-
Notifications
You must be signed in to change notification settings - Fork 1
/
apply_delta.py
164 lines (132 loc) · 5.78 KB
/
apply_delta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""
Apply the delta weights on top of a base model.
Usage:
python3 apply_delta.py --base ~/model_weights/llama-7b --target ~/model_weights/ChatYuan-7b --delta ~/model_weights/ChatYuan-7b-delta
"""
import argparse
import gc
import glob
import json
import os
import shutil
import tempfile
import torch
from torch import nn
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
GB = 1 << 30
def split_files(model_path, tmp_path, split_size):
if not os.path.exists(tmp_path):
os.makedirs(tmp_path)
file_pattern = os.path.join(model_path, "pytorch_model-*.bin")
files = glob.glob(file_pattern)
part = 0
try:
for file_path in tqdm(files):
state_dict = torch.load(file_path)
new_state_dict = {}
current_size = 0
for name, param in state_dict.items():
param_size = param.numel() * param.element_size()
if current_size + param_size > split_size:
new_file_name = f"pytorch_model-{part}.bin"
new_file_path = os.path.join(tmp_path, new_file_name)
torch.save(new_state_dict, new_file_path)
current_size = 0
new_state_dict = None
gc.collect()
new_state_dict = {}
part += 1
new_state_dict[name] = param
current_size += param_size
new_file_name = f"pytorch_model-{part}.bin"
new_file_path = os.path.join(tmp_path, new_file_name)
torch.save(new_state_dict, new_file_path)
new_state_dict = None
gc.collect()
new_state_dict = {}
part += 1
except Exception as e:
print(f"An error occurred during split_files: {e}")
shutil.rmtree(tmp_path)
raise
def apply_delta_low_cpu_mem(base_model_path, target_model_path, delta_path):
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path, use_fast=False)
delta_config = AutoConfig.from_pretrained(delta_path)
if os.path.exists(target_model_path):
shutil.rmtree(target_model_path)
os.makedirs(target_model_path)
split_size = 4 * GB
with tempfile.TemporaryDirectory() as tmp_base_path, tempfile.TemporaryDirectory() as tmp_delta_path:
print(f"Split files for the base model to {tmp_base_path}")
split_files(base_model_path, tmp_base_path, split_size)
print(f"Split files for the delta weights to {tmp_delta_path}")
split_files(delta_path, tmp_delta_path, split_size)
base_pattern = os.path.join(tmp_base_path, "pytorch_model-*.bin")
base_files = glob.glob(base_pattern)
delta_pattern = os.path.join(tmp_delta_path, "pytorch_model-*.bin")
delta_files = glob.glob(delta_pattern)
delta_state_dict = torch.load(delta_files[0])
print("Applying the delta")
weight_map = {}
total_size = 0
for i, base_file in tqdm(enumerate(base_files)):
state_dict = torch.load(base_file)
file_name = f"pytorch_model-{i}.bin"
for name, param in state_dict.items():
if name not in delta_state_dict:
for delta_file in delta_files:
delta_state_dict = torch.load(delta_file)
gc.collect()
if name in delta_state_dict:
break
state_dict[name] += delta_state_dict[name]
weight_map[name] = file_name
total_size += param.numel() * param.element_size()
gc.collect()
torch.save(state_dict, os.path.join(target_model_path, file_name))
with open(
os.path.join(target_model_path, "pytorch_model.bin.index.json"), "w"
) as f:
json.dump(
{"weight_map": weight_map, "metadata": {"total_size": total_size}}, f
)
print(f"Saving the target model to {target_model_path}")
delta_tokenizer.save_pretrained(target_model_path)
delta_config.save_pretrained(target_model_path)
def apply_delta(base_model_path, target_model_path, delta_path):
print(f"Loading the delta weights from {delta_path}")
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path, use_fast=False)
delta = AutoModelForCausalLM.from_pretrained(
delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True
)
print(f"Loading the base model from {base_model_path}")
base = AutoModelForCausalLM.from_pretrained(
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True
)
print("Applying the delta")
for name, param in tqdm(base.state_dict().items(), desc="Applying delta"):
assert name in delta.state_dict()
param.data += delta.state_dict()[name]
print(f"Saving the target model to {target_model_path}")
base.save_pretrained(target_model_path)
delta_tokenizer.save_pretrained(target_model_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--base-model-path", type=str, required=True)
parser.add_argument("--target-model-path", type=str, required=True)
parser.add_argument("--delta-path", type=str, required=True)
parser.add_argument(
"--low-cpu-mem",
action="store_true",
help="Lower the cpu memory usage. This will split large files and use "
"disk as swap to reduce the memory usage below 10GB.",
)
args = parser.parse_args()
print(args.base_model_path, args.target_model_path, args.delta_path)
if args.low_cpu_mem:
apply_delta_low_cpu_mem(
args.base_model_path, args.target_model_path, args.delta_path
)
else:
apply_delta(args.base_model_path, args.target_model_path, args.delta_path)