Skip to content

Latest commit

 

History

History
44 lines (30 loc) · 1.13 KB

README.md

File metadata and controls

44 lines (30 loc) · 1.13 KB

tf-collective-all-reduce

Lightweight framework for distributing machine learning training based on Rabit for the communication layer. We borrowed Horovod's concepts for the TensorFlow optimizer wrapper.

Installation

git clone https://github.com/criteo/tf-collective-all-reduce
python3.6 -m venv tf_env
. tf_env/bin/activate
pip install tensorflow==1.12.2
pushd tf-collective-all-reduce
  ./install.sh
  pip install -e .
popd

Prerequisites

tf-collective-all-reduce only supports Python ≥3.6

Run tests

pip install -r tests-requirements.txt
pytest -s

Local run with dmlc-submit

../dmlc-core/tracker/dmlc-submit --cluster local --num-workers 2 python examples/simple/simple_allreduce.py

Run on a Hadoop cluster with tf-yarn

Run collective_all_reduce_example

cd examples/tf-yarn
python collective_all_reduce_example.py