrnn_supervisor:Loaded model at 50

2024-02-06 18:09:40,199 - INFO - Start training ...

INFO:model.pytorch.dcrnn_supervisor:Start training ...

2024-02-06 18:09:40,204 - INFO - num_batches:125

INFO:model.pytorch.dcrnn_supervisor:num_batches:125

2024-02-06 18:18:39,040 - INFO - epoch complete

INFO:model.pytorch.dcrnn_supervisor:epoch complete

2024-02-06 18:18:39,045 - INFO - evaluating now!

INFO:model.pytorch.dcrnn_supervisor:evaluating now!

2024-02-06 18:19:24,359 - INFO - Epoch [50/100] (6375) train_mae: 1.9753, val_mae: 2.9198, lr: 0.010000, 584.1s

/usr/local/lib/python3.10/dist-packages/torch/optim/lr_scheduler.py:432: UserWarning: To get the last learning rate computed by the scheduler, please use `get_last_lr()`.
  warnings.warn("To get the last learning rate computed by the scheduler, "
INFO:model.pytorch.dcrnn_supervisor:Epoch [50/100] (6375) train_mae: 1.9753, val_mae: 2.9198, lr: 0.010000, 584.1s

2024-02-06 18:19:24,384 - INFO - Saved model at 50

INFO:model.pytorch.dcrnn_supervisor:Saved model at 50

2024-02-06 18:19:24,391 - INFO - Val loss decrease from inf to 2.9198, saving to models/epo50.tar

INFO:model.pytorch.dcrnn_supervisor:Val loss decrease from inf to 2.9198, saving to models/epo50.tar

2024-02-06 18:28:27,688 - INFO - epoch complete

INFO:model.pytorch.dcrnn_supervisor:epoch complete

2024-02-06 18:28:27,692 - INFO - evaluating now!

INFO:model.pytorch.dcrnn_supervisor:evaluating now!
...
2024-02-06 21:27:25,031 - INFO - Epoch [69/100] (8750) train_mae: 1.9429, val_mae: 2.9616, lr: 0.000100, 589.0s

INFO:model.pytorch.dcrnn_supervisor:Epoch [69/100] (8750) train_mae: 1.9429, val_mae: 2.9616, lr: 0.000100, 589.0s

2024-02-06 21:28:55,730 - INFO - Epoch [69/100] (8750) train_mae: 1.9429, test_mae: 3.2499,  lr: 0.000100, 589.0s

INFO:model.pytorch.dcrnn_supervisor:Epoch [69/100] (8750) train_mae: 1.9429, test_mae: 3.2499,  lr: 0.000100, 589.0s

2024-02-06 21:37:59,490 - INFO - epoch complete

INFO:model.pytorch.dcrnn_supervisor:epoch complete

2024-02-06 21:37:59,494 - INFO - evaluating now!

INFO:model.pytorch.dcrnn_supervisor:evaluating now!

2024-02-06 21:38:44,803 - INFO - Epoch [70/100] (8875) train_mae: 1.9318, val_mae: 2.9033, lr: 0.001000, 589.1s

INFO:model.pytorch.dcrnn_supervisor:Epoch [70/100] (8875) train_mae: 1.9318, val_mae: 2.9033, lr: 0.001000, 589.1s

2024-02-06 21:38:44,823 - INFO - Saved model at 70

INFO:model.pytorch.dcrnn_supervisor:Saved model at 70

2024-02-06 21:38:44,827 - INFO - Val loss decrease from 2.9198 to 2.9033, saving to models/epo70.tar

INFO:model.pytorch.dcrnn_supervisor:Val loss decrease from 2.9198 to 2.9033, saving to models/epo70.tar

2024-02-06 21:47:48,164 - INFO - epoch complete

INFO:model.pytorch.dcrnn_supervisor:epoch complete

2024-02-06 21:47:48,169 - INFO - evaluating now!

INFO:model.pytorch.dcrnn_supervisor:evaluating now!

2024-02-06 21:48:33,495 - INFO - Epoch [71/100] (9000) train_mae: 1.9262, val_mae: 2.9057, lr: 0.001000, 588.7s

INFO:model.pytorch.dcrnn_supervisor:Epoch [71/100] (9000) train_mae: 1.9262, val_mae: 2.9057, lr: 0.001000, 588.7s

2024-02-06 21:57:36,690 - INFO - epoch complete

INFO:model.pytorch.dcrnn_supervisor:epoch complete

2024-02-06 21:57:36,698 - INFO - evaluating now!

INFO:model.pytorch.dcrnn_supervisor:evaluating now!
...
2024-02-06 23:57:38,667 - INFO - Epoch [84/100] (10625) train_mae: 1.9336, val_mae: 2.9073, lr: 0.000100, 588.8s

INFO:model.pytorch.dcrnn_supervisor:Epoch [84/100] (10625) train_mae: 1.9336, val_mae: 2.9073, lr: 0.000100, 588.8s

2024-02-07 00:06:42,161 - INFO - epoch complete

INFO:model.pytorch.dcrnn_supervisor:epoch complete

2024-02-07 00:06:42,165 - INFO - evaluating now!

INFO:model.pytorch.dcrnn_supervisor:evaluating now!

2024-02-07 00:07:27,510 - INFO - Epoch [85/100] (10750) train_mae: 1.9430, val_mae: 2.9063, lr: 0.000100, 588.8s

INFO:model.pytorch.dcrnn_supervisor:Epoch [85/100] (10750) train_mae: 1.9430, val_mae: 2.9063, lr: 0.000100, 588.8s

the valid and test result doesn't seems improving and the lr stayed unchanged. Are they expected and they will get better before the 100 epochs? Or something is wrong?
Thanks!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant