From 2301e958004b5983ec52cbd1cb09731ba03ae659 Mon Sep 17 00:00:00 2001 From: "Glitch (a4-bennyrob)" Date: Tue, 5 Oct 2021 03:35:47 +0000 Subject: [PATCH] =?UTF-8?q?=E2=9C=88=EF=B8=8F=F0=9F=8D=B2=20Updated=20with?= =?UTF-8?q?=20Glitch?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .gitignore | 0 .glitch-assets | 17 + LICENSE | 54 + README.md | 66 +- TODO.md | 19 + index.html | 239 + js/three.js | 36415 +++++++++++++++++++++++++++++++++++++++++++++++ server.js | 15 + style.css | 20 + 9 files changed, 36799 insertions(+), 46 deletions(-) create mode 100644 .gitignore create mode 100644 .glitch-assets create mode 100644 LICENSE create mode 100644 TODO.md create mode 100644 index.html create mode 100644 js/three.js create mode 100644 server.js create mode 100644 style.css diff --git a/.gitignore b/.gitignore new file mode 100644 index 00000000..e69de29b diff --git a/.glitch-assets b/.glitch-assets new file mode 100644 index 00000000..80899749 --- /dev/null +++ b/.glitch-assets @@ -0,0 +1,17 @@ +{"name":"drag-in-files.svg","date":"2016-10-22T16:17:49.954Z","url":"https://cdn.hyperdev.com/drag-in-files.svg","type":"image/svg","size":7646,"imageWidth":276,"imageHeight":276,"thumbnail":"https://cdn.hyperdev.com/drag-in-files.svg","thumbnailWidth":276,"thumbnailHeight":276,"dominantColor":"rgb(102, 153, 205)","uuid":"adSBq97hhhpFNUna"} +{"name":"click-me.svg","date":"2016-10-23T16:17:49.954Z","url":"https://cdn.hyperdev.com/click-me.svg","type":"image/svg","size":7116,"imageWidth":276,"imageHeight":276,"thumbnail":"https://cdn.hyperdev.com/click-me.svg","thumbnailWidth":276,"thumbnailHeight":276,"dominantColor":"rgb(243, 185, 186)","uuid":"adSBq97hhhpFNUnb"} +{"name":"paste-me.svg","date":"2016-10-24T16:17:49.954Z","url":"https://cdn.hyperdev.com/paste-me.svg","type":"image/svg","size":7242,"imageWidth":276,"imageHeight":276,"thumbnail":"https://cdn.hyperdev.com/paste-me.svg","thumbnailWidth":276,"thumbnailHeight":276,"dominantColor":"rgb(42, 179, 185)","uuid":"adSBq97hhhpFNUnc"} +{"uuid":"adSBq97hhhpFNUna","deleted":true} +{"uuid":"adSBq97hhhpFNUnb","deleted":true} +{"uuid":"adSBq97hhhpFNUnc","deleted":true} +{"name":"Logo_Color.svg","date":"2020-10-15T17:02:08.576Z","url":"https://cdn.glitch.com/a9975ea6-8949-4bab-addb-8a95021dc2da%2FLogo_Color.svg","type":"image/svg+xml","size":25537,"imageWidth":19,"imageHeight":14,"thumbnail":"https://cdn.glitch.com/a9975ea6-8949-4bab-addb-8a95021dc2da%2FLogo_Color.svg","thumbnailWidth":19,"thumbnailHeight":14,"uuid":"XPQ2UUJettC9yQ6L"} +{"name":"HKGrotesk-Medium.otf","date":"2020-10-15T17:19:39.944Z","url":"https://cdn.glitch.com/a9975ea6-8949-4bab-addb-8a95021dc2da%2FHKGrotesk-Medium.otf","type":"","size":69888,"thumbnail":"https://cdn.glitch.com/a9975ea6-8949-4bab-addb-8a95021dc2da%2Fthumbnails%2FHKGrotesk-Medium.otf","thumbnailWidth":210,"thumbnailHeight":210,"uuid":"mSnvx5eJut7fimxB"} +{"name":"HKGrotesk-Regular.otf","date":"2020-10-15T17:19:40.076Z","url":"https://cdn.glitch.com/a9975ea6-8949-4bab-addb-8a95021dc2da%2FHKGrotesk-Regular.otf","type":"","size":67768,"thumbnail":"https://cdn.glitch.com/a9975ea6-8949-4bab-addb-8a95021dc2da%2Fthumbnails%2FHKGrotesk-Regular.otf","thumbnailWidth":210,"thumbnailHeight":210,"uuid":"VY2dLeOvcf8ffuEw"} +{"name":"HKGrotesk-SemiBold.otf","date":"2020-10-15T17:20:42.442Z","url":"https://cdn.glitch.com/a9975ea6-8949-4bab-addb-8a95021dc2da%2FHKGrotesk-SemiBold.otf","type":"","size":69948,"thumbnail":"https://cdn.glitch.com/a9975ea6-8949-4bab-addb-8a95021dc2da%2Fthumbnails%2FHKGrotesk-SemiBold.otf","thumbnailWidth":210,"thumbnailHeight":210,"uuid":"yEDZsSX7I7P2NlF1"} +{"name":"HKGrotesk-Bold.otf","date":"2020-10-15T17:21:24.249Z","url":"https://cdn.glitch.com/a9975ea6-8949-4bab-addb-8a95021dc2da%2FHKGrotesk-Bold.otf","type":"","size":68144,"thumbnail":"https://cdn.glitch.com/a9975ea6-8949-4bab-addb-8a95021dc2da%2Fthumbnails%2FHKGrotesk-Bold.otf","thumbnailWidth":210,"thumbnailHeight":210,"uuid":"aHiG7zYivg7tnSDH"} +{"name":"illustration.svg","date":"2021-04-11T21:42:24.016Z","url":"https://cdn.glitch.com/a9975ea6-8949-4bab-addb-8a95021dc2da%2Fillustration.svg","type":"image/svg+xml","size":21272,"imageWidth":658,"imageHeight":682,"thumbnail":"https://cdn.glitch.com/a9975ea6-8949-4bab-addb-8a95021dc2da%2Fthumbnails%2Fillustration.svg","thumbnailWidth":319,"thumbnailHeight":330,"uuid":"WlqPAPkJzcjf2thL"} +{"uuid":"aHiG7zYivg7tnSDH","deleted":true} +{"uuid":"mSnvx5eJut7fimxB","deleted":true} +{"uuid":"yEDZsSX7I7P2NlF1","deleted":true} +{"uuid":"VY2dLeOvcf8ffuEw","deleted":true} +{"uuid":"XPQ2UUJettC9yQ6L","deleted":true} diff --git a/LICENSE b/LICENSE new file mode 100644 index 00000000..b2b4c427 --- /dev/null +++ b/LICENSE @@ -0,0 +1,54 @@ +The LICENSE file for any project gives credit to the creator/author of the +project, copyright information for the project, and the legal terms under +which it's being shared. In other words, this is us using an MIT license to +say "we wrote this and you can do whatever you want with it." + +****************************************************************************** +~glitch-hello-website +****************************************************************************** +MIT License + +Copyright (c) 2021, Glitch, Inc. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + + + + +****************************************************************************** + +THIRD-PARTY SOFTWARE +This is all the software we used to build this starter project. All of these +licenses are compatible with the license above. We've included links so you +can learn more if you want. + +1. HK Grotesk: The font we're using. + + +****************************************************************************** +1. HK Grotesk +URL: https://hanken.co/products/hk-grotesk +****************************************************************************** +HK Grotesk was designed by Hanken Design Co. It is shared using a SIL OFL +license. Full license text can be found at: + +https://hanken.co/pages/web-fonts-eula +****************************************************************************** +END, HK Grotesk +****************************************************************************** \ No newline at end of file diff --git a/README.md b/README.md index 3ae10a92..2d233652 100644 --- a/README.md +++ b/README.md @@ -1,61 +1,35 @@ -Assignment 4 - Creative Coding: Interactive Multimedia Experiences -=== +**A4-BennyRob - https://a4-bennyrob.glitch.me** -Due: October 4th, by 11:59 AM. +(Got an extension so this was submitted late) -For this assignment we will focus on client-side development using popular audio/graphics/visualization technologies. The goal of this assignment is to refine our JavaScript knowledge while exploring the multimedia capabilities of the browser. +My project is made with three.js and tweakpane. -[WebAudio / Canvas / Three Tutorial](https://github.com/cs4241-21a/cs4241-21a.github.io/blob/main/webaudio_canvas_three.md) -[SVG + D3 tutorial](https://github.com/cs4241-21a/cs4241-21a.github.io/blob/main/using_svg_and_d3.md) +The goal of this project was to create some 3d cubes that the user can manipulate in various ways. -Baseline Requirements ---- +I was challenged in this project when doing some of the movements with the cubes, as this is my first time working +with any sort of 3d graphics. -Your application is required to implement the following functionalities: +**Baseline requirements** -- A server created using Express. This server can be as simple as needed. -- A client-side interactive experience using at least one of the following web technologies frameworks. - - [Three.js](https://threejs.org/): A library for 3D graphics / VR experiences - - [D3.js](https://d3js.org): A library that is primarily used for interactive data visualizations - - [Canvas](https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API): A 2D raster drawing API included in all modern browsers - - [SVG](https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API): A 2D vector drawing framework that enables shapes to be defined via XML. - - [Web Audio API](https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API): An API for audio synthesis, analysis, processing, and file playback. -- A user interface for interaction with your project, which must expose at least four parameters for user control. [tweakpane](https://cocopon.github.io/tweakpane/) is highly recommended for this, but you can also use regular HTML `` tags (the `range` type is useful to create sliders). You might also explore interaction by tracking mouse movement via the `window.onmousemove` event handler in tandem with the `event.clientX` and `event.clientY` properties. Consider using the [Pointer Events API](https://developer.mozilla.org/en-US/docs/Web/API/Pointer_events) to ensure that that both mouse and touch events will both be supported in your app. -- Your application should display basic documentation for the user interface when the application first loads. +Has a functional express server -The interactive experience should possess a reasonable level of complexity. Some examples: -### Three.js -- A generative algorithm creates simple agents that move through a virtual world. Your interface controls the behavior / appearance of these agents. -- A simple 3D game... you really want this to be a simple as possible or it will be outside the scope of this assignment. -- An 3D audio visualization of a song of your choosing. User interaction should control aspects of the visualization. -### Canvas -- Implement a generative algorithm such as [Conway's Game of Life](https://bitstorm.org/gameoflife/) (or 1D cellular automata) and provide interactive controls. Note that the Game of Life has been created by 100s of people using ; we'll be checking to ensure that your implementation is not a copy of these. -- Design a 2D audio visualizer of a song of your choosing. User interaction should control visual aspects of the experience. -### Web Audio API -- Create a screen-based musical instrument using the Web Audio API. You can use projects such as [Interface.js](http://charlie-roberts.com/interface/) or [Nexus UI](https://nexus-js.github.io/ui/api/#Piano) to provide common musical interface elements, or use dat.GUI in combination with mouse/touch events (use the Pointer Events API). Your GUI should enable users to control aspects of sound synthesis. If you want to use higher-level instruments instead of the raw WebAudio API sounds, consider trying the instruments provided by [Tone.js]() or [Gibber](https://github.com/charlieroberts/gibber.audio.lib). -### D3.js -- Create visualizations using the datasets found at [Awesome JSON Datasets](https://github.com/jdorfman/Awesome-JSON-Datasets). Experiment with providing different visualizations of the same data set, and providing users interactive control over visualization parameters and/or data filtering. Alternatively, create a single visualization with using one of the more complicated techniques shown at [d3js.org](d3js.org) and provide meaningful points of interaction for users. +I use three.js for my framwork -Deliverables ---- +I use Tweakpane for my user interface interaction -Do the following to complete this assignment: +**Tweakpane options** -1. Implement your project with the above requirements. -3. Test your project to make sure that when someone goes to your main page on Glitch/Heroku/etc., it displays correctly. -4. Ensure that your project has the proper naming scheme `a4-firstname-lastname` so we can find it. -5. Fork this repository and modify the README to the specifications below. *NOTE: If you don't use Glitch for hosting (where we can see the files) then you must include all project files that you author in your repo for this assignment*. -6. Create and submit a Pull Request to the original repo. Name the pull request using the following template: `a4-firstname-lastname`. +--> numCubes - Controls the number of cubes -Sample Readme (delete the above when you're ready to submit, and modify the below so with your links and descriptions) ---- +--> SpeedX and SpeedY - controls the speed of rotation for the X and Y axis -## Your Web Application Title +--> Change Color - randomly changes the color of the cubes + +--> Cube Dance - the cubes move based on the inputs of SpeedX and SpeedY + +--> Dont click this - Don't + +Has some small documentation when the website is loaded -your hosting link e.g. http://a4-charlieroberts.glitch.me -Include a very brief summary of your project here. Images are encouraged when needed, along with concise, high-level text. Be sure to include: -- the goal of the application -- challenges you faced in realizing the application -- the instructions you present in the website should be clear enough to use the application, but if you feel any need to provide additional instructions please do so here. diff --git a/TODO.md b/TODO.md new file mode 100644 index 00000000..4963e616 --- /dev/null +++ b/TODO.md @@ -0,0 +1,19 @@ +# TODO 🚧 + +Your new site is all yours so it doesn't matter if you break it! Try editing the code–add a button element that moves when the user clicks it. + +In `index.html`, add this code on the line after the comment with `ADD BUTTON HERE` in it (you can copy and paste the button element HTML): + +```html + +``` + +Look at the page to see the button. Click it! + +Open `script.js` to see the script that makes the button move. + +## Keep going! 🚀 + +Try adding more properties to the CSS `dipped` style for the button to see how the changes appear on click. diff --git a/index.html b/index.html new file mode 100644 index 00000000..487a1bc5 --- /dev/null +++ b/index.html @@ -0,0 +1,239 @@ + + + + + My first three.js app + + + + + +
+

The Cubes

+ +
+
+ +

This website allows you to mess around with these rotating cubes and make them move.Made with Three.js and Tweakpane

+

Play around with the options in the top right for some cool results

+ +
+ + + + + + + + + \ No newline at end of file diff --git a/js/three.js b/js/three.js new file mode 100644 index 00000000..ddb4ee88 --- /dev/null +++ b/js/three.js @@ -0,0 +1,36415 @@ +/** + * @license + * Copyright 2010-2021 Three.js Authors + * SPDX-License-Identifier: MIT + */ + +(function (global, factory) { + typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : + typeof define === 'function' && define.amd ? define(['exports'], factory) : + (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.THREE = {})); +}(this, (function (exports) { 'use strict'; + + const REVISION = '133'; + const MOUSE = { + LEFT: 0, + MIDDLE: 1, + RIGHT: 2, + ROTATE: 0, + DOLLY: 1, + PAN: 2 + }; + const TOUCH = { + ROTATE: 0, + PAN: 1, + DOLLY_PAN: 2, + DOLLY_ROTATE: 3 + }; + const CullFaceNone = 0; + const CullFaceBack = 1; + const CullFaceFront = 2; + const CullFaceFrontBack = 3; + const BasicShadowMap = 0; + const PCFShadowMap = 1; + const PCFSoftShadowMap = 2; + const VSMShadowMap = 3; + const FrontSide = 0; + const BackSide = 1; + const DoubleSide = 2; + const FlatShading = 1; + const SmoothShading = 2; + const NoBlending = 0; + const NormalBlending = 1; + const AdditiveBlending = 2; + const SubtractiveBlending = 3; + const MultiplyBlending = 4; + const CustomBlending = 5; + const AddEquation = 100; + const SubtractEquation = 101; + const ReverseSubtractEquation = 102; + const MinEquation = 103; + const MaxEquation = 104; + const ZeroFactor = 200; + const OneFactor = 201; + const SrcColorFactor = 202; + const OneMinusSrcColorFactor = 203; + const SrcAlphaFactor = 204; + const OneMinusSrcAlphaFactor = 205; + const DstAlphaFactor = 206; + const OneMinusDstAlphaFactor = 207; + const DstColorFactor = 208; + const OneMinusDstColorFactor = 209; + const SrcAlphaSaturateFactor = 210; + const NeverDepth = 0; + const AlwaysDepth = 1; + const LessDepth = 2; + const LessEqualDepth = 3; + const EqualDepth = 4; + const GreaterEqualDepth = 5; + const GreaterDepth = 6; + const NotEqualDepth = 7; + const MultiplyOperation = 0; + const MixOperation = 1; + const AddOperation = 2; + const NoToneMapping = 0; + const LinearToneMapping = 1; + const ReinhardToneMapping = 2; + const CineonToneMapping = 3; + const ACESFilmicToneMapping = 4; + const CustomToneMapping = 5; + const UVMapping = 300; + const CubeReflectionMapping = 301; + const CubeRefractionMapping = 302; + const EquirectangularReflectionMapping = 303; + const EquirectangularRefractionMapping = 304; + const CubeUVReflectionMapping = 306; + const CubeUVRefractionMapping = 307; + const RepeatWrapping = 1000; + const ClampToEdgeWrapping = 1001; + const MirroredRepeatWrapping = 1002; + const NearestFilter = 1003; + const NearestMipmapNearestFilter = 1004; + const NearestMipMapNearestFilter = 1004; + const NearestMipmapLinearFilter = 1005; + const NearestMipMapLinearFilter = 1005; + const LinearFilter = 1006; + const LinearMipmapNearestFilter = 1007; + const LinearMipMapNearestFilter = 1007; + const LinearMipmapLinearFilter = 1008; + const LinearMipMapLinearFilter = 1008; + const UnsignedByteType = 1009; + const ByteType = 1010; + const ShortType = 1011; + const UnsignedShortType = 1012; + const IntType = 1013; + const UnsignedIntType = 1014; + const FloatType = 1015; + const HalfFloatType = 1016; + const UnsignedShort4444Type = 1017; + const UnsignedShort5551Type = 1018; + const UnsignedShort565Type = 1019; + const UnsignedInt248Type = 1020; + const AlphaFormat = 1021; + const RGBFormat = 1022; + const RGBAFormat = 1023; + const LuminanceFormat = 1024; + const LuminanceAlphaFormat = 1025; + const RGBEFormat = RGBAFormat; + const DepthFormat = 1026; + const DepthStencilFormat = 1027; + const RedFormat = 1028; + const RedIntegerFormat = 1029; + const RGFormat = 1030; + const RGIntegerFormat = 1031; + const RGBIntegerFormat = 1032; + const RGBAIntegerFormat = 1033; + const RGB_S3TC_DXT1_Format = 33776; + const RGBA_S3TC_DXT1_Format = 33777; + const RGBA_S3TC_DXT3_Format = 33778; + const RGBA_S3TC_DXT5_Format = 33779; + const RGB_PVRTC_4BPPV1_Format = 35840; + const RGB_PVRTC_2BPPV1_Format = 35841; + const RGBA_PVRTC_4BPPV1_Format = 35842; + const RGBA_PVRTC_2BPPV1_Format = 35843; + const RGB_ETC1_Format = 36196; + const RGB_ETC2_Format = 37492; + const RGBA_ETC2_EAC_Format = 37496; + const RGBA_ASTC_4x4_Format = 37808; + const RGBA_ASTC_5x4_Format = 37809; + const RGBA_ASTC_5x5_Format = 37810; + const RGBA_ASTC_6x5_Format = 37811; + const RGBA_ASTC_6x6_Format = 37812; + const RGBA_ASTC_8x5_Format = 37813; + const RGBA_ASTC_8x6_Format = 37814; + const RGBA_ASTC_8x8_Format = 37815; + const RGBA_ASTC_10x5_Format = 37816; + const RGBA_ASTC_10x6_Format = 37817; + const RGBA_ASTC_10x8_Format = 37818; + const RGBA_ASTC_10x10_Format = 37819; + const RGBA_ASTC_12x10_Format = 37820; + const RGBA_ASTC_12x12_Format = 37821; + const RGBA_BPTC_Format = 36492; + const SRGB8_ALPHA8_ASTC_4x4_Format = 37840; + const SRGB8_ALPHA8_ASTC_5x4_Format = 37841; + const SRGB8_ALPHA8_ASTC_5x5_Format = 37842; + const SRGB8_ALPHA8_ASTC_6x5_Format = 37843; + const SRGB8_ALPHA8_ASTC_6x6_Format = 37844; + const SRGB8_ALPHA8_ASTC_8x5_Format = 37845; + const SRGB8_ALPHA8_ASTC_8x6_Format = 37846; + const SRGB8_ALPHA8_ASTC_8x8_Format = 37847; + const SRGB8_ALPHA8_ASTC_10x5_Format = 37848; + const SRGB8_ALPHA8_ASTC_10x6_Format = 37849; + const SRGB8_ALPHA8_ASTC_10x8_Format = 37850; + const SRGB8_ALPHA8_ASTC_10x10_Format = 37851; + const SRGB8_ALPHA8_ASTC_12x10_Format = 37852; + const SRGB8_ALPHA8_ASTC_12x12_Format = 37853; + const LoopOnce = 2200; + const LoopRepeat = 2201; + const LoopPingPong = 2202; + const InterpolateDiscrete = 2300; + const InterpolateLinear = 2301; + const InterpolateSmooth = 2302; + const ZeroCurvatureEnding = 2400; + const ZeroSlopeEnding = 2401; + const WrapAroundEnding = 2402; + const NormalAnimationBlendMode = 2500; + const AdditiveAnimationBlendMode = 2501; + const TrianglesDrawMode = 0; + const TriangleStripDrawMode = 1; + const TriangleFanDrawMode = 2; + const LinearEncoding = 3000; + const sRGBEncoding = 3001; + const GammaEncoding = 3007; + const RGBEEncoding = 3002; + const LogLuvEncoding = 3003; + const RGBM7Encoding = 3004; + const RGBM16Encoding = 3005; + const RGBDEncoding = 3006; + const BasicDepthPacking = 3200; + const RGBADepthPacking = 3201; + const TangentSpaceNormalMap = 0; + const ObjectSpaceNormalMap = 1; + const ZeroStencilOp = 0; + const KeepStencilOp = 7680; + const ReplaceStencilOp = 7681; + const IncrementStencilOp = 7682; + const DecrementStencilOp = 7683; + const IncrementWrapStencilOp = 34055; + const DecrementWrapStencilOp = 34056; + const InvertStencilOp = 5386; + const NeverStencilFunc = 512; + const LessStencilFunc = 513; + const EqualStencilFunc = 514; + const LessEqualStencilFunc = 515; + const GreaterStencilFunc = 516; + const NotEqualStencilFunc = 517; + const GreaterEqualStencilFunc = 518; + const AlwaysStencilFunc = 519; + const StaticDrawUsage = 35044; + const DynamicDrawUsage = 35048; + const StreamDrawUsage = 35040; + const StaticReadUsage = 35045; + const DynamicReadUsage = 35049; + const StreamReadUsage = 35041; + const StaticCopyUsage = 35046; + const DynamicCopyUsage = 35050; + const StreamCopyUsage = 35042; + const GLSL1 = '100'; + const GLSL3 = '300 es'; + + /** + * https://github.com/mrdoob/eventdispatcher.js/ + */ + class EventDispatcher { + addEventListener(type, listener) { + if (this._listeners === undefined) this._listeners = {}; + const listeners = this._listeners; + + if (listeners[type] === undefined) { + listeners[type] = []; + } + + if (listeners[type].indexOf(listener) === -1) { + listeners[type].push(listener); + } + } + + hasEventListener(type, listener) { + if (this._listeners === undefined) return false; + const listeners = this._listeners; + return listeners[type] !== undefined && listeners[type].indexOf(listener) !== -1; + } + + removeEventListener(type, listener) { + if (this._listeners === undefined) return; + const listeners = this._listeners; + const listenerArray = listeners[type]; + + if (listenerArray !== undefined) { + const index = listenerArray.indexOf(listener); + + if (index !== -1) { + listenerArray.splice(index, 1); + } + } + } + + dispatchEvent(event) { + if (this._listeners === undefined) return; + const listeners = this._listeners; + const listenerArray = listeners[event.type]; + + if (listenerArray !== undefined) { + event.target = this; // Make a copy, in case listeners are removed while iterating. + + const array = listenerArray.slice(0); + + for (let i = 0, l = array.length; i < l; i++) { + array[i].call(this, event); + } + + event.target = null; + } + } + + } + + let _seed = 1234567; + const DEG2RAD = Math.PI / 180; + const RAD2DEG = 180 / Math.PI; // + + const _lut = []; + + for (let i = 0; i < 256; i++) { + _lut[i] = (i < 16 ? '0' : '') + i.toString(16); + } + + const hasRandomUUID = typeof crypto !== 'undefined' && 'randomUUID' in crypto; + + function generateUUID() { + if (hasRandomUUID) { + return crypto.randomUUID().toUpperCase(); + } // TODO Remove this code when crypto.randomUUID() is available everywhere + // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 + + + const d0 = Math.random() * 0xffffffff | 0; + const d1 = Math.random() * 0xffffffff | 0; + const d2 = Math.random() * 0xffffffff | 0; + const d3 = Math.random() * 0xffffffff | 0; + const uuid = _lut[d0 & 0xff] + _lut[d0 >> 8 & 0xff] + _lut[d0 >> 16 & 0xff] + _lut[d0 >> 24 & 0xff] + '-' + _lut[d1 & 0xff] + _lut[d1 >> 8 & 0xff] + '-' + _lut[d1 >> 16 & 0x0f | 0x40] + _lut[d1 >> 24 & 0xff] + '-' + _lut[d2 & 0x3f | 0x80] + _lut[d2 >> 8 & 0xff] + '-' + _lut[d2 >> 16 & 0xff] + _lut[d2 >> 24 & 0xff] + _lut[d3 & 0xff] + _lut[d3 >> 8 & 0xff] + _lut[d3 >> 16 & 0xff] + _lut[d3 >> 24 & 0xff]; // .toUpperCase() here flattens concatenated strings to save heap memory space. + + return uuid.toUpperCase(); + } + + function clamp(value, min, max) { + return Math.max(min, Math.min(max, value)); + } // compute euclidian modulo of m % n + // https://en.wikipedia.org/wiki/Modulo_operation + + + function euclideanModulo(n, m) { + return (n % m + m) % m; + } // Linear mapping from range to range + + + function mapLinear(x, a1, a2, b1, b2) { + return b1 + (x - a1) * (b2 - b1) / (a2 - a1); + } // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/ + + + function inverseLerp(x, y, value) { + if (x !== y) { + return (value - x) / (y - x); + } else { + return 0; + } + } // https://en.wikipedia.org/wiki/Linear_interpolation + + + function lerp(x, y, t) { + return (1 - t) * x + t * y; + } // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/ + + + function damp(x, y, lambda, dt) { + return lerp(x, y, 1 - Math.exp(-lambda * dt)); + } // https://www.desmos.com/calculator/vcsjnyz7x4 + + + function pingpong(x, length = 1) { + return length - Math.abs(euclideanModulo(x, length * 2) - length); + } // http://en.wikipedia.org/wiki/Smoothstep + + + function smoothstep(x, min, max) { + if (x <= min) return 0; + if (x >= max) return 1; + x = (x - min) / (max - min); + return x * x * (3 - 2 * x); + } + + function smootherstep(x, min, max) { + if (x <= min) return 0; + if (x >= max) return 1; + x = (x - min) / (max - min); + return x * x * x * (x * (x * 6 - 15) + 10); + } // Random integer from interval + + + function randInt(low, high) { + return low + Math.floor(Math.random() * (high - low + 1)); + } // Random float from interval + + + function randFloat(low, high) { + return low + Math.random() * (high - low); + } // Random float from <-range/2, range/2> interval + + + function randFloatSpread(range) { + return range * (0.5 - Math.random()); + } // Deterministic pseudo-random float in the interval [ 0, 1 ] + + + function seededRandom(s) { + if (s !== undefined) _seed = s % 2147483647; // Park-Miller algorithm + + _seed = _seed * 16807 % 2147483647; + return (_seed - 1) / 2147483646; + } + + function degToRad(degrees) { + return degrees * DEG2RAD; + } + + function radToDeg(radians) { + return radians * RAD2DEG; + } + + function isPowerOfTwo(value) { + return (value & value - 1) === 0 && value !== 0; + } + + function ceilPowerOfTwo(value) { + return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2)); + } + + function floorPowerOfTwo(value) { + return Math.pow(2, Math.floor(Math.log(value) / Math.LN2)); + } + + function setQuaternionFromProperEuler(q, a, b, c, order) { + // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles + // rotations are applied to the axes in the order specified by 'order' + // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c' + // angles are in radians + const cos = Math.cos; + const sin = Math.sin; + const c2 = cos(b / 2); + const s2 = sin(b / 2); + const c13 = cos((a + c) / 2); + const s13 = sin((a + c) / 2); + const c1_3 = cos((a - c) / 2); + const s1_3 = sin((a - c) / 2); + const c3_1 = cos((c - a) / 2); + const s3_1 = sin((c - a) / 2); + + switch (order) { + case 'XYX': + q.set(c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13); + break; + + case 'YZY': + q.set(s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13); + break; + + case 'ZXZ': + q.set(s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13); + break; + + case 'XZX': + q.set(c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13); + break; + + case 'YXY': + q.set(s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13); + break; + + case 'ZYZ': + q.set(s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13); + break; + + default: + console.warn('THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order); + } + } + + var MathUtils = /*#__PURE__*/Object.freeze({ + __proto__: null, + DEG2RAD: DEG2RAD, + RAD2DEG: RAD2DEG, + generateUUID: generateUUID, + clamp: clamp, + euclideanModulo: euclideanModulo, + mapLinear: mapLinear, + inverseLerp: inverseLerp, + lerp: lerp, + damp: damp, + pingpong: pingpong, + smoothstep: smoothstep, + smootherstep: smootherstep, + randInt: randInt, + randFloat: randFloat, + randFloatSpread: randFloatSpread, + seededRandom: seededRandom, + degToRad: degToRad, + radToDeg: radToDeg, + isPowerOfTwo: isPowerOfTwo, + ceilPowerOfTwo: ceilPowerOfTwo, + floorPowerOfTwo: floorPowerOfTwo, + setQuaternionFromProperEuler: setQuaternionFromProperEuler + }); + + class Vector2 { + constructor(x = 0, y = 0) { + this.x = x; + this.y = y; + } + + get width() { + return this.x; + } + + set width(value) { + this.x = value; + } + + get height() { + return this.y; + } + + set height(value) { + this.y = value; + } + + set(x, y) { + this.x = x; + this.y = y; + return this; + } + + setScalar(scalar) { + this.x = scalar; + this.y = scalar; + return this; + } + + setX(x) { + this.x = x; + return this; + } + + setY(y) { + this.y = y; + return this; + } + + setComponent(index, value) { + switch (index) { + case 0: + this.x = value; + break; + + case 1: + this.y = value; + break; + + default: + throw new Error('index is out of range: ' + index); + } + + return this; + } + + getComponent(index) { + switch (index) { + case 0: + return this.x; + + case 1: + return this.y; + + default: + throw new Error('index is out of range: ' + index); + } + } + + clone() { + return new this.constructor(this.x, this.y); + } + + copy(v) { + this.x = v.x; + this.y = v.y; + return this; + } + + add(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.'); + return this.addVectors(v, w); + } + + this.x += v.x; + this.y += v.y; + return this; + } + + addScalar(s) { + this.x += s; + this.y += s; + return this; + } + + addVectors(a, b) { + this.x = a.x + b.x; + this.y = a.y + b.y; + return this; + } + + addScaledVector(v, s) { + this.x += v.x * s; + this.y += v.y * s; + return this; + } + + sub(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.'); + return this.subVectors(v, w); + } + + this.x -= v.x; + this.y -= v.y; + return this; + } + + subScalar(s) { + this.x -= s; + this.y -= s; + return this; + } + + subVectors(a, b) { + this.x = a.x - b.x; + this.y = a.y - b.y; + return this; + } + + multiply(v) { + this.x *= v.x; + this.y *= v.y; + return this; + } + + multiplyScalar(scalar) { + this.x *= scalar; + this.y *= scalar; + return this; + } + + divide(v) { + this.x /= v.x; + this.y /= v.y; + return this; + } + + divideScalar(scalar) { + return this.multiplyScalar(1 / scalar); + } + + applyMatrix3(m) { + const x = this.x, + y = this.y; + const e = m.elements; + this.x = e[0] * x + e[3] * y + e[6]; + this.y = e[1] * x + e[4] * y + e[7]; + return this; + } + + min(v) { + this.x = Math.min(this.x, v.x); + this.y = Math.min(this.y, v.y); + return this; + } + + max(v) { + this.x = Math.max(this.x, v.x); + this.y = Math.max(this.y, v.y); + return this; + } + + clamp(min, max) { + // assumes min < max, componentwise + this.x = Math.max(min.x, Math.min(max.x, this.x)); + this.y = Math.max(min.y, Math.min(max.y, this.y)); + return this; + } + + clampScalar(minVal, maxVal) { + this.x = Math.max(minVal, Math.min(maxVal, this.x)); + this.y = Math.max(minVal, Math.min(maxVal, this.y)); + return this; + } + + clampLength(min, max) { + const length = this.length(); + return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))); + } + + floor() { + this.x = Math.floor(this.x); + this.y = Math.floor(this.y); + return this; + } + + ceil() { + this.x = Math.ceil(this.x); + this.y = Math.ceil(this.y); + return this; + } + + round() { + this.x = Math.round(this.x); + this.y = Math.round(this.y); + return this; + } + + roundToZero() { + this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x); + this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y); + return this; + } + + negate() { + this.x = -this.x; + this.y = -this.y; + return this; + } + + dot(v) { + return this.x * v.x + this.y * v.y; + } + + cross(v) { + return this.x * v.y - this.y * v.x; + } + + lengthSq() { + return this.x * this.x + this.y * this.y; + } + + length() { + return Math.sqrt(this.x * this.x + this.y * this.y); + } + + manhattanLength() { + return Math.abs(this.x) + Math.abs(this.y); + } + + normalize() { + return this.divideScalar(this.length() || 1); + } + + angle() { + // computes the angle in radians with respect to the positive x-axis + const angle = Math.atan2(-this.y, -this.x) + Math.PI; + return angle; + } + + distanceTo(v) { + return Math.sqrt(this.distanceToSquared(v)); + } + + distanceToSquared(v) { + const dx = this.x - v.x, + dy = this.y - v.y; + return dx * dx + dy * dy; + } + + manhattanDistanceTo(v) { + return Math.abs(this.x - v.x) + Math.abs(this.y - v.y); + } + + setLength(length) { + return this.normalize().multiplyScalar(length); + } + + lerp(v, alpha) { + this.x += (v.x - this.x) * alpha; + this.y += (v.y - this.y) * alpha; + return this; + } + + lerpVectors(v1, v2, alpha) { + this.x = v1.x + (v2.x - v1.x) * alpha; + this.y = v1.y + (v2.y - v1.y) * alpha; + return this; + } + + equals(v) { + return v.x === this.x && v.y === this.y; + } + + fromArray(array, offset = 0) { + this.x = array[offset]; + this.y = array[offset + 1]; + return this; + } + + toArray(array = [], offset = 0) { + array[offset] = this.x; + array[offset + 1] = this.y; + return array; + } + + fromBufferAttribute(attribute, index, offset) { + if (offset !== undefined) { + console.warn('THREE.Vector2: offset has been removed from .fromBufferAttribute().'); + } + + this.x = attribute.getX(index); + this.y = attribute.getY(index); + return this; + } + + rotateAround(center, angle) { + const c = Math.cos(angle), + s = Math.sin(angle); + const x = this.x - center.x; + const y = this.y - center.y; + this.x = x * c - y * s + center.x; + this.y = x * s + y * c + center.y; + return this; + } + + random() { + this.x = Math.random(); + this.y = Math.random(); + return this; + } + + *[Symbol.iterator]() { + yield this.x; + yield this.y; + } + + } + + Vector2.prototype.isVector2 = true; + + class Matrix3 { + constructor() { + this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1]; + + if (arguments.length > 0) { + console.error('THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.'); + } + } + + set(n11, n12, n13, n21, n22, n23, n31, n32, n33) { + const te = this.elements; + te[0] = n11; + te[1] = n21; + te[2] = n31; + te[3] = n12; + te[4] = n22; + te[5] = n32; + te[6] = n13; + te[7] = n23; + te[8] = n33; + return this; + } + + identity() { + this.set(1, 0, 0, 0, 1, 0, 0, 0, 1); + return this; + } + + copy(m) { + const te = this.elements; + const me = m.elements; + te[0] = me[0]; + te[1] = me[1]; + te[2] = me[2]; + te[3] = me[3]; + te[4] = me[4]; + te[5] = me[5]; + te[6] = me[6]; + te[7] = me[7]; + te[8] = me[8]; + return this; + } + + extractBasis(xAxis, yAxis, zAxis) { + xAxis.setFromMatrix3Column(this, 0); + yAxis.setFromMatrix3Column(this, 1); + zAxis.setFromMatrix3Column(this, 2); + return this; + } + + setFromMatrix4(m) { + const me = m.elements; + this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]); + return this; + } + + multiply(m) { + return this.multiplyMatrices(this, m); + } + + premultiply(m) { + return this.multiplyMatrices(m, this); + } + + multiplyMatrices(a, b) { + const ae = a.elements; + const be = b.elements; + const te = this.elements; + const a11 = ae[0], + a12 = ae[3], + a13 = ae[6]; + const a21 = ae[1], + a22 = ae[4], + a23 = ae[7]; + const a31 = ae[2], + a32 = ae[5], + a33 = ae[8]; + const b11 = be[0], + b12 = be[3], + b13 = be[6]; + const b21 = be[1], + b22 = be[4], + b23 = be[7]; + const b31 = be[2], + b32 = be[5], + b33 = be[8]; + te[0] = a11 * b11 + a12 * b21 + a13 * b31; + te[3] = a11 * b12 + a12 * b22 + a13 * b32; + te[6] = a11 * b13 + a12 * b23 + a13 * b33; + te[1] = a21 * b11 + a22 * b21 + a23 * b31; + te[4] = a21 * b12 + a22 * b22 + a23 * b32; + te[7] = a21 * b13 + a22 * b23 + a23 * b33; + te[2] = a31 * b11 + a32 * b21 + a33 * b31; + te[5] = a31 * b12 + a32 * b22 + a33 * b32; + te[8] = a31 * b13 + a32 * b23 + a33 * b33; + return this; + } + + multiplyScalar(s) { + const te = this.elements; + te[0] *= s; + te[3] *= s; + te[6] *= s; + te[1] *= s; + te[4] *= s; + te[7] *= s; + te[2] *= s; + te[5] *= s; + te[8] *= s; + return this; + } + + determinant() { + const te = this.elements; + const a = te[0], + b = te[1], + c = te[2], + d = te[3], + e = te[4], + f = te[5], + g = te[6], + h = te[7], + i = te[8]; + return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; + } + + invert() { + const te = this.elements, + n11 = te[0], + n21 = te[1], + n31 = te[2], + n12 = te[3], + n22 = te[4], + n32 = te[5], + n13 = te[6], + n23 = te[7], + n33 = te[8], + t11 = n33 * n22 - n32 * n23, + t12 = n32 * n13 - n33 * n12, + t13 = n23 * n12 - n22 * n13, + det = n11 * t11 + n21 * t12 + n31 * t13; + if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0); + const detInv = 1 / det; + te[0] = t11 * detInv; + te[1] = (n31 * n23 - n33 * n21) * detInv; + te[2] = (n32 * n21 - n31 * n22) * detInv; + te[3] = t12 * detInv; + te[4] = (n33 * n11 - n31 * n13) * detInv; + te[5] = (n31 * n12 - n32 * n11) * detInv; + te[6] = t13 * detInv; + te[7] = (n21 * n13 - n23 * n11) * detInv; + te[8] = (n22 * n11 - n21 * n12) * detInv; + return this; + } + + transpose() { + let tmp; + const m = this.elements; + tmp = m[1]; + m[1] = m[3]; + m[3] = tmp; + tmp = m[2]; + m[2] = m[6]; + m[6] = tmp; + tmp = m[5]; + m[5] = m[7]; + m[7] = tmp; + return this; + } + + getNormalMatrix(matrix4) { + return this.setFromMatrix4(matrix4).invert().transpose(); + } + + transposeIntoArray(r) { + const m = this.elements; + r[0] = m[0]; + r[1] = m[3]; + r[2] = m[6]; + r[3] = m[1]; + r[4] = m[4]; + r[5] = m[7]; + r[6] = m[2]; + r[7] = m[5]; + r[8] = m[8]; + return this; + } + + setUvTransform(tx, ty, sx, sy, rotation, cx, cy) { + const c = Math.cos(rotation); + const s = Math.sin(rotation); + this.set(sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1); + return this; + } + + scale(sx, sy) { + const te = this.elements; + te[0] *= sx; + te[3] *= sx; + te[6] *= sx; + te[1] *= sy; + te[4] *= sy; + te[7] *= sy; + return this; + } + + rotate(theta) { + const c = Math.cos(theta); + const s = Math.sin(theta); + const te = this.elements; + const a11 = te[0], + a12 = te[3], + a13 = te[6]; + const a21 = te[1], + a22 = te[4], + a23 = te[7]; + te[0] = c * a11 + s * a21; + te[3] = c * a12 + s * a22; + te[6] = c * a13 + s * a23; + te[1] = -s * a11 + c * a21; + te[4] = -s * a12 + c * a22; + te[7] = -s * a13 + c * a23; + return this; + } + + translate(tx, ty) { + const te = this.elements; + te[0] += tx * te[2]; + te[3] += tx * te[5]; + te[6] += tx * te[8]; + te[1] += ty * te[2]; + te[4] += ty * te[5]; + te[7] += ty * te[8]; + return this; + } + + equals(matrix) { + const te = this.elements; + const me = matrix.elements; + + for (let i = 0; i < 9; i++) { + if (te[i] !== me[i]) return false; + } + + return true; + } + + fromArray(array, offset = 0) { + for (let i = 0; i < 9; i++) { + this.elements[i] = array[i + offset]; + } + + return this; + } + + toArray(array = [], offset = 0) { + const te = this.elements; + array[offset] = te[0]; + array[offset + 1] = te[1]; + array[offset + 2] = te[2]; + array[offset + 3] = te[3]; + array[offset + 4] = te[4]; + array[offset + 5] = te[5]; + array[offset + 6] = te[6]; + array[offset + 7] = te[7]; + array[offset + 8] = te[8]; + return array; + } + + clone() { + return new this.constructor().fromArray(this.elements); + } + + } + + Matrix3.prototype.isMatrix3 = true; + + function arrayMax(array) { + if (array.length === 0) return -Infinity; + let max = array[0]; + + for (let i = 1, l = array.length; i < l; ++i) { + if (array[i] > max) max = array[i]; + } + + return max; + } + + const TYPED_ARRAYS = { + Int8Array: Int8Array, + Uint8Array: Uint8Array, + Uint8ClampedArray: Uint8ClampedArray, + Int16Array: Int16Array, + Uint16Array: Uint16Array, + Int32Array: Int32Array, + Uint32Array: Uint32Array, + Float32Array: Float32Array, + Float64Array: Float64Array + }; + + function getTypedArray(type, buffer) { + return new TYPED_ARRAYS[type](buffer); + } + + function createElementNS(name) { + return document.createElementNS('http://www.w3.org/1999/xhtml', name); + } + + let _canvas; + + class ImageUtils { + static getDataURL(image) { + if (/^data:/i.test(image.src)) { + return image.src; + } + + if (typeof HTMLCanvasElement == 'undefined') { + return image.src; + } + + let canvas; + + if (image instanceof HTMLCanvasElement) { + canvas = image; + } else { + if (_canvas === undefined) _canvas = createElementNS('canvas'); + _canvas.width = image.width; + _canvas.height = image.height; + + const context = _canvas.getContext('2d'); + + if (image instanceof ImageData) { + context.putImageData(image, 0, 0); + } else { + context.drawImage(image, 0, 0, image.width, image.height); + } + + canvas = _canvas; + } + + if (canvas.width > 2048 || canvas.height > 2048) { + console.warn('THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image); + return canvas.toDataURL('image/jpeg', 0.6); + } else { + return canvas.toDataURL('image/png'); + } + } + + } + + let textureId = 0; + + class Texture extends EventDispatcher { + constructor(image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding) { + super(); + Object.defineProperty(this, 'id', { + value: textureId++ + }); + this.uuid = generateUUID(); + this.name = ''; + this.image = image; + this.mipmaps = []; + this.mapping = mapping; + this.wrapS = wrapS; + this.wrapT = wrapT; + this.magFilter = magFilter; + this.minFilter = minFilter; + this.anisotropy = anisotropy; + this.format = format; + this.internalFormat = null; + this.type = type; + this.offset = new Vector2(0, 0); + this.repeat = new Vector2(1, 1); + this.center = new Vector2(0, 0); + this.rotation = 0; + this.matrixAutoUpdate = true; + this.matrix = new Matrix3(); + this.generateMipmaps = true; + this.premultiplyAlpha = false; + this.flipY = true; + this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) + // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap. + // + // Also changing the encoding after already used by a Material will not automatically make the Material + // update. You need to explicitly call Material.needsUpdate to trigger it to recompile. + + this.encoding = encoding; + this.version = 0; + this.onUpdate = null; + this.isRenderTargetTexture = false; + } + + updateMatrix() { + this.matrix.setUvTransform(this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y); + } + + clone() { + return new this.constructor().copy(this); + } + + copy(source) { + this.name = source.name; + this.image = source.image; + this.mipmaps = source.mipmaps.slice(0); + this.mapping = source.mapping; + this.wrapS = source.wrapS; + this.wrapT = source.wrapT; + this.magFilter = source.magFilter; + this.minFilter = source.minFilter; + this.anisotropy = source.anisotropy; + this.format = source.format; + this.internalFormat = source.internalFormat; + this.type = source.type; + this.offset.copy(source.offset); + this.repeat.copy(source.repeat); + this.center.copy(source.center); + this.rotation = source.rotation; + this.matrixAutoUpdate = source.matrixAutoUpdate; + this.matrix.copy(source.matrix); + this.generateMipmaps = source.generateMipmaps; + this.premultiplyAlpha = source.premultiplyAlpha; + this.flipY = source.flipY; + this.unpackAlignment = source.unpackAlignment; + this.encoding = source.encoding; + return this; + } + + toJSON(meta) { + const isRootObject = meta === undefined || typeof meta === 'string'; + + if (!isRootObject && meta.textures[this.uuid] !== undefined) { + return meta.textures[this.uuid]; + } + + const output = { + metadata: { + version: 4.5, + type: 'Texture', + generator: 'Texture.toJSON' + }, + uuid: this.uuid, + name: this.name, + mapping: this.mapping, + repeat: [this.repeat.x, this.repeat.y], + offset: [this.offset.x, this.offset.y], + center: [this.center.x, this.center.y], + rotation: this.rotation, + wrap: [this.wrapS, this.wrapT], + format: this.format, + type: this.type, + encoding: this.encoding, + minFilter: this.minFilter, + magFilter: this.magFilter, + anisotropy: this.anisotropy, + flipY: this.flipY, + premultiplyAlpha: this.premultiplyAlpha, + unpackAlignment: this.unpackAlignment + }; + + if (this.image !== undefined) { + // TODO: Move to THREE.Image + const image = this.image; + + if (image.uuid === undefined) { + image.uuid = generateUUID(); // UGH + } + + if (!isRootObject && meta.images[image.uuid] === undefined) { + let url; + + if (Array.isArray(image)) { + // process array of images e.g. CubeTexture + url = []; + + for (let i = 0, l = image.length; i < l; i++) { + // check cube texture with data textures + if (image[i].isDataTexture) { + url.push(serializeImage(image[i].image)); + } else { + url.push(serializeImage(image[i])); + } + } + } else { + // process single image + url = serializeImage(image); + } + + meta.images[image.uuid] = { + uuid: image.uuid, + url: url + }; + } + + output.image = image.uuid; + } + + if (!isRootObject) { + meta.textures[this.uuid] = output; + } + + return output; + } + + dispose() { + this.dispatchEvent({ + type: 'dispose' + }); + } + + transformUv(uv) { + if (this.mapping !== UVMapping) return uv; + uv.applyMatrix3(this.matrix); + + if (uv.x < 0 || uv.x > 1) { + switch (this.wrapS) { + case RepeatWrapping: + uv.x = uv.x - Math.floor(uv.x); + break; + + case ClampToEdgeWrapping: + uv.x = uv.x < 0 ? 0 : 1; + break; + + case MirroredRepeatWrapping: + if (Math.abs(Math.floor(uv.x) % 2) === 1) { + uv.x = Math.ceil(uv.x) - uv.x; + } else { + uv.x = uv.x - Math.floor(uv.x); + } + + break; + } + } + + if (uv.y < 0 || uv.y > 1) { + switch (this.wrapT) { + case RepeatWrapping: + uv.y = uv.y - Math.floor(uv.y); + break; + + case ClampToEdgeWrapping: + uv.y = uv.y < 0 ? 0 : 1; + break; + + case MirroredRepeatWrapping: + if (Math.abs(Math.floor(uv.y) % 2) === 1) { + uv.y = Math.ceil(uv.y) - uv.y; + } else { + uv.y = uv.y - Math.floor(uv.y); + } + + break; + } + } + + if (this.flipY) { + uv.y = 1 - uv.y; + } + + return uv; + } + + set needsUpdate(value) { + if (value === true) this.version++; + } + + } + + Texture.DEFAULT_IMAGE = undefined; + Texture.DEFAULT_MAPPING = UVMapping; + Texture.prototype.isTexture = true; + + function serializeImage(image) { + if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) { + // default images + return ImageUtils.getDataURL(image); + } else { + if (image.data) { + // images of DataTexture + return { + data: Array.prototype.slice.call(image.data), + width: image.width, + height: image.height, + type: image.data.constructor.name + }; + } else { + console.warn('THREE.Texture: Unable to serialize Texture.'); + return {}; + } + } + } + + class Vector4 { + constructor(x = 0, y = 0, z = 0, w = 1) { + this.x = x; + this.y = y; + this.z = z; + this.w = w; + } + + get width() { + return this.z; + } + + set width(value) { + this.z = value; + } + + get height() { + return this.w; + } + + set height(value) { + this.w = value; + } + + set(x, y, z, w) { + this.x = x; + this.y = y; + this.z = z; + this.w = w; + return this; + } + + setScalar(scalar) { + this.x = scalar; + this.y = scalar; + this.z = scalar; + this.w = scalar; + return this; + } + + setX(x) { + this.x = x; + return this; + } + + setY(y) { + this.y = y; + return this; + } + + setZ(z) { + this.z = z; + return this; + } + + setW(w) { + this.w = w; + return this; + } + + setComponent(index, value) { + switch (index) { + case 0: + this.x = value; + break; + + case 1: + this.y = value; + break; + + case 2: + this.z = value; + break; + + case 3: + this.w = value; + break; + + default: + throw new Error('index is out of range: ' + index); + } + + return this; + } + + getComponent(index) { + switch (index) { + case 0: + return this.x; + + case 1: + return this.y; + + case 2: + return this.z; + + case 3: + return this.w; + + default: + throw new Error('index is out of range: ' + index); + } + } + + clone() { + return new this.constructor(this.x, this.y, this.z, this.w); + } + + copy(v) { + this.x = v.x; + this.y = v.y; + this.z = v.z; + this.w = v.w !== undefined ? v.w : 1; + return this; + } + + add(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.'); + return this.addVectors(v, w); + } + + this.x += v.x; + this.y += v.y; + this.z += v.z; + this.w += v.w; + return this; + } + + addScalar(s) { + this.x += s; + this.y += s; + this.z += s; + this.w += s; + return this; + } + + addVectors(a, b) { + this.x = a.x + b.x; + this.y = a.y + b.y; + this.z = a.z + b.z; + this.w = a.w + b.w; + return this; + } + + addScaledVector(v, s) { + this.x += v.x * s; + this.y += v.y * s; + this.z += v.z * s; + this.w += v.w * s; + return this; + } + + sub(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.'); + return this.subVectors(v, w); + } + + this.x -= v.x; + this.y -= v.y; + this.z -= v.z; + this.w -= v.w; + return this; + } + + subScalar(s) { + this.x -= s; + this.y -= s; + this.z -= s; + this.w -= s; + return this; + } + + subVectors(a, b) { + this.x = a.x - b.x; + this.y = a.y - b.y; + this.z = a.z - b.z; + this.w = a.w - b.w; + return this; + } + + multiply(v) { + this.x *= v.x; + this.y *= v.y; + this.z *= v.z; + this.w *= v.w; + return this; + } + + multiplyScalar(scalar) { + this.x *= scalar; + this.y *= scalar; + this.z *= scalar; + this.w *= scalar; + return this; + } + + applyMatrix4(m) { + const x = this.x, + y = this.y, + z = this.z, + w = this.w; + const e = m.elements; + this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w; + this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w; + this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w; + this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w; + return this; + } + + divideScalar(scalar) { + return this.multiplyScalar(1 / scalar); + } + + setAxisAngleFromQuaternion(q) { + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm + // q is assumed to be normalized + this.w = 2 * Math.acos(q.w); + const s = Math.sqrt(1 - q.w * q.w); + + if (s < 0.0001) { + this.x = 1; + this.y = 0; + this.z = 0; + } else { + this.x = q.x / s; + this.y = q.y / s; + this.z = q.z / s; + } + + return this; + } + + setAxisAngleFromRotationMatrix(m) { + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + let angle, x, y, z; // variables for result + + const epsilon = 0.01, + // margin to allow for rounding errors + epsilon2 = 0.1, + // margin to distinguish between 0 and 180 degrees + te = m.elements, + m11 = te[0], + m12 = te[4], + m13 = te[8], + m21 = te[1], + m22 = te[5], + m23 = te[9], + m31 = te[2], + m32 = te[6], + m33 = te[10]; + + if (Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon) { + // singularity found + // first check for identity matrix which must have +1 for all terms + // in leading diagonal and zero in other terms + if (Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2) { + // this singularity is identity matrix so angle = 0 + this.set(1, 0, 0, 0); + return this; // zero angle, arbitrary axis + } // otherwise this singularity is angle = 180 + + + angle = Math.PI; + const xx = (m11 + 1) / 2; + const yy = (m22 + 1) / 2; + const zz = (m33 + 1) / 2; + const xy = (m12 + m21) / 4; + const xz = (m13 + m31) / 4; + const yz = (m23 + m32) / 4; + + if (xx > yy && xx > zz) { + // m11 is the largest diagonal term + if (xx < epsilon) { + x = 0; + y = 0.707106781; + z = 0.707106781; + } else { + x = Math.sqrt(xx); + y = xy / x; + z = xz / x; + } + } else if (yy > zz) { + // m22 is the largest diagonal term + if (yy < epsilon) { + x = 0.707106781; + y = 0; + z = 0.707106781; + } else { + y = Math.sqrt(yy); + x = xy / y; + z = yz / y; + } + } else { + // m33 is the largest diagonal term so base result on this + if (zz < epsilon) { + x = 0.707106781; + y = 0.707106781; + z = 0; + } else { + z = Math.sqrt(zz); + x = xz / z; + y = yz / z; + } + } + + this.set(x, y, z, angle); + return this; // return 180 deg rotation + } // as we have reached here there are no singularities so we can handle normally + + + let s = Math.sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)); // used to normalize + + if (Math.abs(s) < 0.001) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be + // caught by singularity test above, but I've left it in just in case + + this.x = (m32 - m23) / s; + this.y = (m13 - m31) / s; + this.z = (m21 - m12) / s; + this.w = Math.acos((m11 + m22 + m33 - 1) / 2); + return this; + } + + min(v) { + this.x = Math.min(this.x, v.x); + this.y = Math.min(this.y, v.y); + this.z = Math.min(this.z, v.z); + this.w = Math.min(this.w, v.w); + return this; + } + + max(v) { + this.x = Math.max(this.x, v.x); + this.y = Math.max(this.y, v.y); + this.z = Math.max(this.z, v.z); + this.w = Math.max(this.w, v.w); + return this; + } + + clamp(min, max) { + // assumes min < max, componentwise + this.x = Math.max(min.x, Math.min(max.x, this.x)); + this.y = Math.max(min.y, Math.min(max.y, this.y)); + this.z = Math.max(min.z, Math.min(max.z, this.z)); + this.w = Math.max(min.w, Math.min(max.w, this.w)); + return this; + } + + clampScalar(minVal, maxVal) { + this.x = Math.max(minVal, Math.min(maxVal, this.x)); + this.y = Math.max(minVal, Math.min(maxVal, this.y)); + this.z = Math.max(minVal, Math.min(maxVal, this.z)); + this.w = Math.max(minVal, Math.min(maxVal, this.w)); + return this; + } + + clampLength(min, max) { + const length = this.length(); + return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))); + } + + floor() { + this.x = Math.floor(this.x); + this.y = Math.floor(this.y); + this.z = Math.floor(this.z); + this.w = Math.floor(this.w); + return this; + } + + ceil() { + this.x = Math.ceil(this.x); + this.y = Math.ceil(this.y); + this.z = Math.ceil(this.z); + this.w = Math.ceil(this.w); + return this; + } + + round() { + this.x = Math.round(this.x); + this.y = Math.round(this.y); + this.z = Math.round(this.z); + this.w = Math.round(this.w); + return this; + } + + roundToZero() { + this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x); + this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y); + this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z); + this.w = this.w < 0 ? Math.ceil(this.w) : Math.floor(this.w); + return this; + } + + negate() { + this.x = -this.x; + this.y = -this.y; + this.z = -this.z; + this.w = -this.w; + return this; + } + + dot(v) { + return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; + } + + lengthSq() { + return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; + } + + length() { + return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w); + } + + manhattanLength() { + return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w); + } + + normalize() { + return this.divideScalar(this.length() || 1); + } + + setLength(length) { + return this.normalize().multiplyScalar(length); + } + + lerp(v, alpha) { + this.x += (v.x - this.x) * alpha; + this.y += (v.y - this.y) * alpha; + this.z += (v.z - this.z) * alpha; + this.w += (v.w - this.w) * alpha; + return this; + } + + lerpVectors(v1, v2, alpha) { + this.x = v1.x + (v2.x - v1.x) * alpha; + this.y = v1.y + (v2.y - v1.y) * alpha; + this.z = v1.z + (v2.z - v1.z) * alpha; + this.w = v1.w + (v2.w - v1.w) * alpha; + return this; + } + + equals(v) { + return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w; + } + + fromArray(array, offset = 0) { + this.x = array[offset]; + this.y = array[offset + 1]; + this.z = array[offset + 2]; + this.w = array[offset + 3]; + return this; + } + + toArray(array = [], offset = 0) { + array[offset] = this.x; + array[offset + 1] = this.y; + array[offset + 2] = this.z; + array[offset + 3] = this.w; + return array; + } + + fromBufferAttribute(attribute, index, offset) { + if (offset !== undefined) { + console.warn('THREE.Vector4: offset has been removed from .fromBufferAttribute().'); + } + + this.x = attribute.getX(index); + this.y = attribute.getY(index); + this.z = attribute.getZ(index); + this.w = attribute.getW(index); + return this; + } + + random() { + this.x = Math.random(); + this.y = Math.random(); + this.z = Math.random(); + this.w = Math.random(); + return this; + } + + *[Symbol.iterator]() { + yield this.x; + yield this.y; + yield this.z; + yield this.w; + } + + } + + Vector4.prototype.isVector4 = true; + + /* + In options, we can specify: + * Texture parameters for an auto-generated target texture + * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers + */ + + class WebGLRenderTarget extends EventDispatcher { + constructor(width, height, options = {}) { + super(); + this.width = width; + this.height = height; + this.depth = 1; + this.scissor = new Vector4(0, 0, width, height); + this.scissorTest = false; + this.viewport = new Vector4(0, 0, width, height); + this.texture = new Texture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding); + this.texture.isRenderTargetTexture = true; + this.texture.image = { + width: width, + height: height, + depth: 1 + }; + this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; + this.texture.internalFormat = options.internalFormat !== undefined ? options.internalFormat : null; + this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; + this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; + this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false; + this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null; + } + + setTexture(texture) { + texture.image = { + width: this.width, + height: this.height, + depth: this.depth + }; + this.texture = texture; + } + + setSize(width, height, depth = 1) { + if (this.width !== width || this.height !== height || this.depth !== depth) { + this.width = width; + this.height = height; + this.depth = depth; + this.texture.image.width = width; + this.texture.image.height = height; + this.texture.image.depth = depth; + this.dispose(); + } + + this.viewport.set(0, 0, width, height); + this.scissor.set(0, 0, width, height); + } + + clone() { + return new this.constructor().copy(this); + } + + copy(source) { + this.width = source.width; + this.height = source.height; + this.depth = source.depth; + this.viewport.copy(source.viewport); + this.texture = source.texture.clone(); + this.texture.image = { ...this.texture.image + }; // See #20328. + + this.depthBuffer = source.depthBuffer; + this.stencilBuffer = source.stencilBuffer; + this.depthTexture = source.depthTexture; + return this; + } + + dispose() { + this.dispatchEvent({ + type: 'dispose' + }); + } + + } + + WebGLRenderTarget.prototype.isWebGLRenderTarget = true; + + class WebGLMultipleRenderTargets extends WebGLRenderTarget { + constructor(width, height, count) { + super(width, height); + const texture = this.texture; + this.texture = []; + + for (let i = 0; i < count; i++) { + this.texture[i] = texture.clone(); + } + } + + setSize(width, height, depth = 1) { + if (this.width !== width || this.height !== height || this.depth !== depth) { + this.width = width; + this.height = height; + this.depth = depth; + + for (let i = 0, il = this.texture.length; i < il; i++) { + this.texture[i].image.width = width; + this.texture[i].image.height = height; + this.texture[i].image.depth = depth; + } + + this.dispose(); + } + + this.viewport.set(0, 0, width, height); + this.scissor.set(0, 0, width, height); + return this; + } + + copy(source) { + this.dispose(); + this.width = source.width; + this.height = source.height; + this.depth = source.depth; + this.viewport.set(0, 0, this.width, this.height); + this.scissor.set(0, 0, this.width, this.height); + this.depthBuffer = source.depthBuffer; + this.stencilBuffer = source.stencilBuffer; + this.depthTexture = source.depthTexture; + this.texture.length = 0; + + for (let i = 0, il = source.texture.length; i < il; i++) { + this.texture[i] = source.texture[i].clone(); + } + + return this; + } + + } + + WebGLMultipleRenderTargets.prototype.isWebGLMultipleRenderTargets = true; + + class WebGLMultisampleRenderTarget extends WebGLRenderTarget { + constructor(width, height, options) { + super(width, height, options); + this.samples = 4; + } + + copy(source) { + super.copy.call(this, source); + this.samples = source.samples; + return this; + } + + } + + WebGLMultisampleRenderTarget.prototype.isWebGLMultisampleRenderTarget = true; + + class Quaternion { + constructor(x = 0, y = 0, z = 0, w = 1) { + this._x = x; + this._y = y; + this._z = z; + this._w = w; + } + + static slerp(qa, qb, qm, t) { + console.warn('THREE.Quaternion: Static .slerp() has been deprecated. Use qm.slerpQuaternions( qa, qb, t ) instead.'); + return qm.slerpQuaternions(qa, qb, t); + } + + static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) { + // fuzz-free, array-based Quaternion SLERP operation + let x0 = src0[srcOffset0 + 0], + y0 = src0[srcOffset0 + 1], + z0 = src0[srcOffset0 + 2], + w0 = src0[srcOffset0 + 3]; + const x1 = src1[srcOffset1 + 0], + y1 = src1[srcOffset1 + 1], + z1 = src1[srcOffset1 + 2], + w1 = src1[srcOffset1 + 3]; + + if (t === 0) { + dst[dstOffset + 0] = x0; + dst[dstOffset + 1] = y0; + dst[dstOffset + 2] = z0; + dst[dstOffset + 3] = w0; + return; + } + + if (t === 1) { + dst[dstOffset + 0] = x1; + dst[dstOffset + 1] = y1; + dst[dstOffset + 2] = z1; + dst[dstOffset + 3] = w1; + return; + } + + if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) { + let s = 1 - t; + const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, + dir = cos >= 0 ? 1 : -1, + sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems: + + if (sqrSin > Number.EPSILON) { + const sin = Math.sqrt(sqrSin), + len = Math.atan2(sin, cos * dir); + s = Math.sin(s * len) / sin; + t = Math.sin(t * len) / sin; + } + + const tDir = t * dir; + x0 = x0 * s + x1 * tDir; + y0 = y0 * s + y1 * tDir; + z0 = z0 * s + z1 * tDir; + w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp: + + if (s === 1 - t) { + const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0); + x0 *= f; + y0 *= f; + z0 *= f; + w0 *= f; + } + } + + dst[dstOffset] = x0; + dst[dstOffset + 1] = y0; + dst[dstOffset + 2] = z0; + dst[dstOffset + 3] = w0; + } + + static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) { + const x0 = src0[srcOffset0]; + const y0 = src0[srcOffset0 + 1]; + const z0 = src0[srcOffset0 + 2]; + const w0 = src0[srcOffset0 + 3]; + const x1 = src1[srcOffset1]; + const y1 = src1[srcOffset1 + 1]; + const z1 = src1[srcOffset1 + 2]; + const w1 = src1[srcOffset1 + 3]; + dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1; + dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1; + dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1; + dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; + return dst; + } + + get x() { + return this._x; + } + + set x(value) { + this._x = value; + + this._onChangeCallback(); + } + + get y() { + return this._y; + } + + set y(value) { + this._y = value; + + this._onChangeCallback(); + } + + get z() { + return this._z; + } + + set z(value) { + this._z = value; + + this._onChangeCallback(); + } + + get w() { + return this._w; + } + + set w(value) { + this._w = value; + + this._onChangeCallback(); + } + + set(x, y, z, w) { + this._x = x; + this._y = y; + this._z = z; + this._w = w; + + this._onChangeCallback(); + + return this; + } + + clone() { + return new this.constructor(this._x, this._y, this._z, this._w); + } + + copy(quaternion) { + this._x = quaternion.x; + this._y = quaternion.y; + this._z = quaternion.z; + this._w = quaternion.w; + + this._onChangeCallback(); + + return this; + } + + setFromEuler(euler, update) { + if (!(euler && euler.isEuler)) { + throw new Error('THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.'); + } + + const x = euler._x, + y = euler._y, + z = euler._z, + order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/ + // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ + // content/SpinCalc.m + + const cos = Math.cos; + const sin = Math.sin; + const c1 = cos(x / 2); + const c2 = cos(y / 2); + const c3 = cos(z / 2); + const s1 = sin(x / 2); + const s2 = sin(y / 2); + const s3 = sin(z / 2); + + switch (order) { + case 'XYZ': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'YXZ': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + case 'ZXY': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'ZYX': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + case 'YZX': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'XZY': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + default: + console.warn('THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order); + } + + if (update !== false) this._onChangeCallback(); + return this; + } + + setFromAxisAngle(axis, angle) { + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm + // assumes axis is normalized + const halfAngle = angle / 2, + s = Math.sin(halfAngle); + this._x = axis.x * s; + this._y = axis.y * s; + this._z = axis.z * s; + this._w = Math.cos(halfAngle); + + this._onChangeCallback(); + + return this; + } + + setFromRotationMatrix(m) { + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + const te = m.elements, + m11 = te[0], + m12 = te[4], + m13 = te[8], + m21 = te[1], + m22 = te[5], + m23 = te[9], + m31 = te[2], + m32 = te[6], + m33 = te[10], + trace = m11 + m22 + m33; + + if (trace > 0) { + const s = 0.5 / Math.sqrt(trace + 1.0); + this._w = 0.25 / s; + this._x = (m32 - m23) * s; + this._y = (m13 - m31) * s; + this._z = (m21 - m12) * s; + } else if (m11 > m22 && m11 > m33) { + const s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33); + this._w = (m32 - m23) / s; + this._x = 0.25 * s; + this._y = (m12 + m21) / s; + this._z = (m13 + m31) / s; + } else if (m22 > m33) { + const s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33); + this._w = (m13 - m31) / s; + this._x = (m12 + m21) / s; + this._y = 0.25 * s; + this._z = (m23 + m32) / s; + } else { + const s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22); + this._w = (m21 - m12) / s; + this._x = (m13 + m31) / s; + this._y = (m23 + m32) / s; + this._z = 0.25 * s; + } + + this._onChangeCallback(); + + return this; + } + + setFromUnitVectors(vFrom, vTo) { + // assumes direction vectors vFrom and vTo are normalized + let r = vFrom.dot(vTo) + 1; + + if (r < Number.EPSILON) { + // vFrom and vTo point in opposite directions + r = 0; + + if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) { + this._x = -vFrom.y; + this._y = vFrom.x; + this._z = 0; + this._w = r; + } else { + this._x = 0; + this._y = -vFrom.z; + this._z = vFrom.y; + this._w = r; + } + } else { + // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3 + this._x = vFrom.y * vTo.z - vFrom.z * vTo.y; + this._y = vFrom.z * vTo.x - vFrom.x * vTo.z; + this._z = vFrom.x * vTo.y - vFrom.y * vTo.x; + this._w = r; + } + + return this.normalize(); + } + + angleTo(q) { + return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1))); + } + + rotateTowards(q, step) { + const angle = this.angleTo(q); + if (angle === 0) return this; + const t = Math.min(1, step / angle); + this.slerp(q, t); + return this; + } + + identity() { + return this.set(0, 0, 0, 1); + } + + invert() { + // quaternion is assumed to have unit length + return this.conjugate(); + } + + conjugate() { + this._x *= -1; + this._y *= -1; + this._z *= -1; + + this._onChangeCallback(); + + return this; + } + + dot(v) { + return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; + } + + lengthSq() { + return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; + } + + length() { + return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w); + } + + normalize() { + let l = this.length(); + + if (l === 0) { + this._x = 0; + this._y = 0; + this._z = 0; + this._w = 1; + } else { + l = 1 / l; + this._x = this._x * l; + this._y = this._y * l; + this._z = this._z * l; + this._w = this._w * l; + } + + this._onChangeCallback(); + + return this; + } + + multiply(q, p) { + if (p !== undefined) { + console.warn('THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.'); + return this.multiplyQuaternions(q, p); + } + + return this.multiplyQuaternions(this, q); + } + + premultiply(q) { + return this.multiplyQuaternions(q, this); + } + + multiplyQuaternions(a, b) { + // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm + const qax = a._x, + qay = a._y, + qaz = a._z, + qaw = a._w; + const qbx = b._x, + qby = b._y, + qbz = b._z, + qbw = b._w; + this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; + this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; + this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; + this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; + + this._onChangeCallback(); + + return this; + } + + slerp(qb, t) { + if (t === 0) return this; + if (t === 1) return this.copy(qb); + const x = this._x, + y = this._y, + z = this._z, + w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ + + let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; + + if (cosHalfTheta < 0) { + this._w = -qb._w; + this._x = -qb._x; + this._y = -qb._y; + this._z = -qb._z; + cosHalfTheta = -cosHalfTheta; + } else { + this.copy(qb); + } + + if (cosHalfTheta >= 1.0) { + this._w = w; + this._x = x; + this._y = y; + this._z = z; + return this; + } + + const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta; + + if (sqrSinHalfTheta <= Number.EPSILON) { + const s = 1 - t; + this._w = s * w + t * this._w; + this._x = s * x + t * this._x; + this._y = s * y + t * this._y; + this._z = s * z + t * this._z; + this.normalize(); + + this._onChangeCallback(); + + return this; + } + + const sinHalfTheta = Math.sqrt(sqrSinHalfTheta); + const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta); + const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta, + ratioB = Math.sin(t * halfTheta) / sinHalfTheta; + this._w = w * ratioA + this._w * ratioB; + this._x = x * ratioA + this._x * ratioB; + this._y = y * ratioA + this._y * ratioB; + this._z = z * ratioA + this._z * ratioB; + + this._onChangeCallback(); + + return this; + } + + slerpQuaternions(qa, qb, t) { + this.copy(qa).slerp(qb, t); + } + + random() { + // Derived from http://planning.cs.uiuc.edu/node198.html + // Note, this source uses w, x, y, z ordering, + // so we swap the order below. + const u1 = Math.random(); + const sqrt1u1 = Math.sqrt(1 - u1); + const sqrtu1 = Math.sqrt(u1); + const u2 = 2 * Math.PI * Math.random(); + const u3 = 2 * Math.PI * Math.random(); + return this.set(sqrt1u1 * Math.cos(u2), sqrtu1 * Math.sin(u3), sqrtu1 * Math.cos(u3), sqrt1u1 * Math.sin(u2)); + } + + equals(quaternion) { + return quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w; + } + + fromArray(array, offset = 0) { + this._x = array[offset]; + this._y = array[offset + 1]; + this._z = array[offset + 2]; + this._w = array[offset + 3]; + + this._onChangeCallback(); + + return this; + } + + toArray(array = [], offset = 0) { + array[offset] = this._x; + array[offset + 1] = this._y; + array[offset + 2] = this._z; + array[offset + 3] = this._w; + return array; + } + + fromBufferAttribute(attribute, index) { + this._x = attribute.getX(index); + this._y = attribute.getY(index); + this._z = attribute.getZ(index); + this._w = attribute.getW(index); + return this; + } + + _onChange(callback) { + this._onChangeCallback = callback; + return this; + } + + _onChangeCallback() {} + + } + + Quaternion.prototype.isQuaternion = true; + + class Vector3 { + constructor(x = 0, y = 0, z = 0) { + this.x = x; + this.y = y; + this.z = z; + } + + set(x, y, z) { + if (z === undefined) z = this.z; // sprite.scale.set(x,y) + + this.x = x; + this.y = y; + this.z = z; + return this; + } + + setScalar(scalar) { + this.x = scalar; + this.y = scalar; + this.z = scalar; + return this; + } + + setX(x) { + this.x = x; + return this; + } + + setY(y) { + this.y = y; + return this; + } + + setZ(z) { + this.z = z; + return this; + } + + setComponent(index, value) { + switch (index) { + case 0: + this.x = value; + break; + + case 1: + this.y = value; + break; + + case 2: + this.z = value; + break; + + default: + throw new Error('index is out of range: ' + index); + } + + return this; + } + + getComponent(index) { + switch (index) { + case 0: + return this.x; + + case 1: + return this.y; + + case 2: + return this.z; + + default: + throw new Error('index is out of range: ' + index); + } + } + + clone() { + return new this.constructor(this.x, this.y, this.z); + } + + copy(v) { + this.x = v.x; + this.y = v.y; + this.z = v.z; + return this; + } + + add(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.'); + return this.addVectors(v, w); + } + + this.x += v.x; + this.y += v.y; + this.z += v.z; + return this; + } + + addScalar(s) { + this.x += s; + this.y += s; + this.z += s; + return this; + } + + addVectors(a, b) { + this.x = a.x + b.x; + this.y = a.y + b.y; + this.z = a.z + b.z; + return this; + } + + addScaledVector(v, s) { + this.x += v.x * s; + this.y += v.y * s; + this.z += v.z * s; + return this; + } + + sub(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.'); + return this.subVectors(v, w); + } + + this.x -= v.x; + this.y -= v.y; + this.z -= v.z; + return this; + } + + subScalar(s) { + this.x -= s; + this.y -= s; + this.z -= s; + return this; + } + + subVectors(a, b) { + this.x = a.x - b.x; + this.y = a.y - b.y; + this.z = a.z - b.z; + return this; + } + + multiply(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.'); + return this.multiplyVectors(v, w); + } + + this.x *= v.x; + this.y *= v.y; + this.z *= v.z; + return this; + } + + multiplyScalar(scalar) { + this.x *= scalar; + this.y *= scalar; + this.z *= scalar; + return this; + } + + multiplyVectors(a, b) { + this.x = a.x * b.x; + this.y = a.y * b.y; + this.z = a.z * b.z; + return this; + } + + applyEuler(euler) { + if (!(euler && euler.isEuler)) { + console.error('THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.'); + } + + return this.applyQuaternion(_quaternion$4.setFromEuler(euler)); + } + + applyAxisAngle(axis, angle) { + return this.applyQuaternion(_quaternion$4.setFromAxisAngle(axis, angle)); + } + + applyMatrix3(m) { + const x = this.x, + y = this.y, + z = this.z; + const e = m.elements; + this.x = e[0] * x + e[3] * y + e[6] * z; + this.y = e[1] * x + e[4] * y + e[7] * z; + this.z = e[2] * x + e[5] * y + e[8] * z; + return this; + } + + applyNormalMatrix(m) { + return this.applyMatrix3(m).normalize(); + } + + applyMatrix4(m) { + const x = this.x, + y = this.y, + z = this.z; + const e = m.elements; + const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]); + this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w; + this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w; + this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w; + return this; + } + + applyQuaternion(q) { + const x = this.x, + y = this.y, + z = this.z; + const qx = q.x, + qy = q.y, + qz = q.z, + qw = q.w; // calculate quat * vector + + const ix = qw * x + qy * z - qz * y; + const iy = qw * y + qz * x - qx * z; + const iz = qw * z + qx * y - qy * x; + const iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat + + this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy; + this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz; + this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx; + return this; + } + + project(camera) { + return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix); + } + + unproject(camera) { + return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld); + } + + transformDirection(m) { + // input: THREE.Matrix4 affine matrix + // vector interpreted as a direction + const x = this.x, + y = this.y, + z = this.z; + const e = m.elements; + this.x = e[0] * x + e[4] * y + e[8] * z; + this.y = e[1] * x + e[5] * y + e[9] * z; + this.z = e[2] * x + e[6] * y + e[10] * z; + return this.normalize(); + } + + divide(v) { + this.x /= v.x; + this.y /= v.y; + this.z /= v.z; + return this; + } + + divideScalar(scalar) { + return this.multiplyScalar(1 / scalar); + } + + min(v) { + this.x = Math.min(this.x, v.x); + this.y = Math.min(this.y, v.y); + this.z = Math.min(this.z, v.z); + return this; + } + + max(v) { + this.x = Math.max(this.x, v.x); + this.y = Math.max(this.y, v.y); + this.z = Math.max(this.z, v.z); + return this; + } + + clamp(min, max) { + // assumes min < max, componentwise + this.x = Math.max(min.x, Math.min(max.x, this.x)); + this.y = Math.max(min.y, Math.min(max.y, this.y)); + this.z = Math.max(min.z, Math.min(max.z, this.z)); + return this; + } + + clampScalar(minVal, maxVal) { + this.x = Math.max(minVal, Math.min(maxVal, this.x)); + this.y = Math.max(minVal, Math.min(maxVal, this.y)); + this.z = Math.max(minVal, Math.min(maxVal, this.z)); + return this; + } + + clampLength(min, max) { + const length = this.length(); + return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))); + } + + floor() { + this.x = Math.floor(this.x); + this.y = Math.floor(this.y); + this.z = Math.floor(this.z); + return this; + } + + ceil() { + this.x = Math.ceil(this.x); + this.y = Math.ceil(this.y); + this.z = Math.ceil(this.z); + return this; + } + + round() { + this.x = Math.round(this.x); + this.y = Math.round(this.y); + this.z = Math.round(this.z); + return this; + } + + roundToZero() { + this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x); + this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y); + this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z); + return this; + } + + negate() { + this.x = -this.x; + this.y = -this.y; + this.z = -this.z; + return this; + } + + dot(v) { + return this.x * v.x + this.y * v.y + this.z * v.z; + } // TODO lengthSquared? + + + lengthSq() { + return this.x * this.x + this.y * this.y + this.z * this.z; + } + + length() { + return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z); + } + + manhattanLength() { + return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z); + } + + normalize() { + return this.divideScalar(this.length() || 1); + } + + setLength(length) { + return this.normalize().multiplyScalar(length); + } + + lerp(v, alpha) { + this.x += (v.x - this.x) * alpha; + this.y += (v.y - this.y) * alpha; + this.z += (v.z - this.z) * alpha; + return this; + } + + lerpVectors(v1, v2, alpha) { + this.x = v1.x + (v2.x - v1.x) * alpha; + this.y = v1.y + (v2.y - v1.y) * alpha; + this.z = v1.z + (v2.z - v1.z) * alpha; + return this; + } + + cross(v, w) { + if (w !== undefined) { + console.warn('THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.'); + return this.crossVectors(v, w); + } + + return this.crossVectors(this, v); + } + + crossVectors(a, b) { + const ax = a.x, + ay = a.y, + az = a.z; + const bx = b.x, + by = b.y, + bz = b.z; + this.x = ay * bz - az * by; + this.y = az * bx - ax * bz; + this.z = ax * by - ay * bx; + return this; + } + + projectOnVector(v) { + const denominator = v.lengthSq(); + if (denominator === 0) return this.set(0, 0, 0); + const scalar = v.dot(this) / denominator; + return this.copy(v).multiplyScalar(scalar); + } + + projectOnPlane(planeNormal) { + _vector$c.copy(this).projectOnVector(planeNormal); + + return this.sub(_vector$c); + } + + reflect(normal) { + // reflect incident vector off plane orthogonal to normal + // normal is assumed to have unit length + return this.sub(_vector$c.copy(normal).multiplyScalar(2 * this.dot(normal))); + } + + angleTo(v) { + const denominator = Math.sqrt(this.lengthSq() * v.lengthSq()); + if (denominator === 0) return Math.PI / 2; + const theta = this.dot(v) / denominator; // clamp, to handle numerical problems + + return Math.acos(clamp(theta, -1, 1)); + } + + distanceTo(v) { + return Math.sqrt(this.distanceToSquared(v)); + } + + distanceToSquared(v) { + const dx = this.x - v.x, + dy = this.y - v.y, + dz = this.z - v.z; + return dx * dx + dy * dy + dz * dz; + } + + manhattanDistanceTo(v) { + return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z); + } + + setFromSpherical(s) { + return this.setFromSphericalCoords(s.radius, s.phi, s.theta); + } + + setFromSphericalCoords(radius, phi, theta) { + const sinPhiRadius = Math.sin(phi) * radius; + this.x = sinPhiRadius * Math.sin(theta); + this.y = Math.cos(phi) * radius; + this.z = sinPhiRadius * Math.cos(theta); + return this; + } + + setFromCylindrical(c) { + return this.setFromCylindricalCoords(c.radius, c.theta, c.y); + } + + setFromCylindricalCoords(radius, theta, y) { + this.x = radius * Math.sin(theta); + this.y = y; + this.z = radius * Math.cos(theta); + return this; + } + + setFromMatrixPosition(m) { + const e = m.elements; + this.x = e[12]; + this.y = e[13]; + this.z = e[14]; + return this; + } + + setFromMatrixScale(m) { + const sx = this.setFromMatrixColumn(m, 0).length(); + const sy = this.setFromMatrixColumn(m, 1).length(); + const sz = this.setFromMatrixColumn(m, 2).length(); + this.x = sx; + this.y = sy; + this.z = sz; + return this; + } + + setFromMatrixColumn(m, index) { + return this.fromArray(m.elements, index * 4); + } + + setFromMatrix3Column(m, index) { + return this.fromArray(m.elements, index * 3); + } + + equals(v) { + return v.x === this.x && v.y === this.y && v.z === this.z; + } + + fromArray(array, offset = 0) { + this.x = array[offset]; + this.y = array[offset + 1]; + this.z = array[offset + 2]; + return this; + } + + toArray(array = [], offset = 0) { + array[offset] = this.x; + array[offset + 1] = this.y; + array[offset + 2] = this.z; + return array; + } + + fromBufferAttribute(attribute, index, offset) { + if (offset !== undefined) { + console.warn('THREE.Vector3: offset has been removed from .fromBufferAttribute().'); + } + + this.x = attribute.getX(index); + this.y = attribute.getY(index); + this.z = attribute.getZ(index); + return this; + } + + random() { + this.x = Math.random(); + this.y = Math.random(); + this.z = Math.random(); + return this; + } + + randomDirection() { + // Derived from https://mathworld.wolfram.com/SpherePointPicking.html + const u = (Math.random() - 0.5) * 2; + const t = Math.random() * Math.PI * 2; + const f = Math.sqrt(1 - u ** 2); + this.x = f * Math.cos(t); + this.y = f * Math.sin(t); + this.z = u; + return this; + } + + *[Symbol.iterator]() { + yield this.x; + yield this.y; + yield this.z; + } + + } + + Vector3.prototype.isVector3 = true; + + const _vector$c = /*@__PURE__*/new Vector3(); + + const _quaternion$4 = /*@__PURE__*/new Quaternion(); + + class Box3 { + constructor(min = new Vector3(+Infinity, +Infinity, +Infinity), max = new Vector3(-Infinity, -Infinity, -Infinity)) { + this.min = min; + this.max = max; + } + + set(min, max) { + this.min.copy(min); + this.max.copy(max); + return this; + } + + setFromArray(array) { + let minX = +Infinity; + let minY = +Infinity; + let minZ = +Infinity; + let maxX = -Infinity; + let maxY = -Infinity; + let maxZ = -Infinity; + + for (let i = 0, l = array.length; i < l; i += 3) { + const x = array[i]; + const y = array[i + 1]; + const z = array[i + 2]; + if (x < minX) minX = x; + if (y < minY) minY = y; + if (z < minZ) minZ = z; + if (x > maxX) maxX = x; + if (y > maxY) maxY = y; + if (z > maxZ) maxZ = z; + } + + this.min.set(minX, minY, minZ); + this.max.set(maxX, maxY, maxZ); + return this; + } + + setFromBufferAttribute(attribute) { + let minX = +Infinity; + let minY = +Infinity; + let minZ = +Infinity; + let maxX = -Infinity; + let maxY = -Infinity; + let maxZ = -Infinity; + + for (let i = 0, l = attribute.count; i < l; i++) { + const x = attribute.getX(i); + const y = attribute.getY(i); + const z = attribute.getZ(i); + if (x < minX) minX = x; + if (y < minY) minY = y; + if (z < minZ) minZ = z; + if (x > maxX) maxX = x; + if (y > maxY) maxY = y; + if (z > maxZ) maxZ = z; + } + + this.min.set(minX, minY, minZ); + this.max.set(maxX, maxY, maxZ); + return this; + } + + setFromPoints(points) { + this.makeEmpty(); + + for (let i = 0, il = points.length; i < il; i++) { + this.expandByPoint(points[i]); + } + + return this; + } + + setFromCenterAndSize(center, size) { + const halfSize = _vector$b.copy(size).multiplyScalar(0.5); + + this.min.copy(center).sub(halfSize); + this.max.copy(center).add(halfSize); + return this; + } + + setFromObject(object) { + this.makeEmpty(); + return this.expandByObject(object); + } + + clone() { + return new this.constructor().copy(this); + } + + copy(box) { + this.min.copy(box.min); + this.max.copy(box.max); + return this; + } + + makeEmpty() { + this.min.x = this.min.y = this.min.z = +Infinity; + this.max.x = this.max.y = this.max.z = -Infinity; + return this; + } + + isEmpty() { + // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes + return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z; + } + + getCenter(target) { + return this.isEmpty() ? target.set(0, 0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5); + } + + getSize(target) { + return this.isEmpty() ? target.set(0, 0, 0) : target.subVectors(this.max, this.min); + } + + expandByPoint(point) { + this.min.min(point); + this.max.max(point); + return this; + } + + expandByVector(vector) { + this.min.sub(vector); + this.max.add(vector); + return this; + } + + expandByScalar(scalar) { + this.min.addScalar(-scalar); + this.max.addScalar(scalar); + return this; + } + + expandByObject(object) { + // Computes the world-axis-aligned bounding box of an object (including its children), + // accounting for both the object's, and children's, world transforms + object.updateWorldMatrix(false, false); + const geometry = object.geometry; + + if (geometry !== undefined) { + if (geometry.boundingBox === null) { + geometry.computeBoundingBox(); + } + + _box$3.copy(geometry.boundingBox); + + _box$3.applyMatrix4(object.matrixWorld); + + this.union(_box$3); + } + + const children = object.children; + + for (let i = 0, l = children.length; i < l; i++) { + this.expandByObject(children[i]); + } + + return this; + } + + containsPoint(point) { + return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true; + } + + containsBox(box) { + return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z; + } + + getParameter(point, target) { + // This can potentially have a divide by zero if the box + // has a size dimension of 0. + return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z)); + } + + intersectsBox(box) { + // using 6 splitting planes to rule out intersections. + return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true; + } + + intersectsSphere(sphere) { + // Find the point on the AABB closest to the sphere center. + this.clampPoint(sphere.center, _vector$b); // If that point is inside the sphere, the AABB and sphere intersect. + + return _vector$b.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius; + } + + intersectsPlane(plane) { + // We compute the minimum and maximum dot product values. If those values + // are on the same side (back or front) of the plane, then there is no intersection. + let min, max; + + if (plane.normal.x > 0) { + min = plane.normal.x * this.min.x; + max = plane.normal.x * this.max.x; + } else { + min = plane.normal.x * this.max.x; + max = plane.normal.x * this.min.x; + } + + if (plane.normal.y > 0) { + min += plane.normal.y * this.min.y; + max += plane.normal.y * this.max.y; + } else { + min += plane.normal.y * this.max.y; + max += plane.normal.y * this.min.y; + } + + if (plane.normal.z > 0) { + min += plane.normal.z * this.min.z; + max += plane.normal.z * this.max.z; + } else { + min += plane.normal.z * this.max.z; + max += plane.normal.z * this.min.z; + } + + return min <= -plane.constant && max >= -plane.constant; + } + + intersectsTriangle(triangle) { + if (this.isEmpty()) { + return false; + } // compute box center and extents + + + this.getCenter(_center); + + _extents.subVectors(this.max, _center); // translate triangle to aabb origin + + + _v0$2.subVectors(triangle.a, _center); + + _v1$7.subVectors(triangle.b, _center); + + _v2$3.subVectors(triangle.c, _center); // compute edge vectors for triangle + + + _f0.subVectors(_v1$7, _v0$2); + + _f1.subVectors(_v2$3, _v1$7); + + _f2.subVectors(_v0$2, _v2$3); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb + // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation + // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) + + + let axes = [0, -_f0.z, _f0.y, 0, -_f1.z, _f1.y, 0, -_f2.z, _f2.y, _f0.z, 0, -_f0.x, _f1.z, 0, -_f1.x, _f2.z, 0, -_f2.x, -_f0.y, _f0.x, 0, -_f1.y, _f1.x, 0, -_f2.y, _f2.x, 0]; + + if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) { + return false; + } // test 3 face normals from the aabb + + + axes = [1, 0, 0, 0, 1, 0, 0, 0, 1]; + + if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) { + return false; + } // finally testing the face normal of the triangle + // use already existing triangle edge vectors here + + + _triangleNormal.crossVectors(_f0, _f1); + + axes = [_triangleNormal.x, _triangleNormal.y, _triangleNormal.z]; + return satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents); + } + + clampPoint(point, target) { + return target.copy(point).clamp(this.min, this.max); + } + + distanceToPoint(point) { + const clampedPoint = _vector$b.copy(point).clamp(this.min, this.max); + + return clampedPoint.sub(point).length(); + } + + getBoundingSphere(target) { + this.getCenter(target.center); + target.radius = this.getSize(_vector$b).length() * 0.5; + return target; + } + + intersect(box) { + this.min.max(box.min); + this.max.min(box.max); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. + + if (this.isEmpty()) this.makeEmpty(); + return this; + } + + union(box) { + this.min.min(box.min); + this.max.max(box.max); + return this; + } + + applyMatrix4(matrix) { + // transform of empty box is an empty box. + if (this.isEmpty()) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below + + _points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix); // 000 + + + _points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix); // 001 + + + _points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix); // 010 + + + _points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix); // 011 + + + _points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix); // 100 + + + _points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix); // 101 + + + _points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix); // 110 + + + _points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix); // 111 + + + this.setFromPoints(_points); + return this; + } + + translate(offset) { + this.min.add(offset); + this.max.add(offset); + return this; + } + + equals(box) { + return box.min.equals(this.min) && box.max.equals(this.max); + } + + } + + Box3.prototype.isBox3 = true; + const _points = [/*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3()]; + + const _vector$b = /*@__PURE__*/new Vector3(); + + const _box$3 = /*@__PURE__*/new Box3(); // triangle centered vertices + + + const _v0$2 = /*@__PURE__*/new Vector3(); + + const _v1$7 = /*@__PURE__*/new Vector3(); + + const _v2$3 = /*@__PURE__*/new Vector3(); // triangle edge vectors + + + const _f0 = /*@__PURE__*/new Vector3(); + + const _f1 = /*@__PURE__*/new Vector3(); + + const _f2 = /*@__PURE__*/new Vector3(); + + const _center = /*@__PURE__*/new Vector3(); + + const _extents = /*@__PURE__*/new Vector3(); + + const _triangleNormal = /*@__PURE__*/new Vector3(); + + const _testAxis = /*@__PURE__*/new Vector3(); + + function satForAxes(axes, v0, v1, v2, extents) { + for (let i = 0, j = axes.length - 3; i <= j; i += 3) { + _testAxis.fromArray(axes, i); // project the aabb onto the seperating axis + + + const r = extents.x * Math.abs(_testAxis.x) + extents.y * Math.abs(_testAxis.y) + extents.z * Math.abs(_testAxis.z); // project all 3 vertices of the triangle onto the seperating axis + + const p0 = v0.dot(_testAxis); + const p1 = v1.dot(_testAxis); + const p2 = v2.dot(_testAxis); // actual test, basically see if either of the most extreme of the triangle points intersects r + + if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) { + // points of the projected triangle are outside the projected half-length of the aabb + // the axis is seperating and we can exit + return false; + } + } + + return true; + } + + const _box$2 = /*@__PURE__*/new Box3(); + + const _v1$6 = /*@__PURE__*/new Vector3(); + + const _toFarthestPoint = /*@__PURE__*/new Vector3(); + + const _toPoint = /*@__PURE__*/new Vector3(); + + class Sphere { + constructor(center = new Vector3(), radius = -1) { + this.center = center; + this.radius = radius; + } + + set(center, radius) { + this.center.copy(center); + this.radius = radius; + return this; + } + + setFromPoints(points, optionalCenter) { + const center = this.center; + + if (optionalCenter !== undefined) { + center.copy(optionalCenter); + } else { + _box$2.setFromPoints(points).getCenter(center); + } + + let maxRadiusSq = 0; + + for (let i = 0, il = points.length; i < il; i++) { + maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i])); + } + + this.radius = Math.sqrt(maxRadiusSq); + return this; + } + + copy(sphere) { + this.center.copy(sphere.center); + this.radius = sphere.radius; + return this; + } + + isEmpty() { + return this.radius < 0; + } + + makeEmpty() { + this.center.set(0, 0, 0); + this.radius = -1; + return this; + } + + containsPoint(point) { + return point.distanceToSquared(this.center) <= this.radius * this.radius; + } + + distanceToPoint(point) { + return point.distanceTo(this.center) - this.radius; + } + + intersectsSphere(sphere) { + const radiusSum = this.radius + sphere.radius; + return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum; + } + + intersectsBox(box) { + return box.intersectsSphere(this); + } + + intersectsPlane(plane) { + return Math.abs(plane.distanceToPoint(this.center)) <= this.radius; + } + + clampPoint(point, target) { + const deltaLengthSq = this.center.distanceToSquared(point); + target.copy(point); + + if (deltaLengthSq > this.radius * this.radius) { + target.sub(this.center).normalize(); + target.multiplyScalar(this.radius).add(this.center); + } + + return target; + } + + getBoundingBox(target) { + if (this.isEmpty()) { + // Empty sphere produces empty bounding box + target.makeEmpty(); + return target; + } + + target.set(this.center, this.center); + target.expandByScalar(this.radius); + return target; + } + + applyMatrix4(matrix) { + this.center.applyMatrix4(matrix); + this.radius = this.radius * matrix.getMaxScaleOnAxis(); + return this; + } + + translate(offset) { + this.center.add(offset); + return this; + } + + expandByPoint(point) { + // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671 + _toPoint.subVectors(point, this.center); + + const lengthSq = _toPoint.lengthSq(); + + if (lengthSq > this.radius * this.radius) { + const length = Math.sqrt(lengthSq); + const missingRadiusHalf = (length - this.radius) * 0.5; // Nudge this sphere towards the target point. Add half the missing distance to radius, + // and the other half to position. This gives a tighter enclosure, instead of if + // the whole missing distance were just added to radius. + + this.center.add(_toPoint.multiplyScalar(missingRadiusHalf / length)); + this.radius += missingRadiusHalf; + } + + return this; + } + + union(sphere) { + // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769 + // To enclose another sphere into this sphere, we only need to enclose two points: + // 1) Enclose the farthest point on the other sphere into this sphere. + // 2) Enclose the opposite point of the farthest point into this sphere. + _toFarthestPoint.subVectors(sphere.center, this.center).normalize().multiplyScalar(sphere.radius); + + this.expandByPoint(_v1$6.copy(sphere.center).add(_toFarthestPoint)); + this.expandByPoint(_v1$6.copy(sphere.center).sub(_toFarthestPoint)); + return this; + } + + equals(sphere) { + return sphere.center.equals(this.center) && sphere.radius === this.radius; + } + + clone() { + return new this.constructor().copy(this); + } + + } + + const _vector$a = /*@__PURE__*/new Vector3(); + + const _segCenter = /*@__PURE__*/new Vector3(); + + const _segDir = /*@__PURE__*/new Vector3(); + + const _diff = /*@__PURE__*/new Vector3(); + + const _edge1 = /*@__PURE__*/new Vector3(); + + const _edge2 = /*@__PURE__*/new Vector3(); + + const _normal$1 = /*@__PURE__*/new Vector3(); + + class Ray { + constructor(origin = new Vector3(), direction = new Vector3(0, 0, -1)) { + this.origin = origin; + this.direction = direction; + } + + set(origin, direction) { + this.origin.copy(origin); + this.direction.copy(direction); + return this; + } + + copy(ray) { + this.origin.copy(ray.origin); + this.direction.copy(ray.direction); + return this; + } + + at(t, target) { + return target.copy(this.direction).multiplyScalar(t).add(this.origin); + } + + lookAt(v) { + this.direction.copy(v).sub(this.origin).normalize(); + return this; + } + + recast(t) { + this.origin.copy(this.at(t, _vector$a)); + return this; + } + + closestPointToPoint(point, target) { + target.subVectors(point, this.origin); + const directionDistance = target.dot(this.direction); + + if (directionDistance < 0) { + return target.copy(this.origin); + } + + return target.copy(this.direction).multiplyScalar(directionDistance).add(this.origin); + } + + distanceToPoint(point) { + return Math.sqrt(this.distanceSqToPoint(point)); + } + + distanceSqToPoint(point) { + const directionDistance = _vector$a.subVectors(point, this.origin).dot(this.direction); // point behind the ray + + + if (directionDistance < 0) { + return this.origin.distanceToSquared(point); + } + + _vector$a.copy(this.direction).multiplyScalar(directionDistance).add(this.origin); + + return _vector$a.distanceToSquared(point); + } + + distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) { + // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h + // It returns the min distance between the ray and the segment + // defined by v0 and v1 + // It can also set two optional targets : + // - The closest point on the ray + // - The closest point on the segment + _segCenter.copy(v0).add(v1).multiplyScalar(0.5); + + _segDir.copy(v1).sub(v0).normalize(); + + _diff.copy(this.origin).sub(_segCenter); + + const segExtent = v0.distanceTo(v1) * 0.5; + const a01 = -this.direction.dot(_segDir); + + const b0 = _diff.dot(this.direction); + + const b1 = -_diff.dot(_segDir); + + const c = _diff.lengthSq(); + + const det = Math.abs(1 - a01 * a01); + let s0, s1, sqrDist, extDet; + + if (det > 0) { + // The ray and segment are not parallel. + s0 = a01 * b1 - b0; + s1 = a01 * b0 - b1; + extDet = segExtent * det; + + if (s0 >= 0) { + if (s1 >= -extDet) { + if (s1 <= extDet) { + // region 0 + // Minimum at interior points of ray and segment. + const invDet = 1 / det; + s0 *= invDet; + s1 *= invDet; + sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c; + } else { + // region 1 + s1 = segExtent; + s0 = Math.max(0, -(a01 * s1 + b0)); + sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; + } + } else { + // region 5 + s1 = -segExtent; + s0 = Math.max(0, -(a01 * s1 + b0)); + sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; + } + } else { + if (s1 <= -extDet) { + // region 4 + s0 = Math.max(0, -(-a01 * segExtent + b0)); + s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent); + sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; + } else if (s1 <= extDet) { + // region 3 + s0 = 0; + s1 = Math.min(Math.max(-segExtent, -b1), segExtent); + sqrDist = s1 * (s1 + 2 * b1) + c; + } else { + // region 2 + s0 = Math.max(0, -(a01 * segExtent + b0)); + s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent); + sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; + } + } + } else { + // Ray and segment are parallel. + s1 = a01 > 0 ? -segExtent : segExtent; + s0 = Math.max(0, -(a01 * s1 + b0)); + sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; + } + + if (optionalPointOnRay) { + optionalPointOnRay.copy(this.direction).multiplyScalar(s0).add(this.origin); + } + + if (optionalPointOnSegment) { + optionalPointOnSegment.copy(_segDir).multiplyScalar(s1).add(_segCenter); + } + + return sqrDist; + } + + intersectSphere(sphere, target) { + _vector$a.subVectors(sphere.center, this.origin); + + const tca = _vector$a.dot(this.direction); + + const d2 = _vector$a.dot(_vector$a) - tca * tca; + const radius2 = sphere.radius * sphere.radius; + if (d2 > radius2) return null; + const thc = Math.sqrt(radius2 - d2); // t0 = first intersect point - entrance on front of sphere + + const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere + + const t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null + + if (t0 < 0 && t1 < 0) return null; // test to see if t0 is behind the ray: + // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, + // in order to always return an intersect point that is in front of the ray. + + if (t0 < 0) return this.at(t1, target); // else t0 is in front of the ray, so return the first collision point scaled by t0 + + return this.at(t0, target); + } + + intersectsSphere(sphere) { + return this.distanceSqToPoint(sphere.center) <= sphere.radius * sphere.radius; + } + + distanceToPlane(plane) { + const denominator = plane.normal.dot(this.direction); + + if (denominator === 0) { + // line is coplanar, return origin + if (plane.distanceToPoint(this.origin) === 0) { + return 0; + } // Null is preferable to undefined since undefined means.... it is undefined + + + return null; + } + + const t = -(this.origin.dot(plane.normal) + plane.constant) / denominator; // Return if the ray never intersects the plane + + return t >= 0 ? t : null; + } + + intersectPlane(plane, target) { + const t = this.distanceToPlane(plane); + + if (t === null) { + return null; + } + + return this.at(t, target); + } + + intersectsPlane(plane) { + // check if the ray lies on the plane first + const distToPoint = plane.distanceToPoint(this.origin); + + if (distToPoint === 0) { + return true; + } + + const denominator = plane.normal.dot(this.direction); + + if (denominator * distToPoint < 0) { + return true; + } // ray origin is behind the plane (and is pointing behind it) + + + return false; + } + + intersectBox(box, target) { + let tmin, tmax, tymin, tymax, tzmin, tzmax; + const invdirx = 1 / this.direction.x, + invdiry = 1 / this.direction.y, + invdirz = 1 / this.direction.z; + const origin = this.origin; + + if (invdirx >= 0) { + tmin = (box.min.x - origin.x) * invdirx; + tmax = (box.max.x - origin.x) * invdirx; + } else { + tmin = (box.max.x - origin.x) * invdirx; + tmax = (box.min.x - origin.x) * invdirx; + } + + if (invdiry >= 0) { + tymin = (box.min.y - origin.y) * invdiry; + tymax = (box.max.y - origin.y) * invdiry; + } else { + tymin = (box.max.y - origin.y) * invdiry; + tymax = (box.min.y - origin.y) * invdiry; + } + + if (tmin > tymax || tymin > tmax) return null; // These lines also handle the case where tmin or tmax is NaN + // (result of 0 * Infinity). x !== x returns true if x is NaN + + if (tymin > tmin || tmin !== tmin) tmin = tymin; + if (tymax < tmax || tmax !== tmax) tmax = tymax; + + if (invdirz >= 0) { + tzmin = (box.min.z - origin.z) * invdirz; + tzmax = (box.max.z - origin.z) * invdirz; + } else { + tzmin = (box.max.z - origin.z) * invdirz; + tzmax = (box.min.z - origin.z) * invdirz; + } + + if (tmin > tzmax || tzmin > tmax) return null; + if (tzmin > tmin || tmin !== tmin) tmin = tzmin; + if (tzmax < tmax || tmax !== tmax) tmax = tzmax; //return point closest to the ray (positive side) + + if (tmax < 0) return null; + return this.at(tmin >= 0 ? tmin : tmax, target); + } + + intersectsBox(box) { + return this.intersectBox(box, _vector$a) !== null; + } + + intersectTriangle(a, b, c, backfaceCulling, target) { + // Compute the offset origin, edges, and normal. + // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h + _edge1.subVectors(b, a); + + _edge2.subVectors(c, a); + + _normal$1.crossVectors(_edge1, _edge2); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, + // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by + // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) + // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) + // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) + + + let DdN = this.direction.dot(_normal$1); + let sign; + + if (DdN > 0) { + if (backfaceCulling) return null; + sign = 1; + } else if (DdN < 0) { + sign = -1; + DdN = -DdN; + } else { + return null; + } + + _diff.subVectors(this.origin, a); + + const DdQxE2 = sign * this.direction.dot(_edge2.crossVectors(_diff, _edge2)); // b1 < 0, no intersection + + if (DdQxE2 < 0) { + return null; + } + + const DdE1xQ = sign * this.direction.dot(_edge1.cross(_diff)); // b2 < 0, no intersection + + if (DdE1xQ < 0) { + return null; + } // b1+b2 > 1, no intersection + + + if (DdQxE2 + DdE1xQ > DdN) { + return null; + } // Line intersects triangle, check if ray does. + + + const QdN = -sign * _diff.dot(_normal$1); // t < 0, no intersection + + + if (QdN < 0) { + return null; + } // Ray intersects triangle. + + + return this.at(QdN / DdN, target); + } + + applyMatrix4(matrix4) { + this.origin.applyMatrix4(matrix4); + this.direction.transformDirection(matrix4); + return this; + } + + equals(ray) { + return ray.origin.equals(this.origin) && ray.direction.equals(this.direction); + } + + clone() { + return new this.constructor().copy(this); + } + + } + + class Matrix4 { + constructor() { + this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]; + + if (arguments.length > 0) { + console.error('THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.'); + } + } + + set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) { + const te = this.elements; + te[0] = n11; + te[4] = n12; + te[8] = n13; + te[12] = n14; + te[1] = n21; + te[5] = n22; + te[9] = n23; + te[13] = n24; + te[2] = n31; + te[6] = n32; + te[10] = n33; + te[14] = n34; + te[3] = n41; + te[7] = n42; + te[11] = n43; + te[15] = n44; + return this; + } + + identity() { + this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); + return this; + } + + clone() { + return new Matrix4().fromArray(this.elements); + } + + copy(m) { + const te = this.elements; + const me = m.elements; + te[0] = me[0]; + te[1] = me[1]; + te[2] = me[2]; + te[3] = me[3]; + te[4] = me[4]; + te[5] = me[5]; + te[6] = me[6]; + te[7] = me[7]; + te[8] = me[8]; + te[9] = me[9]; + te[10] = me[10]; + te[11] = me[11]; + te[12] = me[12]; + te[13] = me[13]; + te[14] = me[14]; + te[15] = me[15]; + return this; + } + + copyPosition(m) { + const te = this.elements, + me = m.elements; + te[12] = me[12]; + te[13] = me[13]; + te[14] = me[14]; + return this; + } + + setFromMatrix3(m) { + const me = m.elements; + this.set(me[0], me[3], me[6], 0, me[1], me[4], me[7], 0, me[2], me[5], me[8], 0, 0, 0, 0, 1); + return this; + } + + extractBasis(xAxis, yAxis, zAxis) { + xAxis.setFromMatrixColumn(this, 0); + yAxis.setFromMatrixColumn(this, 1); + zAxis.setFromMatrixColumn(this, 2); + return this; + } + + makeBasis(xAxis, yAxis, zAxis) { + this.set(xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1); + return this; + } + + extractRotation(m) { + // this method does not support reflection matrices + const te = this.elements; + const me = m.elements; + + const scaleX = 1 / _v1$5.setFromMatrixColumn(m, 0).length(); + + const scaleY = 1 / _v1$5.setFromMatrixColumn(m, 1).length(); + + const scaleZ = 1 / _v1$5.setFromMatrixColumn(m, 2).length(); + + te[0] = me[0] * scaleX; + te[1] = me[1] * scaleX; + te[2] = me[2] * scaleX; + te[3] = 0; + te[4] = me[4] * scaleY; + te[5] = me[5] * scaleY; + te[6] = me[6] * scaleY; + te[7] = 0; + te[8] = me[8] * scaleZ; + te[9] = me[9] * scaleZ; + te[10] = me[10] * scaleZ; + te[11] = 0; + te[12] = 0; + te[13] = 0; + te[14] = 0; + te[15] = 1; + return this; + } + + makeRotationFromEuler(euler) { + if (!(euler && euler.isEuler)) { + console.error('THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.'); + } + + const te = this.elements; + const x = euler.x, + y = euler.y, + z = euler.z; + const a = Math.cos(x), + b = Math.sin(x); + const c = Math.cos(y), + d = Math.sin(y); + const e = Math.cos(z), + f = Math.sin(z); + + if (euler.order === 'XYZ') { + const ae = a * e, + af = a * f, + be = b * e, + bf = b * f; + te[0] = c * e; + te[4] = -c * f; + te[8] = d; + te[1] = af + be * d; + te[5] = ae - bf * d; + te[9] = -b * c; + te[2] = bf - ae * d; + te[6] = be + af * d; + te[10] = a * c; + } else if (euler.order === 'YXZ') { + const ce = c * e, + cf = c * f, + de = d * e, + df = d * f; + te[0] = ce + df * b; + te[4] = de * b - cf; + te[8] = a * d; + te[1] = a * f; + te[5] = a * e; + te[9] = -b; + te[2] = cf * b - de; + te[6] = df + ce * b; + te[10] = a * c; + } else if (euler.order === 'ZXY') { + const ce = c * e, + cf = c * f, + de = d * e, + df = d * f; + te[0] = ce - df * b; + te[4] = -a * f; + te[8] = de + cf * b; + te[1] = cf + de * b; + te[5] = a * e; + te[9] = df - ce * b; + te[2] = -a * d; + te[6] = b; + te[10] = a * c; + } else if (euler.order === 'ZYX') { + const ae = a * e, + af = a * f, + be = b * e, + bf = b * f; + te[0] = c * e; + te[4] = be * d - af; + te[8] = ae * d + bf; + te[1] = c * f; + te[5] = bf * d + ae; + te[9] = af * d - be; + te[2] = -d; + te[6] = b * c; + te[10] = a * c; + } else if (euler.order === 'YZX') { + const ac = a * c, + ad = a * d, + bc = b * c, + bd = b * d; + te[0] = c * e; + te[4] = bd - ac * f; + te[8] = bc * f + ad; + te[1] = f; + te[5] = a * e; + te[9] = -b * e; + te[2] = -d * e; + te[6] = ad * f + bc; + te[10] = ac - bd * f; + } else if (euler.order === 'XZY') { + const ac = a * c, + ad = a * d, + bc = b * c, + bd = b * d; + te[0] = c * e; + te[4] = -f; + te[8] = d * e; + te[1] = ac * f + bd; + te[5] = a * e; + te[9] = ad * f - bc; + te[2] = bc * f - ad; + te[6] = b * e; + te[10] = bd * f + ac; + } // bottom row + + + te[3] = 0; + te[7] = 0; + te[11] = 0; // last column + + te[12] = 0; + te[13] = 0; + te[14] = 0; + te[15] = 1; + return this; + } + + makeRotationFromQuaternion(q) { + return this.compose(_zero, q, _one); + } + + lookAt(eye, target, up) { + const te = this.elements; + + _z.subVectors(eye, target); + + if (_z.lengthSq() === 0) { + // eye and target are in the same position + _z.z = 1; + } + + _z.normalize(); + + _x.crossVectors(up, _z); + + if (_x.lengthSq() === 0) { + // up and z are parallel + if (Math.abs(up.z) === 1) { + _z.x += 0.0001; + } else { + _z.z += 0.0001; + } + + _z.normalize(); + + _x.crossVectors(up, _z); + } + + _x.normalize(); + + _y.crossVectors(_z, _x); + + te[0] = _x.x; + te[4] = _y.x; + te[8] = _z.x; + te[1] = _x.y; + te[5] = _y.y; + te[9] = _z.y; + te[2] = _x.z; + te[6] = _y.z; + te[10] = _z.z; + return this; + } + + multiply(m, n) { + if (n !== undefined) { + console.warn('THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.'); + return this.multiplyMatrices(m, n); + } + + return this.multiplyMatrices(this, m); + } + + premultiply(m) { + return this.multiplyMatrices(m, this); + } + + multiplyMatrices(a, b) { + const ae = a.elements; + const be = b.elements; + const te = this.elements; + const a11 = ae[0], + a12 = ae[4], + a13 = ae[8], + a14 = ae[12]; + const a21 = ae[1], + a22 = ae[5], + a23 = ae[9], + a24 = ae[13]; + const a31 = ae[2], + a32 = ae[6], + a33 = ae[10], + a34 = ae[14]; + const a41 = ae[3], + a42 = ae[7], + a43 = ae[11], + a44 = ae[15]; + const b11 = be[0], + b12 = be[4], + b13 = be[8], + b14 = be[12]; + const b21 = be[1], + b22 = be[5], + b23 = be[9], + b24 = be[13]; + const b31 = be[2], + b32 = be[6], + b33 = be[10], + b34 = be[14]; + const b41 = be[3], + b42 = be[7], + b43 = be[11], + b44 = be[15]; + te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; + te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; + te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; + te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; + te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; + te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; + te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; + te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; + te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; + te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; + te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; + te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; + te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; + te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; + te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; + te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; + return this; + } + + multiplyScalar(s) { + const te = this.elements; + te[0] *= s; + te[4] *= s; + te[8] *= s; + te[12] *= s; + te[1] *= s; + te[5] *= s; + te[9] *= s; + te[13] *= s; + te[2] *= s; + te[6] *= s; + te[10] *= s; + te[14] *= s; + te[3] *= s; + te[7] *= s; + te[11] *= s; + te[15] *= s; + return this; + } + + determinant() { + const te = this.elements; + const n11 = te[0], + n12 = te[4], + n13 = te[8], + n14 = te[12]; + const n21 = te[1], + n22 = te[5], + n23 = te[9], + n24 = te[13]; + const n31 = te[2], + n32 = te[6], + n33 = te[10], + n34 = te[14]; + const n41 = te[3], + n42 = te[7], + n43 = te[11], + n44 = te[15]; //TODO: make this more efficient + //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) + + return n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31); + } + + transpose() { + const te = this.elements; + let tmp; + tmp = te[1]; + te[1] = te[4]; + te[4] = tmp; + tmp = te[2]; + te[2] = te[8]; + te[8] = tmp; + tmp = te[6]; + te[6] = te[9]; + te[9] = tmp; + tmp = te[3]; + te[3] = te[12]; + te[12] = tmp; + tmp = te[7]; + te[7] = te[13]; + te[13] = tmp; + tmp = te[11]; + te[11] = te[14]; + te[14] = tmp; + return this; + } + + setPosition(x, y, z) { + const te = this.elements; + + if (x.isVector3) { + te[12] = x.x; + te[13] = x.y; + te[14] = x.z; + } else { + te[12] = x; + te[13] = y; + te[14] = z; + } + + return this; + } + + invert() { + // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm + const te = this.elements, + n11 = te[0], + n21 = te[1], + n31 = te[2], + n41 = te[3], + n12 = te[4], + n22 = te[5], + n32 = te[6], + n42 = te[7], + n13 = te[8], + n23 = te[9], + n33 = te[10], + n43 = te[11], + n14 = te[12], + n24 = te[13], + n34 = te[14], + n44 = te[15], + t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, + t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, + t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, + t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; + const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; + if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); + const detInv = 1 / det; + te[0] = t11 * detInv; + te[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv; + te[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv; + te[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv; + te[4] = t12 * detInv; + te[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv; + te[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv; + te[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv; + te[8] = t13 * detInv; + te[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv; + te[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv; + te[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv; + te[12] = t14 * detInv; + te[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv; + te[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv; + te[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv; + return this; + } + + scale(v) { + const te = this.elements; + const x = v.x, + y = v.y, + z = v.z; + te[0] *= x; + te[4] *= y; + te[8] *= z; + te[1] *= x; + te[5] *= y; + te[9] *= z; + te[2] *= x; + te[6] *= y; + te[10] *= z; + te[3] *= x; + te[7] *= y; + te[11] *= z; + return this; + } + + getMaxScaleOnAxis() { + const te = this.elements; + const scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2]; + const scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6]; + const scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10]; + return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq)); + } + + makeTranslation(x, y, z) { + this.set(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1); + return this; + } + + makeRotationX(theta) { + const c = Math.cos(theta), + s = Math.sin(theta); + this.set(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1); + return this; + } + + makeRotationY(theta) { + const c = Math.cos(theta), + s = Math.sin(theta); + this.set(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1); + return this; + } + + makeRotationZ(theta) { + const c = Math.cos(theta), + s = Math.sin(theta); + this.set(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); + return this; + } + + makeRotationAxis(axis, angle) { + // Based on http://www.gamedev.net/reference/articles/article1199.asp + const c = Math.cos(angle); + const s = Math.sin(angle); + const t = 1 - c; + const x = axis.x, + y = axis.y, + z = axis.z; + const tx = t * x, + ty = t * y; + this.set(tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1); + return this; + } + + makeScale(x, y, z) { + this.set(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1); + return this; + } + + makeShear(xy, xz, yx, yz, zx, zy) { + this.set(1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1); + return this; + } + + compose(position, quaternion, scale) { + const te = this.elements; + const x = quaternion._x, + y = quaternion._y, + z = quaternion._z, + w = quaternion._w; + const x2 = x + x, + y2 = y + y, + z2 = z + z; + const xx = x * x2, + xy = x * y2, + xz = x * z2; + const yy = y * y2, + yz = y * z2, + zz = z * z2; + const wx = w * x2, + wy = w * y2, + wz = w * z2; + const sx = scale.x, + sy = scale.y, + sz = scale.z; + te[0] = (1 - (yy + zz)) * sx; + te[1] = (xy + wz) * sx; + te[2] = (xz - wy) * sx; + te[3] = 0; + te[4] = (xy - wz) * sy; + te[5] = (1 - (xx + zz)) * sy; + te[6] = (yz + wx) * sy; + te[7] = 0; + te[8] = (xz + wy) * sz; + te[9] = (yz - wx) * sz; + te[10] = (1 - (xx + yy)) * sz; + te[11] = 0; + te[12] = position.x; + te[13] = position.y; + te[14] = position.z; + te[15] = 1; + return this; + } + + decompose(position, quaternion, scale) { + const te = this.elements; + + let sx = _v1$5.set(te[0], te[1], te[2]).length(); + + const sy = _v1$5.set(te[4], te[5], te[6]).length(); + + const sz = _v1$5.set(te[8], te[9], te[10]).length(); // if determine is negative, we need to invert one scale + + + const det = this.determinant(); + if (det < 0) sx = -sx; + position.x = te[12]; + position.y = te[13]; + position.z = te[14]; // scale the rotation part + + _m1$2.copy(this); + + const invSX = 1 / sx; + const invSY = 1 / sy; + const invSZ = 1 / sz; + _m1$2.elements[0] *= invSX; + _m1$2.elements[1] *= invSX; + _m1$2.elements[2] *= invSX; + _m1$2.elements[4] *= invSY; + _m1$2.elements[5] *= invSY; + _m1$2.elements[6] *= invSY; + _m1$2.elements[8] *= invSZ; + _m1$2.elements[9] *= invSZ; + _m1$2.elements[10] *= invSZ; + quaternion.setFromRotationMatrix(_m1$2); + scale.x = sx; + scale.y = sy; + scale.z = sz; + return this; + } + + makePerspective(left, right, top, bottom, near, far) { + if (far === undefined) { + console.warn('THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.'); + } + + const te = this.elements; + const x = 2 * near / (right - left); + const y = 2 * near / (top - bottom); + const a = (right + left) / (right - left); + const b = (top + bottom) / (top - bottom); + const c = -(far + near) / (far - near); + const d = -2 * far * near / (far - near); + te[0] = x; + te[4] = 0; + te[8] = a; + te[12] = 0; + te[1] = 0; + te[5] = y; + te[9] = b; + te[13] = 0; + te[2] = 0; + te[6] = 0; + te[10] = c; + te[14] = d; + te[3] = 0; + te[7] = 0; + te[11] = -1; + te[15] = 0; + return this; + } + + makeOrthographic(left, right, top, bottom, near, far) { + const te = this.elements; + const w = 1.0 / (right - left); + const h = 1.0 / (top - bottom); + const p = 1.0 / (far - near); + const x = (right + left) * w; + const y = (top + bottom) * h; + const z = (far + near) * p; + te[0] = 2 * w; + te[4] = 0; + te[8] = 0; + te[12] = -x; + te[1] = 0; + te[5] = 2 * h; + te[9] = 0; + te[13] = -y; + te[2] = 0; + te[6] = 0; + te[10] = -2 * p; + te[14] = -z; + te[3] = 0; + te[7] = 0; + te[11] = 0; + te[15] = 1; + return this; + } + + equals(matrix) { + const te = this.elements; + const me = matrix.elements; + + for (let i = 0; i < 16; i++) { + if (te[i] !== me[i]) return false; + } + + return true; + } + + fromArray(array, offset = 0) { + for (let i = 0; i < 16; i++) { + this.elements[i] = array[i + offset]; + } + + return this; + } + + toArray(array = [], offset = 0) { + const te = this.elements; + array[offset] = te[0]; + array[offset + 1] = te[1]; + array[offset + 2] = te[2]; + array[offset + 3] = te[3]; + array[offset + 4] = te[4]; + array[offset + 5] = te[5]; + array[offset + 6] = te[6]; + array[offset + 7] = te[7]; + array[offset + 8] = te[8]; + array[offset + 9] = te[9]; + array[offset + 10] = te[10]; + array[offset + 11] = te[11]; + array[offset + 12] = te[12]; + array[offset + 13] = te[13]; + array[offset + 14] = te[14]; + array[offset + 15] = te[15]; + return array; + } + + } + + Matrix4.prototype.isMatrix4 = true; + + const _v1$5 = /*@__PURE__*/new Vector3(); + + const _m1$2 = /*@__PURE__*/new Matrix4(); + + const _zero = /*@__PURE__*/new Vector3(0, 0, 0); + + const _one = /*@__PURE__*/new Vector3(1, 1, 1); + + const _x = /*@__PURE__*/new Vector3(); + + const _y = /*@__PURE__*/new Vector3(); + + const _z = /*@__PURE__*/new Vector3(); + + const _matrix$1 = /*@__PURE__*/new Matrix4(); + + const _quaternion$3 = /*@__PURE__*/new Quaternion(); + + class Euler { + constructor(x = 0, y = 0, z = 0, order = Euler.DefaultOrder) { + this._x = x; + this._y = y; + this._z = z; + this._order = order; + } + + get x() { + return this._x; + } + + set x(value) { + this._x = value; + + this._onChangeCallback(); + } + + get y() { + return this._y; + } + + set y(value) { + this._y = value; + + this._onChangeCallback(); + } + + get z() { + return this._z; + } + + set z(value) { + this._z = value; + + this._onChangeCallback(); + } + + get order() { + return this._order; + } + + set order(value) { + this._order = value; + + this._onChangeCallback(); + } + + set(x, y, z, order = this._order) { + this._x = x; + this._y = y; + this._z = z; + this._order = order; + + this._onChangeCallback(); + + return this; + } + + clone() { + return new this.constructor(this._x, this._y, this._z, this._order); + } + + copy(euler) { + this._x = euler._x; + this._y = euler._y; + this._z = euler._z; + this._order = euler._order; + + this._onChangeCallback(); + + return this; + } + + setFromRotationMatrix(m, order = this._order, update = true) { + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + const te = m.elements; + const m11 = te[0], + m12 = te[4], + m13 = te[8]; + const m21 = te[1], + m22 = te[5], + m23 = te[9]; + const m31 = te[2], + m32 = te[6], + m33 = te[10]; + + switch (order) { + case 'XYZ': + this._y = Math.asin(clamp(m13, -1, 1)); + + if (Math.abs(m13) < 0.9999999) { + this._x = Math.atan2(-m23, m33); + this._z = Math.atan2(-m12, m11); + } else { + this._x = Math.atan2(m32, m22); + this._z = 0; + } + + break; + + case 'YXZ': + this._x = Math.asin(-clamp(m23, -1, 1)); + + if (Math.abs(m23) < 0.9999999) { + this._y = Math.atan2(m13, m33); + this._z = Math.atan2(m21, m22); + } else { + this._y = Math.atan2(-m31, m11); + this._z = 0; + } + + break; + + case 'ZXY': + this._x = Math.asin(clamp(m32, -1, 1)); + + if (Math.abs(m32) < 0.9999999) { + this._y = Math.atan2(-m31, m33); + this._z = Math.atan2(-m12, m22); + } else { + this._y = 0; + this._z = Math.atan2(m21, m11); + } + + break; + + case 'ZYX': + this._y = Math.asin(-clamp(m31, -1, 1)); + + if (Math.abs(m31) < 0.9999999) { + this._x = Math.atan2(m32, m33); + this._z = Math.atan2(m21, m11); + } else { + this._x = 0; + this._z = Math.atan2(-m12, m22); + } + + break; + + case 'YZX': + this._z = Math.asin(clamp(m21, -1, 1)); + + if (Math.abs(m21) < 0.9999999) { + this._x = Math.atan2(-m23, m22); + this._y = Math.atan2(-m31, m11); + } else { + this._x = 0; + this._y = Math.atan2(m13, m33); + } + + break; + + case 'XZY': + this._z = Math.asin(-clamp(m12, -1, 1)); + + if (Math.abs(m12) < 0.9999999) { + this._x = Math.atan2(m32, m22); + this._y = Math.atan2(m13, m11); + } else { + this._x = Math.atan2(-m23, m33); + this._y = 0; + } + + break; + + default: + console.warn('THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order); + } + + this._order = order; + if (update === true) this._onChangeCallback(); + return this; + } + + setFromQuaternion(q, order, update) { + _matrix$1.makeRotationFromQuaternion(q); + + return this.setFromRotationMatrix(_matrix$1, order, update); + } + + setFromVector3(v, order = this._order) { + return this.set(v.x, v.y, v.z, order); + } + + reorder(newOrder) { + // WARNING: this discards revolution information -bhouston + _quaternion$3.setFromEuler(this); + + return this.setFromQuaternion(_quaternion$3, newOrder); + } + + equals(euler) { + return euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order; + } + + fromArray(array) { + this._x = array[0]; + this._y = array[1]; + this._z = array[2]; + if (array[3] !== undefined) this._order = array[3]; + + this._onChangeCallback(); + + return this; + } + + toArray(array = [], offset = 0) { + array[offset] = this._x; + array[offset + 1] = this._y; + array[offset + 2] = this._z; + array[offset + 3] = this._order; + return array; + } + + toVector3(optionalResult) { + if (optionalResult) { + return optionalResult.set(this._x, this._y, this._z); + } else { + return new Vector3(this._x, this._y, this._z); + } + } + + _onChange(callback) { + this._onChangeCallback = callback; + return this; + } + + _onChangeCallback() {} + + } + + Euler.prototype.isEuler = true; + Euler.DefaultOrder = 'XYZ'; + Euler.RotationOrders = ['XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX']; + + class Layers { + constructor() { + this.mask = 1 | 0; + } + + set(channel) { + this.mask = 1 << channel | 0; + } + + enable(channel) { + this.mask |= 1 << channel | 0; + } + + enableAll() { + this.mask = 0xffffffff | 0; + } + + toggle(channel) { + this.mask ^= 1 << channel | 0; + } + + disable(channel) { + this.mask &= ~(1 << channel | 0); + } + + disableAll() { + this.mask = 0; + } + + test(layers) { + return (this.mask & layers.mask) !== 0; + } + + } + + let _object3DId = 0; + + const _v1$4 = /*@__PURE__*/new Vector3(); + + const _q1 = /*@__PURE__*/new Quaternion(); + + const _m1$1 = /*@__PURE__*/new Matrix4(); + + const _target = /*@__PURE__*/new Vector3(); + + const _position$3 = /*@__PURE__*/new Vector3(); + + const _scale$2 = /*@__PURE__*/new Vector3(); + + const _quaternion$2 = /*@__PURE__*/new Quaternion(); + + const _xAxis = /*@__PURE__*/new Vector3(1, 0, 0); + + const _yAxis = /*@__PURE__*/new Vector3(0, 1, 0); + + const _zAxis = /*@__PURE__*/new Vector3(0, 0, 1); + + const _addedEvent = { + type: 'added' + }; + const _removedEvent = { + type: 'removed' + }; + + class Object3D extends EventDispatcher { + constructor() { + super(); + Object.defineProperty(this, 'id', { + value: _object3DId++ + }); + this.uuid = generateUUID(); + this.name = ''; + this.type = 'Object3D'; + this.parent = null; + this.children = []; + this.up = Object3D.DefaultUp.clone(); + const position = new Vector3(); + const rotation = new Euler(); + const quaternion = new Quaternion(); + const scale = new Vector3(1, 1, 1); + + function onRotationChange() { + quaternion.setFromEuler(rotation, false); + } + + function onQuaternionChange() { + rotation.setFromQuaternion(quaternion, undefined, false); + } + + rotation._onChange(onRotationChange); + + quaternion._onChange(onQuaternionChange); + + Object.defineProperties(this, { + position: { + configurable: true, + enumerable: true, + value: position + }, + rotation: { + configurable: true, + enumerable: true, + value: rotation + }, + quaternion: { + configurable: true, + enumerable: true, + value: quaternion + }, + scale: { + configurable: true, + enumerable: true, + value: scale + }, + modelViewMatrix: { + value: new Matrix4() + }, + normalMatrix: { + value: new Matrix3() + } + }); + this.matrix = new Matrix4(); + this.matrixWorld = new Matrix4(); + this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate; + this.matrixWorldNeedsUpdate = false; + this.layers = new Layers(); + this.visible = true; + this.castShadow = false; + this.receiveShadow = false; + this.frustumCulled = true; + this.renderOrder = 0; + this.animations = []; + this.userData = {}; + } + + onBeforeRender() {} + + onAfterRender() {} + + applyMatrix4(matrix) { + if (this.matrixAutoUpdate) this.updateMatrix(); + this.matrix.premultiply(matrix); + this.matrix.decompose(this.position, this.quaternion, this.scale); + } + + applyQuaternion(q) { + this.quaternion.premultiply(q); + return this; + } + + setRotationFromAxisAngle(axis, angle) { + // assumes axis is normalized + this.quaternion.setFromAxisAngle(axis, angle); + } + + setRotationFromEuler(euler) { + this.quaternion.setFromEuler(euler, true); + } + + setRotationFromMatrix(m) { + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + this.quaternion.setFromRotationMatrix(m); + } + + setRotationFromQuaternion(q) { + // assumes q is normalized + this.quaternion.copy(q); + } + + rotateOnAxis(axis, angle) { + // rotate object on axis in object space + // axis is assumed to be normalized + _q1.setFromAxisAngle(axis, angle); + + this.quaternion.multiply(_q1); + return this; + } + + rotateOnWorldAxis(axis, angle) { + // rotate object on axis in world space + // axis is assumed to be normalized + // method assumes no rotated parent + _q1.setFromAxisAngle(axis, angle); + + this.quaternion.premultiply(_q1); + return this; + } + + rotateX(angle) { + return this.rotateOnAxis(_xAxis, angle); + } + + rotateY(angle) { + return this.rotateOnAxis(_yAxis, angle); + } + + rotateZ(angle) { + return this.rotateOnAxis(_zAxis, angle); + } + + translateOnAxis(axis, distance) { + // translate object by distance along axis in object space + // axis is assumed to be normalized + _v1$4.copy(axis).applyQuaternion(this.quaternion); + + this.position.add(_v1$4.multiplyScalar(distance)); + return this; + } + + translateX(distance) { + return this.translateOnAxis(_xAxis, distance); + } + + translateY(distance) { + return this.translateOnAxis(_yAxis, distance); + } + + translateZ(distance) { + return this.translateOnAxis(_zAxis, distance); + } + + localToWorld(vector) { + return vector.applyMatrix4(this.matrixWorld); + } + + worldToLocal(vector) { + return vector.applyMatrix4(_m1$1.copy(this.matrixWorld).invert()); + } + + lookAt(x, y, z) { + // This method does not support objects having non-uniformly-scaled parent(s) + if (x.isVector3) { + _target.copy(x); + } else { + _target.set(x, y, z); + } + + const parent = this.parent; + this.updateWorldMatrix(true, false); + + _position$3.setFromMatrixPosition(this.matrixWorld); + + if (this.isCamera || this.isLight) { + _m1$1.lookAt(_position$3, _target, this.up); + } else { + _m1$1.lookAt(_target, _position$3, this.up); + } + + this.quaternion.setFromRotationMatrix(_m1$1); + + if (parent) { + _m1$1.extractRotation(parent.matrixWorld); + + _q1.setFromRotationMatrix(_m1$1); + + this.quaternion.premultiply(_q1.invert()); + } + } + + add(object) { + if (arguments.length > 1) { + for (let i = 0; i < arguments.length; i++) { + this.add(arguments[i]); + } + + return this; + } + + if (object === this) { + console.error('THREE.Object3D.add: object can\'t be added as a child of itself.', object); + return this; + } + + if (object && object.isObject3D) { + if (object.parent !== null) { + object.parent.remove(object); + } + + object.parent = this; + this.children.push(object); + object.dispatchEvent(_addedEvent); + } else { + console.error('THREE.Object3D.add: object not an instance of THREE.Object3D.', object); + } + + return this; + } + + remove(object) { + if (arguments.length > 1) { + for (let i = 0; i < arguments.length; i++) { + this.remove(arguments[i]); + } + + return this; + } + + const index = this.children.indexOf(object); + + if (index !== -1) { + object.parent = null; + this.children.splice(index, 1); + object.dispatchEvent(_removedEvent); + } + + return this; + } + + removeFromParent() { + const parent = this.parent; + + if (parent !== null) { + parent.remove(this); + } + + return this; + } + + clear() { + for (let i = 0; i < this.children.length; i++) { + const object = this.children[i]; + object.parent = null; + object.dispatchEvent(_removedEvent); + } + + this.children.length = 0; + return this; + } + + attach(object) { + // adds object as a child of this, while maintaining the object's world transform + this.updateWorldMatrix(true, false); + + _m1$1.copy(this.matrixWorld).invert(); + + if (object.parent !== null) { + object.parent.updateWorldMatrix(true, false); + + _m1$1.multiply(object.parent.matrixWorld); + } + + object.applyMatrix4(_m1$1); + this.add(object); + object.updateWorldMatrix(false, true); + return this; + } + + getObjectById(id) { + return this.getObjectByProperty('id', id); + } + + getObjectByName(name) { + return this.getObjectByProperty('name', name); + } + + getObjectByProperty(name, value) { + if (this[name] === value) return this; + + for (let i = 0, l = this.children.length; i < l; i++) { + const child = this.children[i]; + const object = child.getObjectByProperty(name, value); + + if (object !== undefined) { + return object; + } + } + + return undefined; + } + + getWorldPosition(target) { + this.updateWorldMatrix(true, false); + return target.setFromMatrixPosition(this.matrixWorld); + } + + getWorldQuaternion(target) { + this.updateWorldMatrix(true, false); + this.matrixWorld.decompose(_position$3, target, _scale$2); + return target; + } + + getWorldScale(target) { + this.updateWorldMatrix(true, false); + this.matrixWorld.decompose(_position$3, _quaternion$2, target); + return target; + } + + getWorldDirection(target) { + this.updateWorldMatrix(true, false); + const e = this.matrixWorld.elements; + return target.set(e[8], e[9], e[10]).normalize(); + } + + raycast() {} + + traverse(callback) { + callback(this); + const children = this.children; + + for (let i = 0, l = children.length; i < l; i++) { + children[i].traverse(callback); + } + } + + traverseVisible(callback) { + if (this.visible === false) return; + callback(this); + const children = this.children; + + for (let i = 0, l = children.length; i < l; i++) { + children[i].traverseVisible(callback); + } + } + + traverseAncestors(callback) { + const parent = this.parent; + + if (parent !== null) { + callback(parent); + parent.traverseAncestors(callback); + } + } + + updateMatrix() { + this.matrix.compose(this.position, this.quaternion, this.scale); + this.matrixWorldNeedsUpdate = true; + } + + updateMatrixWorld(force) { + if (this.matrixAutoUpdate) this.updateMatrix(); + + if (this.matrixWorldNeedsUpdate || force) { + if (this.parent === null) { + this.matrixWorld.copy(this.matrix); + } else { + this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix); + } + + this.matrixWorldNeedsUpdate = false; + force = true; + } // update children + + + const children = this.children; + + for (let i = 0, l = children.length; i < l; i++) { + children[i].updateMatrixWorld(force); + } + } + + updateWorldMatrix(updateParents, updateChildren) { + const parent = this.parent; + + if (updateParents === true && parent !== null) { + parent.updateWorldMatrix(true, false); + } + + if (this.matrixAutoUpdate) this.updateMatrix(); + + if (this.parent === null) { + this.matrixWorld.copy(this.matrix); + } else { + this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix); + } // update children + + + if (updateChildren === true) { + const children = this.children; + + for (let i = 0, l = children.length; i < l; i++) { + children[i].updateWorldMatrix(false, true); + } + } + } + + toJSON(meta) { + // meta is a string when called from JSON.stringify + const isRootObject = meta === undefined || typeof meta === 'string'; + const output = {}; // meta is a hash used to collect geometries, materials. + // not providing it implies that this is the root object + // being serialized. + + if (isRootObject) { + // initialize meta obj + meta = { + geometries: {}, + materials: {}, + textures: {}, + images: {}, + shapes: {}, + skeletons: {}, + animations: {} + }; + output.metadata = { + version: 4.5, + type: 'Object', + generator: 'Object3D.toJSON' + }; + } // standard Object3D serialization + + + const object = {}; + object.uuid = this.uuid; + object.type = this.type; + if (this.name !== '') object.name = this.name; + if (this.castShadow === true) object.castShadow = true; + if (this.receiveShadow === true) object.receiveShadow = true; + if (this.visible === false) object.visible = false; + if (this.frustumCulled === false) object.frustumCulled = false; + if (this.renderOrder !== 0) object.renderOrder = this.renderOrder; + if (JSON.stringify(this.userData) !== '{}') object.userData = this.userData; + object.layers = this.layers.mask; + object.matrix = this.matrix.toArray(); + if (this.matrixAutoUpdate === false) object.matrixAutoUpdate = false; // object specific properties + + if (this.isInstancedMesh) { + object.type = 'InstancedMesh'; + object.count = this.count; + object.instanceMatrix = this.instanceMatrix.toJSON(); + if (this.instanceColor !== null) object.instanceColor = this.instanceColor.toJSON(); + } // + + + function serialize(library, element) { + if (library[element.uuid] === undefined) { + library[element.uuid] = element.toJSON(meta); + } + + return element.uuid; + } + + if (this.isScene) { + if (this.background) { + if (this.background.isColor) { + object.background = this.background.toJSON(); + } else if (this.background.isTexture) { + object.background = this.background.toJSON(meta).uuid; + } + } + + if (this.environment && this.environment.isTexture) { + object.environment = this.environment.toJSON(meta).uuid; + } + } else if (this.isMesh || this.isLine || this.isPoints) { + object.geometry = serialize(meta.geometries, this.geometry); + const parameters = this.geometry.parameters; + + if (parameters !== undefined && parameters.shapes !== undefined) { + const shapes = parameters.shapes; + + if (Array.isArray(shapes)) { + for (let i = 0, l = shapes.length; i < l; i++) { + const shape = shapes[i]; + serialize(meta.shapes, shape); + } + } else { + serialize(meta.shapes, shapes); + } + } + } + + if (this.isSkinnedMesh) { + object.bindMode = this.bindMode; + object.bindMatrix = this.bindMatrix.toArray(); + + if (this.skeleton !== undefined) { + serialize(meta.skeletons, this.skeleton); + object.skeleton = this.skeleton.uuid; + } + } + + if (this.material !== undefined) { + if (Array.isArray(this.material)) { + const uuids = []; + + for (let i = 0, l = this.material.length; i < l; i++) { + uuids.push(serialize(meta.materials, this.material[i])); + } + + object.material = uuids; + } else { + object.material = serialize(meta.materials, this.material); + } + } // + + + if (this.children.length > 0) { + object.children = []; + + for (let i = 0; i < this.children.length; i++) { + object.children.push(this.children[i].toJSON(meta).object); + } + } // + + + if (this.animations.length > 0) { + object.animations = []; + + for (let i = 0; i < this.animations.length; i++) { + const animation = this.animations[i]; + object.animations.push(serialize(meta.animations, animation)); + } + } + + if (isRootObject) { + const geometries = extractFromCache(meta.geometries); + const materials = extractFromCache(meta.materials); + const textures = extractFromCache(meta.textures); + const images = extractFromCache(meta.images); + const shapes = extractFromCache(meta.shapes); + const skeletons = extractFromCache(meta.skeletons); + const animations = extractFromCache(meta.animations); + if (geometries.length > 0) output.geometries = geometries; + if (materials.length > 0) output.materials = materials; + if (textures.length > 0) output.textures = textures; + if (images.length > 0) output.images = images; + if (shapes.length > 0) output.shapes = shapes; + if (skeletons.length > 0) output.skeletons = skeletons; + if (animations.length > 0) output.animations = animations; + } + + output.object = object; + return output; // extract data from the cache hash + // remove metadata on each item + // and return as array + + function extractFromCache(cache) { + const values = []; + + for (const key in cache) { + const data = cache[key]; + delete data.metadata; + values.push(data); + } + + return values; + } + } + + clone(recursive) { + return new this.constructor().copy(this, recursive); + } + + copy(source, recursive = true) { + this.name = source.name; + this.up.copy(source.up); + this.position.copy(source.position); + this.rotation.order = source.rotation.order; + this.quaternion.copy(source.quaternion); + this.scale.copy(source.scale); + this.matrix.copy(source.matrix); + this.matrixWorld.copy(source.matrixWorld); + this.matrixAutoUpdate = source.matrixAutoUpdate; + this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; + this.layers.mask = source.layers.mask; + this.visible = source.visible; + this.castShadow = source.castShadow; + this.receiveShadow = source.receiveShadow; + this.frustumCulled = source.frustumCulled; + this.renderOrder = source.renderOrder; + this.userData = JSON.parse(JSON.stringify(source.userData)); + + if (recursive === true) { + for (let i = 0; i < source.children.length; i++) { + const child = source.children[i]; + this.add(child.clone()); + } + } + + return this; + } + + } + + Object3D.DefaultUp = new Vector3(0, 1, 0); + Object3D.DefaultMatrixAutoUpdate = true; + Object3D.prototype.isObject3D = true; + + const _v0$1 = /*@__PURE__*/new Vector3(); + + const _v1$3 = /*@__PURE__*/new Vector3(); + + const _v2$2 = /*@__PURE__*/new Vector3(); + + const _v3$1 = /*@__PURE__*/new Vector3(); + + const _vab = /*@__PURE__*/new Vector3(); + + const _vac = /*@__PURE__*/new Vector3(); + + const _vbc = /*@__PURE__*/new Vector3(); + + const _vap = /*@__PURE__*/new Vector3(); + + const _vbp = /*@__PURE__*/new Vector3(); + + const _vcp = /*@__PURE__*/new Vector3(); + + class Triangle { + constructor(a = new Vector3(), b = new Vector3(), c = new Vector3()) { + this.a = a; + this.b = b; + this.c = c; + } + + static getNormal(a, b, c, target) { + target.subVectors(c, b); + + _v0$1.subVectors(a, b); + + target.cross(_v0$1); + const targetLengthSq = target.lengthSq(); + + if (targetLengthSq > 0) { + return target.multiplyScalar(1 / Math.sqrt(targetLengthSq)); + } + + return target.set(0, 0, 0); + } // static/instance method to calculate barycentric coordinates + // based on: http://www.blackpawn.com/texts/pointinpoly/default.html + + + static getBarycoord(point, a, b, c, target) { + _v0$1.subVectors(c, a); + + _v1$3.subVectors(b, a); + + _v2$2.subVectors(point, a); + + const dot00 = _v0$1.dot(_v0$1); + + const dot01 = _v0$1.dot(_v1$3); + + const dot02 = _v0$1.dot(_v2$2); + + const dot11 = _v1$3.dot(_v1$3); + + const dot12 = _v1$3.dot(_v2$2); + + const denom = dot00 * dot11 - dot01 * dot01; // collinear or singular triangle + + if (denom === 0) { + // arbitrary location outside of triangle? + // not sure if this is the best idea, maybe should be returning undefined + return target.set(-2, -1, -1); + } + + const invDenom = 1 / denom; + const u = (dot11 * dot02 - dot01 * dot12) * invDenom; + const v = (dot00 * dot12 - dot01 * dot02) * invDenom; // barycentric coordinates must always sum to 1 + + return target.set(1 - u - v, v, u); + } + + static containsPoint(point, a, b, c) { + this.getBarycoord(point, a, b, c, _v3$1); + return _v3$1.x >= 0 && _v3$1.y >= 0 && _v3$1.x + _v3$1.y <= 1; + } + + static getUV(point, p1, p2, p3, uv1, uv2, uv3, target) { + this.getBarycoord(point, p1, p2, p3, _v3$1); + target.set(0, 0); + target.addScaledVector(uv1, _v3$1.x); + target.addScaledVector(uv2, _v3$1.y); + target.addScaledVector(uv3, _v3$1.z); + return target; + } + + static isFrontFacing(a, b, c, direction) { + _v0$1.subVectors(c, b); + + _v1$3.subVectors(a, b); // strictly front facing + + + return _v0$1.cross(_v1$3).dot(direction) < 0 ? true : false; + } + + set(a, b, c) { + this.a.copy(a); + this.b.copy(b); + this.c.copy(c); + return this; + } + + setFromPointsAndIndices(points, i0, i1, i2) { + this.a.copy(points[i0]); + this.b.copy(points[i1]); + this.c.copy(points[i2]); + return this; + } + + setFromAttributeAndIndices(attribute, i0, i1, i2) { + this.a.fromBufferAttribute(attribute, i0); + this.b.fromBufferAttribute(attribute, i1); + this.c.fromBufferAttribute(attribute, i2); + return this; + } + + clone() { + return new this.constructor().copy(this); + } + + copy(triangle) { + this.a.copy(triangle.a); + this.b.copy(triangle.b); + this.c.copy(triangle.c); + return this; + } + + getArea() { + _v0$1.subVectors(this.c, this.b); + + _v1$3.subVectors(this.a, this.b); + + return _v0$1.cross(_v1$3).length() * 0.5; + } + + getMidpoint(target) { + return target.addVectors(this.a, this.b).add(this.c).multiplyScalar(1 / 3); + } + + getNormal(target) { + return Triangle.getNormal(this.a, this.b, this.c, target); + } + + getPlane(target) { + return target.setFromCoplanarPoints(this.a, this.b, this.c); + } + + getBarycoord(point, target) { + return Triangle.getBarycoord(point, this.a, this.b, this.c, target); + } + + getUV(point, uv1, uv2, uv3, target) { + return Triangle.getUV(point, this.a, this.b, this.c, uv1, uv2, uv3, target); + } + + containsPoint(point) { + return Triangle.containsPoint(point, this.a, this.b, this.c); + } + + isFrontFacing(direction) { + return Triangle.isFrontFacing(this.a, this.b, this.c, direction); + } + + intersectsBox(box) { + return box.intersectsTriangle(this); + } + + closestPointToPoint(p, target) { + const a = this.a, + b = this.b, + c = this.c; + let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson, + // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc., + // under the accompanying license; see chapter 5.1.5 for detailed explanation. + // basically, we're distinguishing which of the voronoi regions of the triangle + // the point lies in with the minimum amount of redundant computation. + + _vab.subVectors(b, a); + + _vac.subVectors(c, a); + + _vap.subVectors(p, a); + + const d1 = _vab.dot(_vap); + + const d2 = _vac.dot(_vap); + + if (d1 <= 0 && d2 <= 0) { + // vertex region of A; barycentric coords (1, 0, 0) + return target.copy(a); + } + + _vbp.subVectors(p, b); + + const d3 = _vab.dot(_vbp); + + const d4 = _vac.dot(_vbp); + + if (d3 >= 0 && d4 <= d3) { + // vertex region of B; barycentric coords (0, 1, 0) + return target.copy(b); + } + + const vc = d1 * d4 - d3 * d2; + + if (vc <= 0 && d1 >= 0 && d3 <= 0) { + v = d1 / (d1 - d3); // edge region of AB; barycentric coords (1-v, v, 0) + + return target.copy(a).addScaledVector(_vab, v); + } + + _vcp.subVectors(p, c); + + const d5 = _vab.dot(_vcp); + + const d6 = _vac.dot(_vcp); + + if (d6 >= 0 && d5 <= d6) { + // vertex region of C; barycentric coords (0, 0, 1) + return target.copy(c); + } + + const vb = d5 * d2 - d1 * d6; + + if (vb <= 0 && d2 >= 0 && d6 <= 0) { + w = d2 / (d2 - d6); // edge region of AC; barycentric coords (1-w, 0, w) + + return target.copy(a).addScaledVector(_vac, w); + } + + const va = d3 * d6 - d5 * d4; + + if (va <= 0 && d4 - d3 >= 0 && d5 - d6 >= 0) { + _vbc.subVectors(c, b); + + w = (d4 - d3) / (d4 - d3 + (d5 - d6)); // edge region of BC; barycentric coords (0, 1-w, w) + + return target.copy(b).addScaledVector(_vbc, w); // edge region of BC + } // face region + + + const denom = 1 / (va + vb + vc); // u = va * denom + + v = vb * denom; + w = vc * denom; + return target.copy(a).addScaledVector(_vab, v).addScaledVector(_vac, w); + } + + equals(triangle) { + return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c); + } + + } + + let materialId = 0; + + class Material extends EventDispatcher { + constructor() { + super(); + Object.defineProperty(this, 'id', { + value: materialId++ + }); + this.uuid = generateUUID(); + this.name = ''; + this.type = 'Material'; + this.fog = true; + this.blending = NormalBlending; + this.side = FrontSide; + this.vertexColors = false; + this.opacity = 1; + this.format = RGBAFormat; + this.transparent = false; + this.blendSrc = SrcAlphaFactor; + this.blendDst = OneMinusSrcAlphaFactor; + this.blendEquation = AddEquation; + this.blendSrcAlpha = null; + this.blendDstAlpha = null; + this.blendEquationAlpha = null; + this.depthFunc = LessEqualDepth; + this.depthTest = true; + this.depthWrite = true; + this.stencilWriteMask = 0xff; + this.stencilFunc = AlwaysStencilFunc; + this.stencilRef = 0; + this.stencilFuncMask = 0xff; + this.stencilFail = KeepStencilOp; + this.stencilZFail = KeepStencilOp; + this.stencilZPass = KeepStencilOp; + this.stencilWrite = false; + this.clippingPlanes = null; + this.clipIntersection = false; + this.clipShadows = false; + this.shadowSide = null; + this.colorWrite = true; + this.precision = null; // override the renderer's default precision for this material + + this.polygonOffset = false; + this.polygonOffsetFactor = 0; + this.polygonOffsetUnits = 0; + this.dithering = false; + this.alphaToCoverage = false; + this.premultipliedAlpha = false; + this.visible = true; + this.toneMapped = true; + this.userData = {}; + this.version = 0; + this._alphaTest = 0; + } + + get alphaTest() { + return this._alphaTest; + } + + set alphaTest(value) { + if (this._alphaTest > 0 !== value > 0) { + this.version++; + } + + this._alphaTest = value; + } + + onBuild() {} + + onBeforeRender() {} + + onBeforeCompile() {} + + customProgramCacheKey() { + return this.onBeforeCompile.toString(); + } + + setValues(values) { + if (values === undefined) return; + + for (const key in values) { + const newValue = values[key]; + + if (newValue === undefined) { + console.warn('THREE.Material: \'' + key + '\' parameter is undefined.'); + continue; + } // for backward compatability if shading is set in the constructor + + + if (key === 'shading') { + console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.'); + this.flatShading = newValue === FlatShading ? true : false; + continue; + } + + const currentValue = this[key]; + + if (currentValue === undefined) { + console.warn('THREE.' + this.type + ': \'' + key + '\' is not a property of this material.'); + continue; + } + + if (currentValue && currentValue.isColor) { + currentValue.set(newValue); + } else if (currentValue && currentValue.isVector3 && newValue && newValue.isVector3) { + currentValue.copy(newValue); + } else { + this[key] = newValue; + } + } + } + + toJSON(meta) { + const isRoot = meta === undefined || typeof meta === 'string'; + + if (isRoot) { + meta = { + textures: {}, + images: {} + }; + } + + const data = { + metadata: { + version: 4.5, + type: 'Material', + generator: 'Material.toJSON' + } + }; // standard Material serialization + + data.uuid = this.uuid; + data.type = this.type; + if (this.name !== '') data.name = this.name; + if (this.color && this.color.isColor) data.color = this.color.getHex(); + if (this.roughness !== undefined) data.roughness = this.roughness; + if (this.metalness !== undefined) data.metalness = this.metalness; + if (this.sheen !== undefined) data.sheen = this.sheen; + if (this.sheenTint && this.sheenTint.isColor) data.sheenTint = this.sheenTint.getHex(); + if (this.sheenRoughness !== undefined) data.sheenRoughness = this.sheenRoughness; + if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex(); + if (this.emissiveIntensity && this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity; + if (this.specular && this.specular.isColor) data.specular = this.specular.getHex(); + if (this.specularIntensity !== undefined) data.specularIntensity = this.specularIntensity; + if (this.specularTint && this.specularTint.isColor) data.specularTint = this.specularTint.getHex(); + if (this.shininess !== undefined) data.shininess = this.shininess; + if (this.clearcoat !== undefined) data.clearcoat = this.clearcoat; + if (this.clearcoatRoughness !== undefined) data.clearcoatRoughness = this.clearcoatRoughness; + + if (this.clearcoatMap && this.clearcoatMap.isTexture) { + data.clearcoatMap = this.clearcoatMap.toJSON(meta).uuid; + } + + if (this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture) { + data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON(meta).uuid; + } + + if (this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture) { + data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON(meta).uuid; + data.clearcoatNormalScale = this.clearcoatNormalScale.toArray(); + } + + if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid; + if (this.matcap && this.matcap.isTexture) data.matcap = this.matcap.toJSON(meta).uuid; + if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid; + + if (this.lightMap && this.lightMap.isTexture) { + data.lightMap = this.lightMap.toJSON(meta).uuid; + data.lightMapIntensity = this.lightMapIntensity; + } + + if (this.aoMap && this.aoMap.isTexture) { + data.aoMap = this.aoMap.toJSON(meta).uuid; + data.aoMapIntensity = this.aoMapIntensity; + } + + if (this.bumpMap && this.bumpMap.isTexture) { + data.bumpMap = this.bumpMap.toJSON(meta).uuid; + data.bumpScale = this.bumpScale; + } + + if (this.normalMap && this.normalMap.isTexture) { + data.normalMap = this.normalMap.toJSON(meta).uuid; + data.normalMapType = this.normalMapType; + data.normalScale = this.normalScale.toArray(); + } + + if (this.displacementMap && this.displacementMap.isTexture) { + data.displacementMap = this.displacementMap.toJSON(meta).uuid; + data.displacementScale = this.displacementScale; + data.displacementBias = this.displacementBias; + } + + if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid; + if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid; + if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid; + if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid; + if (this.specularIntensityMap && this.specularIntensityMap.isTexture) data.specularIntensityMap = this.specularIntensityMap.toJSON(meta).uuid; + if (this.specularTintMap && this.specularTintMap.isTexture) data.specularTintMap = this.specularTintMap.toJSON(meta).uuid; + + if (this.envMap && this.envMap.isTexture) { + data.envMap = this.envMap.toJSON(meta).uuid; + if (this.combine !== undefined) data.combine = this.combine; + } + + if (this.envMapIntensity !== undefined) data.envMapIntensity = this.envMapIntensity; + if (this.reflectivity !== undefined) data.reflectivity = this.reflectivity; + if (this.refractionRatio !== undefined) data.refractionRatio = this.refractionRatio; + + if (this.gradientMap && this.gradientMap.isTexture) { + data.gradientMap = this.gradientMap.toJSON(meta).uuid; + } + + if (this.transmission !== undefined) data.transmission = this.transmission; + if (this.transmissionMap && this.transmissionMap.isTexture) data.transmissionMap = this.transmissionMap.toJSON(meta).uuid; + if (this.thickness !== undefined) data.thickness = this.thickness; + if (this.thicknessMap && this.thicknessMap.isTexture) data.thicknessMap = this.thicknessMap.toJSON(meta).uuid; + if (this.attenuationDistance !== undefined) data.attenuationDistance = this.attenuationDistance; + if (this.attenuationTint !== undefined) data.attenuationTint = this.attenuationTint.getHex(); + if (this.size !== undefined) data.size = this.size; + if (this.shadowSide !== null) data.shadowSide = this.shadowSide; + if (this.sizeAttenuation !== undefined) data.sizeAttenuation = this.sizeAttenuation; + if (this.blending !== NormalBlending) data.blending = this.blending; + if (this.side !== FrontSide) data.side = this.side; + if (this.vertexColors) data.vertexColors = true; + if (this.opacity < 1) data.opacity = this.opacity; + if (this.format !== RGBAFormat) data.format = this.format; + if (this.transparent === true) data.transparent = this.transparent; + data.depthFunc = this.depthFunc; + data.depthTest = this.depthTest; + data.depthWrite = this.depthWrite; + data.colorWrite = this.colorWrite; + data.stencilWrite = this.stencilWrite; + data.stencilWriteMask = this.stencilWriteMask; + data.stencilFunc = this.stencilFunc; + data.stencilRef = this.stencilRef; + data.stencilFuncMask = this.stencilFuncMask; + data.stencilFail = this.stencilFail; + data.stencilZFail = this.stencilZFail; + data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial) + + if (this.rotation && this.rotation !== 0) data.rotation = this.rotation; + if (this.polygonOffset === true) data.polygonOffset = true; + if (this.polygonOffsetFactor !== 0) data.polygonOffsetFactor = this.polygonOffsetFactor; + if (this.polygonOffsetUnits !== 0) data.polygonOffsetUnits = this.polygonOffsetUnits; + if (this.linewidth && this.linewidth !== 1) data.linewidth = this.linewidth; + if (this.dashSize !== undefined) data.dashSize = this.dashSize; + if (this.gapSize !== undefined) data.gapSize = this.gapSize; + if (this.scale !== undefined) data.scale = this.scale; + if (this.dithering === true) data.dithering = true; + if (this.alphaTest > 0) data.alphaTest = this.alphaTest; + if (this.alphaToCoverage === true) data.alphaToCoverage = this.alphaToCoverage; + if (this.premultipliedAlpha === true) data.premultipliedAlpha = this.premultipliedAlpha; + if (this.wireframe === true) data.wireframe = this.wireframe; + if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth; + if (this.wireframeLinecap !== 'round') data.wireframeLinecap = this.wireframeLinecap; + if (this.wireframeLinejoin !== 'round') data.wireframeLinejoin = this.wireframeLinejoin; + if (this.flatShading === true) data.flatShading = this.flatShading; + if (this.visible === false) data.visible = false; + if (this.toneMapped === false) data.toneMapped = false; + if (JSON.stringify(this.userData) !== '{}') data.userData = this.userData; // TODO: Copied from Object3D.toJSON + + function extractFromCache(cache) { + const values = []; + + for (const key in cache) { + const data = cache[key]; + delete data.metadata; + values.push(data); + } + + return values; + } + + if (isRoot) { + const textures = extractFromCache(meta.textures); + const images = extractFromCache(meta.images); + if (textures.length > 0) data.textures = textures; + if (images.length > 0) data.images = images; + } + + return data; + } + + clone() { + return new this.constructor().copy(this); + } + + copy(source) { + this.name = source.name; + this.fog = source.fog; + this.blending = source.blending; + this.side = source.side; + this.vertexColors = source.vertexColors; + this.opacity = source.opacity; + this.format = source.format; + this.transparent = source.transparent; + this.blendSrc = source.blendSrc; + this.blendDst = source.blendDst; + this.blendEquation = source.blendEquation; + this.blendSrcAlpha = source.blendSrcAlpha; + this.blendDstAlpha = source.blendDstAlpha; + this.blendEquationAlpha = source.blendEquationAlpha; + this.depthFunc = source.depthFunc; + this.depthTest = source.depthTest; + this.depthWrite = source.depthWrite; + this.stencilWriteMask = source.stencilWriteMask; + this.stencilFunc = source.stencilFunc; + this.stencilRef = source.stencilRef; + this.stencilFuncMask = source.stencilFuncMask; + this.stencilFail = source.stencilFail; + this.stencilZFail = source.stencilZFail; + this.stencilZPass = source.stencilZPass; + this.stencilWrite = source.stencilWrite; + const srcPlanes = source.clippingPlanes; + let dstPlanes = null; + + if (srcPlanes !== null) { + const n = srcPlanes.length; + dstPlanes = new Array(n); + + for (let i = 0; i !== n; ++i) { + dstPlanes[i] = srcPlanes[i].clone(); + } + } + + this.clippingPlanes = dstPlanes; + this.clipIntersection = source.clipIntersection; + this.clipShadows = source.clipShadows; + this.shadowSide = source.shadowSide; + this.colorWrite = source.colorWrite; + this.precision = source.precision; + this.polygonOffset = source.polygonOffset; + this.polygonOffsetFactor = source.polygonOffsetFactor; + this.polygonOffsetUnits = source.polygonOffsetUnits; + this.dithering = source.dithering; + this.alphaTest = source.alphaTest; + this.alphaToCoverage = source.alphaToCoverage; + this.premultipliedAlpha = source.premultipliedAlpha; + this.visible = source.visible; + this.toneMapped = source.toneMapped; + this.userData = JSON.parse(JSON.stringify(source.userData)); + return this; + } + + dispose() { + this.dispatchEvent({ + type: 'dispose' + }); + } + + set needsUpdate(value) { + if (value === true) this.version++; + } + + } + + Material.prototype.isMaterial = true; + + const _colorKeywords = { + 'aliceblue': 0xF0F8FF, + 'antiquewhite': 0xFAEBD7, + 'aqua': 0x00FFFF, + 'aquamarine': 0x7FFFD4, + 'azure': 0xF0FFFF, + 'beige': 0xF5F5DC, + 'bisque': 0xFFE4C4, + 'black': 0x000000, + 'blanchedalmond': 0xFFEBCD, + 'blue': 0x0000FF, + 'blueviolet': 0x8A2BE2, + 'brown': 0xA52A2A, + 'burlywood': 0xDEB887, + 'cadetblue': 0x5F9EA0, + 'chartreuse': 0x7FFF00, + 'chocolate': 0xD2691E, + 'coral': 0xFF7F50, + 'cornflowerblue': 0x6495ED, + 'cornsilk': 0xFFF8DC, + 'crimson': 0xDC143C, + 'cyan': 0x00FFFF, + 'darkblue': 0x00008B, + 'darkcyan': 0x008B8B, + 'darkgoldenrod': 0xB8860B, + 'darkgray': 0xA9A9A9, + 'darkgreen': 0x006400, + 'darkgrey': 0xA9A9A9, + 'darkkhaki': 0xBDB76B, + 'darkmagenta': 0x8B008B, + 'darkolivegreen': 0x556B2F, + 'darkorange': 0xFF8C00, + 'darkorchid': 0x9932CC, + 'darkred': 0x8B0000, + 'darksalmon': 0xE9967A, + 'darkseagreen': 0x8FBC8F, + 'darkslateblue': 0x483D8B, + 'darkslategray': 0x2F4F4F, + 'darkslategrey': 0x2F4F4F, + 'darkturquoise': 0x00CED1, + 'darkviolet': 0x9400D3, + 'deeppink': 0xFF1493, + 'deepskyblue': 0x00BFFF, + 'dimgray': 0x696969, + 'dimgrey': 0x696969, + 'dodgerblue': 0x1E90FF, + 'firebrick': 0xB22222, + 'floralwhite': 0xFFFAF0, + 'forestgreen': 0x228B22, + 'fuchsia': 0xFF00FF, + 'gainsboro': 0xDCDCDC, + 'ghostwhite': 0xF8F8FF, + 'gold': 0xFFD700, + 'goldenrod': 0xDAA520, + 'gray': 0x808080, + 'green': 0x008000, + 'greenyellow': 0xADFF2F, + 'grey': 0x808080, + 'honeydew': 0xF0FFF0, + 'hotpink': 0xFF69B4, + 'indianred': 0xCD5C5C, + 'indigo': 0x4B0082, + 'ivory': 0xFFFFF0, + 'khaki': 0xF0E68C, + 'lavender': 0xE6E6FA, + 'lavenderblush': 0xFFF0F5, + 'lawngreen': 0x7CFC00, + 'lemonchiffon': 0xFFFACD, + 'lightblue': 0xADD8E6, + 'lightcoral': 0xF08080, + 'lightcyan': 0xE0FFFF, + 'lightgoldenrodyellow': 0xFAFAD2, + 'lightgray': 0xD3D3D3, + 'lightgreen': 0x90EE90, + 'lightgrey': 0xD3D3D3, + 'lightpink': 0xFFB6C1, + 'lightsalmon': 0xFFA07A, + 'lightseagreen': 0x20B2AA, + 'lightskyblue': 0x87CEFA, + 'lightslategray': 0x778899, + 'lightslategrey': 0x778899, + 'lightsteelblue': 0xB0C4DE, + 'lightyellow': 0xFFFFE0, + 'lime': 0x00FF00, + 'limegreen': 0x32CD32, + 'linen': 0xFAF0E6, + 'magenta': 0xFF00FF, + 'maroon': 0x800000, + 'mediumaquamarine': 0x66CDAA, + 'mediumblue': 0x0000CD, + 'mediumorchid': 0xBA55D3, + 'mediumpurple': 0x9370DB, + 'mediumseagreen': 0x3CB371, + 'mediumslateblue': 0x7B68EE, + 'mediumspringgreen': 0x00FA9A, + 'mediumturquoise': 0x48D1CC, + 'mediumvioletred': 0xC71585, + 'midnightblue': 0x191970, + 'mintcream': 0xF5FFFA, + 'mistyrose': 0xFFE4E1, + 'moccasin': 0xFFE4B5, + 'navajowhite': 0xFFDEAD, + 'navy': 0x000080, + 'oldlace': 0xFDF5E6, + 'olive': 0x808000, + 'olivedrab': 0x6B8E23, + 'orange': 0xFFA500, + 'orangered': 0xFF4500, + 'orchid': 0xDA70D6, + 'palegoldenrod': 0xEEE8AA, + 'palegreen': 0x98FB98, + 'paleturquoise': 0xAFEEEE, + 'palevioletred': 0xDB7093, + 'papayawhip': 0xFFEFD5, + 'peachpuff': 0xFFDAB9, + 'peru': 0xCD853F, + 'pink': 0xFFC0CB, + 'plum': 0xDDA0DD, + 'powderblue': 0xB0E0E6, + 'purple': 0x800080, + 'rebeccapurple': 0x663399, + 'red': 0xFF0000, + 'rosybrown': 0xBC8F8F, + 'royalblue': 0x4169E1, + 'saddlebrown': 0x8B4513, + 'salmon': 0xFA8072, + 'sandybrown': 0xF4A460, + 'seagreen': 0x2E8B57, + 'seashell': 0xFFF5EE, + 'sienna': 0xA0522D, + 'silver': 0xC0C0C0, + 'skyblue': 0x87CEEB, + 'slateblue': 0x6A5ACD, + 'slategray': 0x708090, + 'slategrey': 0x708090, + 'snow': 0xFFFAFA, + 'springgreen': 0x00FF7F, + 'steelblue': 0x4682B4, + 'tan': 0xD2B48C, + 'teal': 0x008080, + 'thistle': 0xD8BFD8, + 'tomato': 0xFF6347, + 'turquoise': 0x40E0D0, + 'violet': 0xEE82EE, + 'wheat': 0xF5DEB3, + 'white': 0xFFFFFF, + 'whitesmoke': 0xF5F5F5, + 'yellow': 0xFFFF00, + 'yellowgreen': 0x9ACD32 + }; + const _hslA = { + h: 0, + s: 0, + l: 0 + }; + const _hslB = { + h: 0, + s: 0, + l: 0 + }; + + function hue2rgb(p, q, t) { + if (t < 0) t += 1; + if (t > 1) t -= 1; + if (t < 1 / 6) return p + (q - p) * 6 * t; + if (t < 1 / 2) return q; + if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t); + return p; + } + + function SRGBToLinear(c) { + return c < 0.04045 ? c * 0.0773993808 : Math.pow(c * 0.9478672986 + 0.0521327014, 2.4); + } + + function LinearToSRGB(c) { + return c < 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 0.41666) - 0.055; + } + + class Color { + constructor(r, g, b) { + if (g === undefined && b === undefined) { + // r is THREE.Color, hex or string + return this.set(r); + } + + return this.setRGB(r, g, b); + } + + set(value) { + if (value && value.isColor) { + this.copy(value); + } else if (typeof value === 'number') { + this.setHex(value); + } else if (typeof value === 'string') { + this.setStyle(value); + } + + return this; + } + + setScalar(scalar) { + this.r = scalar; + this.g = scalar; + this.b = scalar; + return this; + } + + setHex(hex) { + hex = Math.floor(hex); + this.r = (hex >> 16 & 255) / 255; + this.g = (hex >> 8 & 255) / 255; + this.b = (hex & 255) / 255; + return this; + } + + setRGB(r, g, b) { + this.r = r; + this.g = g; + this.b = b; + return this; + } + + setHSL(h, s, l) { + // h,s,l ranges are in 0.0 - 1.0 + h = euclideanModulo(h, 1); + s = clamp(s, 0, 1); + l = clamp(l, 0, 1); + + if (s === 0) { + this.r = this.g = this.b = l; + } else { + const p = l <= 0.5 ? l * (1 + s) : l + s - l * s; + const q = 2 * l - p; + this.r = hue2rgb(q, p, h + 1 / 3); + this.g = hue2rgb(q, p, h); + this.b = hue2rgb(q, p, h - 1 / 3); + } + + return this; + } + + setStyle(style) { + function handleAlpha(string) { + if (string === undefined) return; + + if (parseFloat(string) < 1) { + console.warn('THREE.Color: Alpha component of ' + style + ' will be ignored.'); + } + } + + let m; + + if (m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec(style)) { + // rgb / hsl + let color; + const name = m[1]; + const components = m[2]; + + switch (name) { + case 'rgb': + case 'rgba': + if (color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) { + // rgb(255,0,0) rgba(255,0,0,0.5) + this.r = Math.min(255, parseInt(color[1], 10)) / 255; + this.g = Math.min(255, parseInt(color[2], 10)) / 255; + this.b = Math.min(255, parseInt(color[3], 10)) / 255; + handleAlpha(color[4]); + return this; + } + + if (color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) { + // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) + this.r = Math.min(100, parseInt(color[1], 10)) / 100; + this.g = Math.min(100, parseInt(color[2], 10)) / 100; + this.b = Math.min(100, parseInt(color[3], 10)) / 100; + handleAlpha(color[4]); + return this; + } + + break; + + case 'hsl': + case 'hsla': + if (color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) { + // hsl(120,50%,50%) hsla(120,50%,50%,0.5) + const h = parseFloat(color[1]) / 360; + const s = parseInt(color[2], 10) / 100; + const l = parseInt(color[3], 10) / 100; + handleAlpha(color[4]); + return this.setHSL(h, s, l); + } + + break; + } + } else if (m = /^\#([A-Fa-f\d]+)$/.exec(style)) { + // hex color + const hex = m[1]; + const size = hex.length; + + if (size === 3) { + // #ff0 + this.r = parseInt(hex.charAt(0) + hex.charAt(0), 16) / 255; + this.g = parseInt(hex.charAt(1) + hex.charAt(1), 16) / 255; + this.b = parseInt(hex.charAt(2) + hex.charAt(2), 16) / 255; + return this; + } else if (size === 6) { + // #ff0000 + this.r = parseInt(hex.charAt(0) + hex.charAt(1), 16) / 255; + this.g = parseInt(hex.charAt(2) + hex.charAt(3), 16) / 255; + this.b = parseInt(hex.charAt(4) + hex.charAt(5), 16) / 255; + return this; + } + } + + if (style && style.length > 0) { + return this.setColorName(style); + } + + return this; + } + + setColorName(style) { + // color keywords + const hex = _colorKeywords[style.toLowerCase()]; + + if (hex !== undefined) { + // red + this.setHex(hex); + } else { + // unknown color + console.warn('THREE.Color: Unknown color ' + style); + } + + return this; + } + + clone() { + return new this.constructor(this.r, this.g, this.b); + } + + copy(color) { + this.r = color.r; + this.g = color.g; + this.b = color.b; + return this; + } + + copyGammaToLinear(color, gammaFactor = 2.0) { + this.r = Math.pow(color.r, gammaFactor); + this.g = Math.pow(color.g, gammaFactor); + this.b = Math.pow(color.b, gammaFactor); + return this; + } + + copyLinearToGamma(color, gammaFactor = 2.0) { + const safeInverse = gammaFactor > 0 ? 1.0 / gammaFactor : 1.0; + this.r = Math.pow(color.r, safeInverse); + this.g = Math.pow(color.g, safeInverse); + this.b = Math.pow(color.b, safeInverse); + return this; + } + + convertGammaToLinear(gammaFactor) { + this.copyGammaToLinear(this, gammaFactor); + return this; + } + + convertLinearToGamma(gammaFactor) { + this.copyLinearToGamma(this, gammaFactor); + return this; + } + + copySRGBToLinear(color) { + this.r = SRGBToLinear(color.r); + this.g = SRGBToLinear(color.g); + this.b = SRGBToLinear(color.b); + return this; + } + + copyLinearToSRGB(color) { + this.r = LinearToSRGB(color.r); + this.g = LinearToSRGB(color.g); + this.b = LinearToSRGB(color.b); + return this; + } + + convertSRGBToLinear() { + this.copySRGBToLinear(this); + return this; + } + + convertLinearToSRGB() { + this.copyLinearToSRGB(this); + return this; + } + + getHex() { + return this.r * 255 << 16 ^ this.g * 255 << 8 ^ this.b * 255 << 0; + } + + getHexString() { + return ('000000' + this.getHex().toString(16)).slice(-6); + } + + getHSL(target) { + // h,s,l ranges are in 0.0 - 1.0 + const r = this.r, + g = this.g, + b = this.b; + const max = Math.max(r, g, b); + const min = Math.min(r, g, b); + let hue, saturation; + const lightness = (min + max) / 2.0; + + if (min === max) { + hue = 0; + saturation = 0; + } else { + const delta = max - min; + saturation = lightness <= 0.5 ? delta / (max + min) : delta / (2 - max - min); + + switch (max) { + case r: + hue = (g - b) / delta + (g < b ? 6 : 0); + break; + + case g: + hue = (b - r) / delta + 2; + break; + + case b: + hue = (r - g) / delta + 4; + break; + } + + hue /= 6; + } + + target.h = hue; + target.s = saturation; + target.l = lightness; + return target; + } + + getStyle() { + return 'rgb(' + (this.r * 255 | 0) + ',' + (this.g * 255 | 0) + ',' + (this.b * 255 | 0) + ')'; + } + + offsetHSL(h, s, l) { + this.getHSL(_hslA); + _hslA.h += h; + _hslA.s += s; + _hslA.l += l; + this.setHSL(_hslA.h, _hslA.s, _hslA.l); + return this; + } + + add(color) { + this.r += color.r; + this.g += color.g; + this.b += color.b; + return this; + } + + addColors(color1, color2) { + this.r = color1.r + color2.r; + this.g = color1.g + color2.g; + this.b = color1.b + color2.b; + return this; + } + + addScalar(s) { + this.r += s; + this.g += s; + this.b += s; + return this; + } + + sub(color) { + this.r = Math.max(0, this.r - color.r); + this.g = Math.max(0, this.g - color.g); + this.b = Math.max(0, this.b - color.b); + return this; + } + + multiply(color) { + this.r *= color.r; + this.g *= color.g; + this.b *= color.b; + return this; + } + + multiplyScalar(s) { + this.r *= s; + this.g *= s; + this.b *= s; + return this; + } + + lerp(color, alpha) { + this.r += (color.r - this.r) * alpha; + this.g += (color.g - this.g) * alpha; + this.b += (color.b - this.b) * alpha; + return this; + } + + lerpColors(color1, color2, alpha) { + this.r = color1.r + (color2.r - color1.r) * alpha; + this.g = color1.g + (color2.g - color1.g) * alpha; + this.b = color1.b + (color2.b - color1.b) * alpha; + return this; + } + + lerpHSL(color, alpha) { + this.getHSL(_hslA); + color.getHSL(_hslB); + const h = lerp(_hslA.h, _hslB.h, alpha); + const s = lerp(_hslA.s, _hslB.s, alpha); + const l = lerp(_hslA.l, _hslB.l, alpha); + this.setHSL(h, s, l); + return this; + } + + equals(c) { + return c.r === this.r && c.g === this.g && c.b === this.b; + } + + fromArray(array, offset = 0) { + this.r = array[offset]; + this.g = array[offset + 1]; + this.b = array[offset + 2]; + return this; + } + + toArray(array = [], offset = 0) { + array[offset] = this.r; + array[offset + 1] = this.g; + array[offset + 2] = this.b; + return array; + } + + fromBufferAttribute(attribute, index) { + this.r = attribute.getX(index); + this.g = attribute.getY(index); + this.b = attribute.getZ(index); + + if (attribute.normalized === true) { + // assuming Uint8Array + this.r /= 255; + this.g /= 255; + this.b /= 255; + } + + return this; + } + + toJSON() { + return this.getHex(); + } + + } + + Color.NAMES = _colorKeywords; + Color.prototype.isColor = true; + Color.prototype.r = 1; + Color.prototype.g = 1; + Color.prototype.b = 1; + + /** + * parameters = { + * color: , + * opacity: , + * map: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * specularMap: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), + * combine: THREE.Multiply, + * reflectivity: , + * refractionRatio: , + * + * depthTest: , + * depthWrite: , + * + * wireframe: , + * wireframeLinewidth: , + * } + */ + + class MeshBasicMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'MeshBasicMaterial'; + this.color = new Color(0xffffff); // emissive + + this.map = null; + this.lightMap = null; + this.lightMapIntensity = 1.0; + this.aoMap = null; + this.aoMapIntensity = 1.0; + this.specularMap = null; + this.alphaMap = null; + this.envMap = null; + this.combine = MultiplyOperation; + this.reflectivity = 1; + this.refractionRatio = 0.98; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.map = source.map; + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + this.specularMap = source.specularMap; + this.alphaMap = source.alphaMap; + this.envMap = source.envMap; + this.combine = source.combine; + this.reflectivity = source.reflectivity; + this.refractionRatio = source.refractionRatio; + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + return this; + } + + } + + MeshBasicMaterial.prototype.isMeshBasicMaterial = true; + + const _vector$9 = /*@__PURE__*/new Vector3(); + + const _vector2$1 = /*@__PURE__*/new Vector2(); + + class BufferAttribute { + constructor(array, itemSize, normalized) { + if (Array.isArray(array)) { + throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.'); + } + + this.name = ''; + this.array = array; + this.itemSize = itemSize; + this.count = array !== undefined ? array.length / itemSize : 0; + this.normalized = normalized === true; + this.usage = StaticDrawUsage; + this.updateRange = { + offset: 0, + count: -1 + }; + this.version = 0; + } + + onUploadCallback() {} + + set needsUpdate(value) { + if (value === true) this.version++; + } + + setUsage(value) { + this.usage = value; + return this; + } + + copy(source) { + this.name = source.name; + this.array = new source.array.constructor(source.array); + this.itemSize = source.itemSize; + this.count = source.count; + this.normalized = source.normalized; + this.usage = source.usage; + return this; + } + + copyAt(index1, attribute, index2) { + index1 *= this.itemSize; + index2 *= attribute.itemSize; + + for (let i = 0, l = this.itemSize; i < l; i++) { + this.array[index1 + i] = attribute.array[index2 + i]; + } + + return this; + } + + copyArray(array) { + this.array.set(array); + return this; + } + + copyColorsArray(colors) { + const array = this.array; + let offset = 0; + + for (let i = 0, l = colors.length; i < l; i++) { + let color = colors[i]; + + if (color === undefined) { + console.warn('THREE.BufferAttribute.copyColorsArray(): color is undefined', i); + color = new Color(); + } + + array[offset++] = color.r; + array[offset++] = color.g; + array[offset++] = color.b; + } + + return this; + } + + copyVector2sArray(vectors) { + const array = this.array; + let offset = 0; + + for (let i = 0, l = vectors.length; i < l; i++) { + let vector = vectors[i]; + + if (vector === undefined) { + console.warn('THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i); + vector = new Vector2(); + } + + array[offset++] = vector.x; + array[offset++] = vector.y; + } + + return this; + } + + copyVector3sArray(vectors) { + const array = this.array; + let offset = 0; + + for (let i = 0, l = vectors.length; i < l; i++) { + let vector = vectors[i]; + + if (vector === undefined) { + console.warn('THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i); + vector = new Vector3(); + } + + array[offset++] = vector.x; + array[offset++] = vector.y; + array[offset++] = vector.z; + } + + return this; + } + + copyVector4sArray(vectors) { + const array = this.array; + let offset = 0; + + for (let i = 0, l = vectors.length; i < l; i++) { + let vector = vectors[i]; + + if (vector === undefined) { + console.warn('THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i); + vector = new Vector4(); + } + + array[offset++] = vector.x; + array[offset++] = vector.y; + array[offset++] = vector.z; + array[offset++] = vector.w; + } + + return this; + } + + applyMatrix3(m) { + if (this.itemSize === 2) { + for (let i = 0, l = this.count; i < l; i++) { + _vector2$1.fromBufferAttribute(this, i); + + _vector2$1.applyMatrix3(m); + + this.setXY(i, _vector2$1.x, _vector2$1.y); + } + } else if (this.itemSize === 3) { + for (let i = 0, l = this.count; i < l; i++) { + _vector$9.fromBufferAttribute(this, i); + + _vector$9.applyMatrix3(m); + + this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); + } + } + + return this; + } + + applyMatrix4(m) { + for (let i = 0, l = this.count; i < l; i++) { + _vector$9.x = this.getX(i); + _vector$9.y = this.getY(i); + _vector$9.z = this.getZ(i); + + _vector$9.applyMatrix4(m); + + this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); + } + + return this; + } + + applyNormalMatrix(m) { + for (let i = 0, l = this.count; i < l; i++) { + _vector$9.x = this.getX(i); + _vector$9.y = this.getY(i); + _vector$9.z = this.getZ(i); + + _vector$9.applyNormalMatrix(m); + + this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); + } + + return this; + } + + transformDirection(m) { + for (let i = 0, l = this.count; i < l; i++) { + _vector$9.x = this.getX(i); + _vector$9.y = this.getY(i); + _vector$9.z = this.getZ(i); + + _vector$9.transformDirection(m); + + this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); + } + + return this; + } + + set(value, offset = 0) { + this.array.set(value, offset); + return this; + } + + getX(index) { + return this.array[index * this.itemSize]; + } + + setX(index, x) { + this.array[index * this.itemSize] = x; + return this; + } + + getY(index) { + return this.array[index * this.itemSize + 1]; + } + + setY(index, y) { + this.array[index * this.itemSize + 1] = y; + return this; + } + + getZ(index) { + return this.array[index * this.itemSize + 2]; + } + + setZ(index, z) { + this.array[index * this.itemSize + 2] = z; + return this; + } + + getW(index) { + return this.array[index * this.itemSize + 3]; + } + + setW(index, w) { + this.array[index * this.itemSize + 3] = w; + return this; + } + + setXY(index, x, y) { + index *= this.itemSize; + this.array[index + 0] = x; + this.array[index + 1] = y; + return this; + } + + setXYZ(index, x, y, z) { + index *= this.itemSize; + this.array[index + 0] = x; + this.array[index + 1] = y; + this.array[index + 2] = z; + return this; + } + + setXYZW(index, x, y, z, w) { + index *= this.itemSize; + this.array[index + 0] = x; + this.array[index + 1] = y; + this.array[index + 2] = z; + this.array[index + 3] = w; + return this; + } + + onUpload(callback) { + this.onUploadCallback = callback; + return this; + } + + clone() { + return new this.constructor(this.array, this.itemSize).copy(this); + } + + toJSON() { + const data = { + itemSize: this.itemSize, + type: this.array.constructor.name, + array: Array.prototype.slice.call(this.array), + normalized: this.normalized + }; + if (this.name !== '') data.name = this.name; + if (this.usage !== StaticDrawUsage) data.usage = this.usage; + if (this.updateRange.offset !== 0 || this.updateRange.count !== -1) data.updateRange = this.updateRange; + return data; + } + + } + + BufferAttribute.prototype.isBufferAttribute = true; // + + class Int8BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Int8Array(array), itemSize, normalized); + } + + } + + class Uint8BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Uint8Array(array), itemSize, normalized); + } + + } + + class Uint8ClampedBufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Uint8ClampedArray(array), itemSize, normalized); + } + + } + + class Int16BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Int16Array(array), itemSize, normalized); + } + + } + + class Uint16BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Uint16Array(array), itemSize, normalized); + } + + } + + class Int32BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Int32Array(array), itemSize, normalized); + } + + } + + class Uint32BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Uint32Array(array), itemSize, normalized); + } + + } + + class Float16BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Uint16Array(array), itemSize, normalized); + } + + } + + Float16BufferAttribute.prototype.isFloat16BufferAttribute = true; + + class Float32BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Float32Array(array), itemSize, normalized); + } + + } + + class Float64BufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized) { + super(new Float64Array(array), itemSize, normalized); + } + + } // + + let _id = 0; + + const _m1 = /*@__PURE__*/new Matrix4(); + + const _obj = /*@__PURE__*/new Object3D(); + + const _offset = /*@__PURE__*/new Vector3(); + + const _box$1 = /*@__PURE__*/new Box3(); + + const _boxMorphTargets = /*@__PURE__*/new Box3(); + + const _vector$8 = /*@__PURE__*/new Vector3(); + + class BufferGeometry extends EventDispatcher { + constructor() { + super(); + Object.defineProperty(this, 'id', { + value: _id++ + }); + this.uuid = generateUUID(); + this.name = ''; + this.type = 'BufferGeometry'; + this.index = null; + this.attributes = {}; + this.morphAttributes = {}; + this.morphTargetsRelative = false; + this.groups = []; + this.boundingBox = null; + this.boundingSphere = null; + this.drawRange = { + start: 0, + count: Infinity + }; + this.userData = {}; + } + + getIndex() { + return this.index; + } + + setIndex(index) { + if (Array.isArray(index)) { + this.index = new (arrayMax(index) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(index, 1); + } else { + this.index = index; + } + + return this; + } + + getAttribute(name) { + return this.attributes[name]; + } + + setAttribute(name, attribute) { + this.attributes[name] = attribute; + return this; + } + + deleteAttribute(name) { + delete this.attributes[name]; + return this; + } + + hasAttribute(name) { + return this.attributes[name] !== undefined; + } + + addGroup(start, count, materialIndex = 0) { + this.groups.push({ + start: start, + count: count, + materialIndex: materialIndex + }); + } + + clearGroups() { + this.groups = []; + } + + setDrawRange(start, count) { + this.drawRange.start = start; + this.drawRange.count = count; + } + + applyMatrix4(matrix) { + const position = this.attributes.position; + + if (position !== undefined) { + position.applyMatrix4(matrix); + position.needsUpdate = true; + } + + const normal = this.attributes.normal; + + if (normal !== undefined) { + const normalMatrix = new Matrix3().getNormalMatrix(matrix); + normal.applyNormalMatrix(normalMatrix); + normal.needsUpdate = true; + } + + const tangent = this.attributes.tangent; + + if (tangent !== undefined) { + tangent.transformDirection(matrix); + tangent.needsUpdate = true; + } + + if (this.boundingBox !== null) { + this.computeBoundingBox(); + } + + if (this.boundingSphere !== null) { + this.computeBoundingSphere(); + } + + return this; + } + + applyQuaternion(q) { + _m1.makeRotationFromQuaternion(q); + + this.applyMatrix4(_m1); + return this; + } + + rotateX(angle) { + // rotate geometry around world x-axis + _m1.makeRotationX(angle); + + this.applyMatrix4(_m1); + return this; + } + + rotateY(angle) { + // rotate geometry around world y-axis + _m1.makeRotationY(angle); + + this.applyMatrix4(_m1); + return this; + } + + rotateZ(angle) { + // rotate geometry around world z-axis + _m1.makeRotationZ(angle); + + this.applyMatrix4(_m1); + return this; + } + + translate(x, y, z) { + // translate geometry + _m1.makeTranslation(x, y, z); + + this.applyMatrix4(_m1); + return this; + } + + scale(x, y, z) { + // scale geometry + _m1.makeScale(x, y, z); + + this.applyMatrix4(_m1); + return this; + } + + lookAt(vector) { + _obj.lookAt(vector); + + _obj.updateMatrix(); + + this.applyMatrix4(_obj.matrix); + return this; + } + + center() { + this.computeBoundingBox(); + this.boundingBox.getCenter(_offset).negate(); + this.translate(_offset.x, _offset.y, _offset.z); + return this; + } + + setFromPoints(points) { + const position = []; + + for (let i = 0, l = points.length; i < l; i++) { + const point = points[i]; + position.push(point.x, point.y, point.z || 0); + } + + this.setAttribute('position', new Float32BufferAttribute(position, 3)); + return this; + } + + computeBoundingBox() { + if (this.boundingBox === null) { + this.boundingBox = new Box3(); + } + + const position = this.attributes.position; + const morphAttributesPosition = this.morphAttributes.position; + + if (position && position.isGLBufferAttribute) { + console.error('THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this); + this.boundingBox.set(new Vector3(-Infinity, -Infinity, -Infinity), new Vector3(+Infinity, +Infinity, +Infinity)); + return; + } + + if (position !== undefined) { + this.boundingBox.setFromBufferAttribute(position); // process morph attributes if present + + if (morphAttributesPosition) { + for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { + const morphAttribute = morphAttributesPosition[i]; + + _box$1.setFromBufferAttribute(morphAttribute); + + if (this.morphTargetsRelative) { + _vector$8.addVectors(this.boundingBox.min, _box$1.min); + + this.boundingBox.expandByPoint(_vector$8); + + _vector$8.addVectors(this.boundingBox.max, _box$1.max); + + this.boundingBox.expandByPoint(_vector$8); + } else { + this.boundingBox.expandByPoint(_box$1.min); + this.boundingBox.expandByPoint(_box$1.max); + } + } + } + } else { + this.boundingBox.makeEmpty(); + } + + if (isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z)) { + console.error('THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this); + } + } + + computeBoundingSphere() { + if (this.boundingSphere === null) { + this.boundingSphere = new Sphere(); + } + + const position = this.attributes.position; + const morphAttributesPosition = this.morphAttributes.position; + + if (position && position.isGLBufferAttribute) { + console.error('THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this); + this.boundingSphere.set(new Vector3(), Infinity); + return; + } + + if (position) { + // first, find the center of the bounding sphere + const center = this.boundingSphere.center; + + _box$1.setFromBufferAttribute(position); // process morph attributes if present + + + if (morphAttributesPosition) { + for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { + const morphAttribute = morphAttributesPosition[i]; + + _boxMorphTargets.setFromBufferAttribute(morphAttribute); + + if (this.morphTargetsRelative) { + _vector$8.addVectors(_box$1.min, _boxMorphTargets.min); + + _box$1.expandByPoint(_vector$8); + + _vector$8.addVectors(_box$1.max, _boxMorphTargets.max); + + _box$1.expandByPoint(_vector$8); + } else { + _box$1.expandByPoint(_boxMorphTargets.min); + + _box$1.expandByPoint(_boxMorphTargets.max); + } + } + } + + _box$1.getCenter(center); // second, try to find a boundingSphere with a radius smaller than the + // boundingSphere of the boundingBox: sqrt(3) smaller in the best case + + + let maxRadiusSq = 0; + + for (let i = 0, il = position.count; i < il; i++) { + _vector$8.fromBufferAttribute(position, i); + + maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8)); + } // process morph attributes if present + + + if (morphAttributesPosition) { + for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { + const morphAttribute = morphAttributesPosition[i]; + const morphTargetsRelative = this.morphTargetsRelative; + + for (let j = 0, jl = morphAttribute.count; j < jl; j++) { + _vector$8.fromBufferAttribute(morphAttribute, j); + + if (morphTargetsRelative) { + _offset.fromBufferAttribute(position, j); + + _vector$8.add(_offset); + } + + maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8)); + } + } + } + + this.boundingSphere.radius = Math.sqrt(maxRadiusSq); + + if (isNaN(this.boundingSphere.radius)) { + console.error('THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this); + } + } + } + + computeTangents() { + const index = this.index; + const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html + // (per vertex tangents) + + if (index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined) { + console.error('THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)'); + return; + } + + const indices = index.array; + const positions = attributes.position.array; + const normals = attributes.normal.array; + const uvs = attributes.uv.array; + const nVertices = positions.length / 3; + + if (attributes.tangent === undefined) { + this.setAttribute('tangent', new BufferAttribute(new Float32Array(4 * nVertices), 4)); + } + + const tangents = attributes.tangent.array; + const tan1 = [], + tan2 = []; + + for (let i = 0; i < nVertices; i++) { + tan1[i] = new Vector3(); + tan2[i] = new Vector3(); + } + + const vA = new Vector3(), + vB = new Vector3(), + vC = new Vector3(), + uvA = new Vector2(), + uvB = new Vector2(), + uvC = new Vector2(), + sdir = new Vector3(), + tdir = new Vector3(); + + function handleTriangle(a, b, c) { + vA.fromArray(positions, a * 3); + vB.fromArray(positions, b * 3); + vC.fromArray(positions, c * 3); + uvA.fromArray(uvs, a * 2); + uvB.fromArray(uvs, b * 2); + uvC.fromArray(uvs, c * 2); + vB.sub(vA); + vC.sub(vA); + uvB.sub(uvA); + uvC.sub(uvA); + const r = 1.0 / (uvB.x * uvC.y - uvC.x * uvB.y); // silently ignore degenerate uv triangles having coincident or colinear vertices + + if (!isFinite(r)) return; + sdir.copy(vB).multiplyScalar(uvC.y).addScaledVector(vC, -uvB.y).multiplyScalar(r); + tdir.copy(vC).multiplyScalar(uvB.x).addScaledVector(vB, -uvC.x).multiplyScalar(r); + tan1[a].add(sdir); + tan1[b].add(sdir); + tan1[c].add(sdir); + tan2[a].add(tdir); + tan2[b].add(tdir); + tan2[c].add(tdir); + } + + let groups = this.groups; + + if (groups.length === 0) { + groups = [{ + start: 0, + count: indices.length + }]; + } + + for (let i = 0, il = groups.length; i < il; ++i) { + const group = groups[i]; + const start = group.start; + const count = group.count; + + for (let j = start, jl = start + count; j < jl; j += 3) { + handleTriangle(indices[j + 0], indices[j + 1], indices[j + 2]); + } + } + + const tmp = new Vector3(), + tmp2 = new Vector3(); + const n = new Vector3(), + n2 = new Vector3(); + + function handleVertex(v) { + n.fromArray(normals, v * 3); + n2.copy(n); + const t = tan1[v]; // Gram-Schmidt orthogonalize + + tmp.copy(t); + tmp.sub(n.multiplyScalar(n.dot(t))).normalize(); // Calculate handedness + + tmp2.crossVectors(n2, t); + const test = tmp2.dot(tan2[v]); + const w = test < 0.0 ? -1.0 : 1.0; + tangents[v * 4] = tmp.x; + tangents[v * 4 + 1] = tmp.y; + tangents[v * 4 + 2] = tmp.z; + tangents[v * 4 + 3] = w; + } + + for (let i = 0, il = groups.length; i < il; ++i) { + const group = groups[i]; + const start = group.start; + const count = group.count; + + for (let j = start, jl = start + count; j < jl; j += 3) { + handleVertex(indices[j + 0]); + handleVertex(indices[j + 1]); + handleVertex(indices[j + 2]); + } + } + } + + computeVertexNormals() { + const index = this.index; + const positionAttribute = this.getAttribute('position'); + + if (positionAttribute !== undefined) { + let normalAttribute = this.getAttribute('normal'); + + if (normalAttribute === undefined) { + normalAttribute = new BufferAttribute(new Float32Array(positionAttribute.count * 3), 3); + this.setAttribute('normal', normalAttribute); + } else { + // reset existing normals to zero + for (let i = 0, il = normalAttribute.count; i < il; i++) { + normalAttribute.setXYZ(i, 0, 0, 0); + } + } + + const pA = new Vector3(), + pB = new Vector3(), + pC = new Vector3(); + const nA = new Vector3(), + nB = new Vector3(), + nC = new Vector3(); + const cb = new Vector3(), + ab = new Vector3(); // indexed elements + + if (index) { + for (let i = 0, il = index.count; i < il; i += 3) { + const vA = index.getX(i + 0); + const vB = index.getX(i + 1); + const vC = index.getX(i + 2); + pA.fromBufferAttribute(positionAttribute, vA); + pB.fromBufferAttribute(positionAttribute, vB); + pC.fromBufferAttribute(positionAttribute, vC); + cb.subVectors(pC, pB); + ab.subVectors(pA, pB); + cb.cross(ab); + nA.fromBufferAttribute(normalAttribute, vA); + nB.fromBufferAttribute(normalAttribute, vB); + nC.fromBufferAttribute(normalAttribute, vC); + nA.add(cb); + nB.add(cb); + nC.add(cb); + normalAttribute.setXYZ(vA, nA.x, nA.y, nA.z); + normalAttribute.setXYZ(vB, nB.x, nB.y, nB.z); + normalAttribute.setXYZ(vC, nC.x, nC.y, nC.z); + } + } else { + // non-indexed elements (unconnected triangle soup) + for (let i = 0, il = positionAttribute.count; i < il; i += 3) { + pA.fromBufferAttribute(positionAttribute, i + 0); + pB.fromBufferAttribute(positionAttribute, i + 1); + pC.fromBufferAttribute(positionAttribute, i + 2); + cb.subVectors(pC, pB); + ab.subVectors(pA, pB); + cb.cross(ab); + normalAttribute.setXYZ(i + 0, cb.x, cb.y, cb.z); + normalAttribute.setXYZ(i + 1, cb.x, cb.y, cb.z); + normalAttribute.setXYZ(i + 2, cb.x, cb.y, cb.z); + } + } + + this.normalizeNormals(); + normalAttribute.needsUpdate = true; + } + } + + merge(geometry, offset) { + if (!(geometry && geometry.isBufferGeometry)) { + console.error('THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry); + return; + } + + if (offset === undefined) { + offset = 0; + console.warn('THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.'); + } + + const attributes = this.attributes; + + for (const key in attributes) { + if (geometry.attributes[key] === undefined) continue; + const attribute1 = attributes[key]; + const attributeArray1 = attribute1.array; + const attribute2 = geometry.attributes[key]; + const attributeArray2 = attribute2.array; + const attributeOffset = attribute2.itemSize * offset; + const length = Math.min(attributeArray2.length, attributeArray1.length - attributeOffset); + + for (let i = 0, j = attributeOffset; i < length; i++, j++) { + attributeArray1[j] = attributeArray2[i]; + } + } + + return this; + } + + normalizeNormals() { + const normals = this.attributes.normal; + + for (let i = 0, il = normals.count; i < il; i++) { + _vector$8.fromBufferAttribute(normals, i); + + _vector$8.normalize(); + + normals.setXYZ(i, _vector$8.x, _vector$8.y, _vector$8.z); + } + } + + toNonIndexed() { + function convertBufferAttribute(attribute, indices) { + const array = attribute.array; + const itemSize = attribute.itemSize; + const normalized = attribute.normalized; + const array2 = new array.constructor(indices.length * itemSize); + let index = 0, + index2 = 0; + + for (let i = 0, l = indices.length; i < l; i++) { + if (attribute.isInterleavedBufferAttribute) { + index = indices[i] * attribute.data.stride + attribute.offset; + } else { + index = indices[i] * itemSize; + } + + for (let j = 0; j < itemSize; j++) { + array2[index2++] = array[index++]; + } + } + + return new BufferAttribute(array2, itemSize, normalized); + } // + + + if (this.index === null) { + console.warn('THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.'); + return this; + } + + const geometry2 = new BufferGeometry(); + const indices = this.index.array; + const attributes = this.attributes; // attributes + + for (const name in attributes) { + const attribute = attributes[name]; + const newAttribute = convertBufferAttribute(attribute, indices); + geometry2.setAttribute(name, newAttribute); + } // morph attributes + + + const morphAttributes = this.morphAttributes; + + for (const name in morphAttributes) { + const morphArray = []; + const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes + + for (let i = 0, il = morphAttribute.length; i < il; i++) { + const attribute = morphAttribute[i]; + const newAttribute = convertBufferAttribute(attribute, indices); + morphArray.push(newAttribute); + } + + geometry2.morphAttributes[name] = morphArray; + } + + geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups + + const groups = this.groups; + + for (let i = 0, l = groups.length; i < l; i++) { + const group = groups[i]; + geometry2.addGroup(group.start, group.count, group.materialIndex); + } + + return geometry2; + } + + toJSON() { + const data = { + metadata: { + version: 4.5, + type: 'BufferGeometry', + generator: 'BufferGeometry.toJSON' + } + }; // standard BufferGeometry serialization + + data.uuid = this.uuid; + data.type = this.type; + if (this.name !== '') data.name = this.name; + if (Object.keys(this.userData).length > 0) data.userData = this.userData; + + if (this.parameters !== undefined) { + const parameters = this.parameters; + + for (const key in parameters) { + if (parameters[key] !== undefined) data[key] = parameters[key]; + } + + return data; + } // for simplicity the code assumes attributes are not shared across geometries, see #15811 + + + data.data = { + attributes: {} + }; + const index = this.index; + + if (index !== null) { + data.data.index = { + type: index.array.constructor.name, + array: Array.prototype.slice.call(index.array) + }; + } + + const attributes = this.attributes; + + for (const key in attributes) { + const attribute = attributes[key]; + data.data.attributes[key] = attribute.toJSON(data.data); + } + + const morphAttributes = {}; + let hasMorphAttributes = false; + + for (const key in this.morphAttributes) { + const attributeArray = this.morphAttributes[key]; + const array = []; + + for (let i = 0, il = attributeArray.length; i < il; i++) { + const attribute = attributeArray[i]; + array.push(attribute.toJSON(data.data)); + } + + if (array.length > 0) { + morphAttributes[key] = array; + hasMorphAttributes = true; + } + } + + if (hasMorphAttributes) { + data.data.morphAttributes = morphAttributes; + data.data.morphTargetsRelative = this.morphTargetsRelative; + } + + const groups = this.groups; + + if (groups.length > 0) { + data.data.groups = JSON.parse(JSON.stringify(groups)); + } + + const boundingSphere = this.boundingSphere; + + if (boundingSphere !== null) { + data.data.boundingSphere = { + center: boundingSphere.center.toArray(), + radius: boundingSphere.radius + }; + } + + return data; + } + + clone() { + return new this.constructor().copy(this); + } + + copy(source) { + // reset + this.index = null; + this.attributes = {}; + this.morphAttributes = {}; + this.groups = []; + this.boundingBox = null; + this.boundingSphere = null; // used for storing cloned, shared data + + const data = {}; // name + + this.name = source.name; // index + + const index = source.index; + + if (index !== null) { + this.setIndex(index.clone(data)); + } // attributes + + + const attributes = source.attributes; + + for (const name in attributes) { + const attribute = attributes[name]; + this.setAttribute(name, attribute.clone(data)); + } // morph attributes + + + const morphAttributes = source.morphAttributes; + + for (const name in morphAttributes) { + const array = []; + const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes + + for (let i = 0, l = morphAttribute.length; i < l; i++) { + array.push(morphAttribute[i].clone(data)); + } + + this.morphAttributes[name] = array; + } + + this.morphTargetsRelative = source.morphTargetsRelative; // groups + + const groups = source.groups; + + for (let i = 0, l = groups.length; i < l; i++) { + const group = groups[i]; + this.addGroup(group.start, group.count, group.materialIndex); + } // bounding box + + + const boundingBox = source.boundingBox; + + if (boundingBox !== null) { + this.boundingBox = boundingBox.clone(); + } // bounding sphere + + + const boundingSphere = source.boundingSphere; + + if (boundingSphere !== null) { + this.boundingSphere = boundingSphere.clone(); + } // draw range + + + this.drawRange.start = source.drawRange.start; + this.drawRange.count = source.drawRange.count; // user data + + this.userData = source.userData; // geometry generator parameters + + if (source.parameters !== undefined) this.parameters = Object.assign({}, source.parameters); + return this; + } + + dispose() { + this.dispatchEvent({ + type: 'dispose' + }); + } + + } + + BufferGeometry.prototype.isBufferGeometry = true; + + const _inverseMatrix$2 = /*@__PURE__*/new Matrix4(); + + const _ray$2 = /*@__PURE__*/new Ray(); + + const _sphere$3 = /*@__PURE__*/new Sphere(); + + const _vA$1 = /*@__PURE__*/new Vector3(); + + const _vB$1 = /*@__PURE__*/new Vector3(); + + const _vC$1 = /*@__PURE__*/new Vector3(); + + const _tempA = /*@__PURE__*/new Vector3(); + + const _tempB = /*@__PURE__*/new Vector3(); + + const _tempC = /*@__PURE__*/new Vector3(); + + const _morphA = /*@__PURE__*/new Vector3(); + + const _morphB = /*@__PURE__*/new Vector3(); + + const _morphC = /*@__PURE__*/new Vector3(); + + const _uvA$1 = /*@__PURE__*/new Vector2(); + + const _uvB$1 = /*@__PURE__*/new Vector2(); + + const _uvC$1 = /*@__PURE__*/new Vector2(); + + const _intersectionPoint = /*@__PURE__*/new Vector3(); + + const _intersectionPointWorld = /*@__PURE__*/new Vector3(); + + class Mesh extends Object3D { + constructor(geometry = new BufferGeometry(), material = new MeshBasicMaterial()) { + super(); + this.type = 'Mesh'; + this.geometry = geometry; + this.material = material; + this.updateMorphTargets(); + } + + copy(source) { + super.copy(source); + + if (source.morphTargetInfluences !== undefined) { + this.morphTargetInfluences = source.morphTargetInfluences.slice(); + } + + if (source.morphTargetDictionary !== undefined) { + this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary); + } + + this.material = source.material; + this.geometry = source.geometry; + return this; + } + + updateMorphTargets() { + const geometry = this.geometry; + + if (geometry.isBufferGeometry) { + const morphAttributes = geometry.morphAttributes; + const keys = Object.keys(morphAttributes); + + if (keys.length > 0) { + const morphAttribute = morphAttributes[keys[0]]; + + if (morphAttribute !== undefined) { + this.morphTargetInfluences = []; + this.morphTargetDictionary = {}; + + for (let m = 0, ml = morphAttribute.length; m < ml; m++) { + const name = morphAttribute[m].name || String(m); + this.morphTargetInfluences.push(0); + this.morphTargetDictionary[name] = m; + } + } + } + } else { + const morphTargets = geometry.morphTargets; + + if (morphTargets !== undefined && morphTargets.length > 0) { + console.error('THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + } + } + + raycast(raycaster, intersects) { + const geometry = this.geometry; + const material = this.material; + const matrixWorld = this.matrixWorld; + if (material === undefined) return; // Checking boundingSphere distance to ray + + if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); + + _sphere$3.copy(geometry.boundingSphere); + + _sphere$3.applyMatrix4(matrixWorld); + + if (raycaster.ray.intersectsSphere(_sphere$3) === false) return; // + + _inverseMatrix$2.copy(matrixWorld).invert(); + + _ray$2.copy(raycaster.ray).applyMatrix4(_inverseMatrix$2); // Check boundingBox before continuing + + + if (geometry.boundingBox !== null) { + if (_ray$2.intersectsBox(geometry.boundingBox) === false) return; + } + + let intersection; + + if (geometry.isBufferGeometry) { + const index = geometry.index; + const position = geometry.attributes.position; + const morphPosition = geometry.morphAttributes.position; + const morphTargetsRelative = geometry.morphTargetsRelative; + const uv = geometry.attributes.uv; + const uv2 = geometry.attributes.uv2; + const groups = geometry.groups; + const drawRange = geometry.drawRange; + + if (index !== null) { + // indexed buffer geometry + if (Array.isArray(material)) { + for (let i = 0, il = groups.length; i < il; i++) { + const group = groups[i]; + const groupMaterial = material[group.materialIndex]; + const start = Math.max(group.start, drawRange.start); + const end = Math.min(index.count, Math.min(group.start + group.count, drawRange.start + drawRange.count)); + + for (let j = start, jl = end; j < jl; j += 3) { + const a = index.getX(j); + const b = index.getX(j + 1); + const c = index.getX(j + 2); + intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); + + if (intersection) { + intersection.faceIndex = Math.floor(j / 3); // triangle number in indexed buffer semantics + + intersection.face.materialIndex = group.materialIndex; + intersects.push(intersection); + } + } + } + } else { + const start = Math.max(0, drawRange.start); + const end = Math.min(index.count, drawRange.start + drawRange.count); + + for (let i = start, il = end; i < il; i += 3) { + const a = index.getX(i); + const b = index.getX(i + 1); + const c = index.getX(i + 2); + intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); + + if (intersection) { + intersection.faceIndex = Math.floor(i / 3); // triangle number in indexed buffer semantics + + intersects.push(intersection); + } + } + } + } else if (position !== undefined) { + // non-indexed buffer geometry + if (Array.isArray(material)) { + for (let i = 0, il = groups.length; i < il; i++) { + const group = groups[i]; + const groupMaterial = material[group.materialIndex]; + const start = Math.max(group.start, drawRange.start); + const end = Math.min(position.count, Math.min(group.start + group.count, drawRange.start + drawRange.count)); + + for (let j = start, jl = end; j < jl; j += 3) { + const a = j; + const b = j + 1; + const c = j + 2; + intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); + + if (intersection) { + intersection.faceIndex = Math.floor(j / 3); // triangle number in non-indexed buffer semantics + + intersection.face.materialIndex = group.materialIndex; + intersects.push(intersection); + } + } + } + } else { + const start = Math.max(0, drawRange.start); + const end = Math.min(position.count, drawRange.start + drawRange.count); + + for (let i = start, il = end; i < il; i += 3) { + const a = i; + const b = i + 1; + const c = i + 2; + intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); + + if (intersection) { + intersection.faceIndex = Math.floor(i / 3); // triangle number in non-indexed buffer semantics + + intersects.push(intersection); + } + } + } + } + } else if (geometry.isGeometry) { + console.error('THREE.Mesh.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + } + + } + + Mesh.prototype.isMesh = true; + + function checkIntersection(object, material, raycaster, ray, pA, pB, pC, point) { + let intersect; + + if (material.side === BackSide) { + intersect = ray.intersectTriangle(pC, pB, pA, true, point); + } else { + intersect = ray.intersectTriangle(pA, pB, pC, material.side !== DoubleSide, point); + } + + if (intersect === null) return null; + + _intersectionPointWorld.copy(point); + + _intersectionPointWorld.applyMatrix4(object.matrixWorld); + + const distance = raycaster.ray.origin.distanceTo(_intersectionPointWorld); + if (distance < raycaster.near || distance > raycaster.far) return null; + return { + distance: distance, + point: _intersectionPointWorld.clone(), + object: object + }; + } + + function checkBufferGeometryIntersection(object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) { + _vA$1.fromBufferAttribute(position, a); + + _vB$1.fromBufferAttribute(position, b); + + _vC$1.fromBufferAttribute(position, c); + + const morphInfluences = object.morphTargetInfluences; + + if (morphPosition && morphInfluences) { + _morphA.set(0, 0, 0); + + _morphB.set(0, 0, 0); + + _morphC.set(0, 0, 0); + + for (let i = 0, il = morphPosition.length; i < il; i++) { + const influence = morphInfluences[i]; + const morphAttribute = morphPosition[i]; + if (influence === 0) continue; + + _tempA.fromBufferAttribute(morphAttribute, a); + + _tempB.fromBufferAttribute(morphAttribute, b); + + _tempC.fromBufferAttribute(morphAttribute, c); + + if (morphTargetsRelative) { + _morphA.addScaledVector(_tempA, influence); + + _morphB.addScaledVector(_tempB, influence); + + _morphC.addScaledVector(_tempC, influence); + } else { + _morphA.addScaledVector(_tempA.sub(_vA$1), influence); + + _morphB.addScaledVector(_tempB.sub(_vB$1), influence); + + _morphC.addScaledVector(_tempC.sub(_vC$1), influence); + } + } + + _vA$1.add(_morphA); + + _vB$1.add(_morphB); + + _vC$1.add(_morphC); + } + + if (object.isSkinnedMesh) { + object.boneTransform(a, _vA$1); + object.boneTransform(b, _vB$1); + object.boneTransform(c, _vC$1); + } + + const intersection = checkIntersection(object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint); + + if (intersection) { + if (uv) { + _uvA$1.fromBufferAttribute(uv, a); + + _uvB$1.fromBufferAttribute(uv, b); + + _uvC$1.fromBufferAttribute(uv, c); + + intersection.uv = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2()); + } + + if (uv2) { + _uvA$1.fromBufferAttribute(uv2, a); + + _uvB$1.fromBufferAttribute(uv2, b); + + _uvC$1.fromBufferAttribute(uv2, c); + + intersection.uv2 = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2()); + } + + const face = { + a: a, + b: b, + c: c, + normal: new Vector3(), + materialIndex: 0 + }; + Triangle.getNormal(_vA$1, _vB$1, _vC$1, face.normal); + intersection.face = face; + } + + return intersection; + } + + class BoxGeometry extends BufferGeometry { + constructor(width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1) { + super(); + this.type = 'BoxGeometry'; + this.parameters = { + width: width, + height: height, + depth: depth, + widthSegments: widthSegments, + heightSegments: heightSegments, + depthSegments: depthSegments + }; + const scope = this; // segments + + widthSegments = Math.floor(widthSegments); + heightSegments = Math.floor(heightSegments); + depthSegments = Math.floor(depthSegments); // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // helper variables + + let numberOfVertices = 0; + let groupStart = 0; // build each side of the box geometry + + buildPlane('z', 'y', 'x', -1, -1, depth, height, width, depthSegments, heightSegments, 0); // px + + buildPlane('z', 'y', 'x', 1, -1, depth, height, -width, depthSegments, heightSegments, 1); // nx + + buildPlane('x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2); // py + + buildPlane('x', 'z', 'y', 1, -1, width, depth, -height, widthSegments, depthSegments, 3); // ny + + buildPlane('x', 'y', 'z', 1, -1, width, height, depth, widthSegments, heightSegments, 4); // pz + + buildPlane('x', 'y', 'z', -1, -1, width, height, -depth, widthSegments, heightSegments, 5); // nz + // build geometry + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + + function buildPlane(u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex) { + const segmentWidth = width / gridX; + const segmentHeight = height / gridY; + const widthHalf = width / 2; + const heightHalf = height / 2; + const depthHalf = depth / 2; + const gridX1 = gridX + 1; + const gridY1 = gridY + 1; + let vertexCounter = 0; + let groupCount = 0; + const vector = new Vector3(); // generate vertices, normals and uvs + + for (let iy = 0; iy < gridY1; iy++) { + const y = iy * segmentHeight - heightHalf; + + for (let ix = 0; ix < gridX1; ix++) { + const x = ix * segmentWidth - widthHalf; // set values to correct vector component + + vector[u] = x * udir; + vector[v] = y * vdir; + vector[w] = depthHalf; // now apply vector to vertex buffer + + vertices.push(vector.x, vector.y, vector.z); // set values to correct vector component + + vector[u] = 0; + vector[v] = 0; + vector[w] = depth > 0 ? 1 : -1; // now apply vector to normal buffer + + normals.push(vector.x, vector.y, vector.z); // uvs + + uvs.push(ix / gridX); + uvs.push(1 - iy / gridY); // counters + + vertexCounter += 1; + } + } // indices + // 1. you need three indices to draw a single face + // 2. a single segment consists of two faces + // 3. so we need to generate six (2*3) indices per segment + + + for (let iy = 0; iy < gridY; iy++) { + for (let ix = 0; ix < gridX; ix++) { + const a = numberOfVertices + ix + gridX1 * iy; + const b = numberOfVertices + ix + gridX1 * (iy + 1); + const c = numberOfVertices + (ix + 1) + gridX1 * (iy + 1); + const d = numberOfVertices + (ix + 1) + gridX1 * iy; // faces + + indices.push(a, b, d); + indices.push(b, c, d); // increase counter + + groupCount += 6; + } + } // add a group to the geometry. this will ensure multi material support + + + scope.addGroup(groupStart, groupCount, materialIndex); // calculate new start value for groups + + groupStart += groupCount; // update total number of vertices + + numberOfVertices += vertexCounter; + } + } + + static fromJSON(data) { + return new BoxGeometry(data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments); + } + + } + + /** + * Uniform Utilities + */ + function cloneUniforms(src) { + const dst = {}; + + for (const u in src) { + dst[u] = {}; + + for (const p in src[u]) { + const property = src[u][p]; + + if (property && (property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion)) { + dst[u][p] = property.clone(); + } else if (Array.isArray(property)) { + dst[u][p] = property.slice(); + } else { + dst[u][p] = property; + } + } + } + + return dst; + } + function mergeUniforms(uniforms) { + const merged = {}; + + for (let u = 0; u < uniforms.length; u++) { + const tmp = cloneUniforms(uniforms[u]); + + for (const p in tmp) { + merged[p] = tmp[p]; + } + } + + return merged; + } // Legacy + + const UniformsUtils = { + clone: cloneUniforms, + merge: mergeUniforms + }; + + var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}"; + + var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}"; + + /** + * parameters = { + * defines: { "label" : "value" }, + * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } }, + * + * fragmentShader: , + * vertexShader: , + * + * wireframe: , + * wireframeLinewidth: , + * + * lights: + * } + */ + + class ShaderMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'ShaderMaterial'; + this.defines = {}; + this.uniforms = {}; + this.vertexShader = default_vertex; + this.fragmentShader = default_fragment; + this.linewidth = 1; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.fog = false; // set to use scene fog + + this.lights = false; // set to use scene lights + + this.clipping = false; // set to use user-defined clipping planes + + this.extensions = { + derivatives: false, + // set to use derivatives + fragDepth: false, + // set to use fragment depth values + drawBuffers: false, + // set to use draw buffers + shaderTextureLOD: false // set to use shader texture LOD + + }; // When rendered geometry doesn't include these attributes but the material does, + // use these default values in WebGL. This avoids errors when buffer data is missing. + + this.defaultAttributeValues = { + 'color': [1, 1, 1], + 'uv': [0, 0], + 'uv2': [0, 0] + }; + this.index0AttributeName = undefined; + this.uniformsNeedUpdate = false; + this.glslVersion = null; + + if (parameters !== undefined) { + if (parameters.attributes !== undefined) { + console.error('THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.'); + } + + this.setValues(parameters); + } + } + + copy(source) { + super.copy(source); + this.fragmentShader = source.fragmentShader; + this.vertexShader = source.vertexShader; + this.uniforms = cloneUniforms(source.uniforms); + this.defines = Object.assign({}, source.defines); + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.lights = source.lights; + this.clipping = source.clipping; + this.extensions = Object.assign({}, source.extensions); + this.glslVersion = source.glslVersion; + return this; + } + + toJSON(meta) { + const data = super.toJSON(meta); + data.glslVersion = this.glslVersion; + data.uniforms = {}; + + for (const name in this.uniforms) { + const uniform = this.uniforms[name]; + const value = uniform.value; + + if (value && value.isTexture) { + data.uniforms[name] = { + type: 't', + value: value.toJSON(meta).uuid + }; + } else if (value && value.isColor) { + data.uniforms[name] = { + type: 'c', + value: value.getHex() + }; + } else if (value && value.isVector2) { + data.uniforms[name] = { + type: 'v2', + value: value.toArray() + }; + } else if (value && value.isVector3) { + data.uniforms[name] = { + type: 'v3', + value: value.toArray() + }; + } else if (value && value.isVector4) { + data.uniforms[name] = { + type: 'v4', + value: value.toArray() + }; + } else if (value && value.isMatrix3) { + data.uniforms[name] = { + type: 'm3', + value: value.toArray() + }; + } else if (value && value.isMatrix4) { + data.uniforms[name] = { + type: 'm4', + value: value.toArray() + }; + } else { + data.uniforms[name] = { + value: value + }; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far + } + } + + if (Object.keys(this.defines).length > 0) data.defines = this.defines; + data.vertexShader = this.vertexShader; + data.fragmentShader = this.fragmentShader; + const extensions = {}; + + for (const key in this.extensions) { + if (this.extensions[key] === true) extensions[key] = true; + } + + if (Object.keys(extensions).length > 0) data.extensions = extensions; + return data; + } + + } + + ShaderMaterial.prototype.isShaderMaterial = true; + + class Camera extends Object3D { + constructor() { + super(); + this.type = 'Camera'; + this.matrixWorldInverse = new Matrix4(); + this.projectionMatrix = new Matrix4(); + this.projectionMatrixInverse = new Matrix4(); + } + + copy(source, recursive) { + super.copy(source, recursive); + this.matrixWorldInverse.copy(source.matrixWorldInverse); + this.projectionMatrix.copy(source.projectionMatrix); + this.projectionMatrixInverse.copy(source.projectionMatrixInverse); + return this; + } + + getWorldDirection(target) { + this.updateWorldMatrix(true, false); + const e = this.matrixWorld.elements; + return target.set(-e[8], -e[9], -e[10]).normalize(); + } + + updateMatrixWorld(force) { + super.updateMatrixWorld(force); + this.matrixWorldInverse.copy(this.matrixWorld).invert(); + } + + updateWorldMatrix(updateParents, updateChildren) { + super.updateWorldMatrix(updateParents, updateChildren); + this.matrixWorldInverse.copy(this.matrixWorld).invert(); + } + + clone() { + return new this.constructor().copy(this); + } + + } + + Camera.prototype.isCamera = true; + + class PerspectiveCamera extends Camera { + constructor(fov = 50, aspect = 1, near = 0.1, far = 2000) { + super(); + this.type = 'PerspectiveCamera'; + this.fov = fov; + this.zoom = 1; + this.near = near; + this.far = far; + this.focus = 10; + this.aspect = aspect; + this.view = null; + this.filmGauge = 35; // width of the film (default in millimeters) + + this.filmOffset = 0; // horizontal film offset (same unit as gauge) + + this.updateProjectionMatrix(); + } + + copy(source, recursive) { + super.copy(source, recursive); + this.fov = source.fov; + this.zoom = source.zoom; + this.near = source.near; + this.far = source.far; + this.focus = source.focus; + this.aspect = source.aspect; + this.view = source.view === null ? null : Object.assign({}, source.view); + this.filmGauge = source.filmGauge; + this.filmOffset = source.filmOffset; + return this; + } + /** + * Sets the FOV by focal length in respect to the current .filmGauge. + * + * The default film gauge is 35, so that the focal length can be specified for + * a 35mm (full frame) camera. + * + * Values for focal length and film gauge must have the same unit. + */ + + + setFocalLength(focalLength) { + /** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */ + const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength; + this.fov = RAD2DEG * 2 * Math.atan(vExtentSlope); + this.updateProjectionMatrix(); + } + /** + * Calculates the focal length from the current .fov and .filmGauge. + */ + + + getFocalLength() { + const vExtentSlope = Math.tan(DEG2RAD * 0.5 * this.fov); + return 0.5 * this.getFilmHeight() / vExtentSlope; + } + + getEffectiveFOV() { + return RAD2DEG * 2 * Math.atan(Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom); + } + + getFilmWidth() { + // film not completely covered in portrait format (aspect < 1) + return this.filmGauge * Math.min(this.aspect, 1); + } + + getFilmHeight() { + // film not completely covered in landscape format (aspect > 1) + return this.filmGauge / Math.max(this.aspect, 1); + } + /** + * Sets an offset in a larger frustum. This is useful for multi-window or + * multi-monitor/multi-machine setups. + * + * For example, if you have 3x2 monitors and each monitor is 1920x1080 and + * the monitors are in grid like this + * + * +---+---+---+ + * | A | B | C | + * +---+---+---+ + * | D | E | F | + * +---+---+---+ + * + * then for each monitor you would call it like this + * + * const w = 1920; + * const h = 1080; + * const fullWidth = w * 3; + * const fullHeight = h * 2; + * + * --A-- + * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); + * --B-- + * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); + * --C-- + * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); + * --D-- + * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); + * --E-- + * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); + * --F-- + * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); + * + * Note there is no reason monitors have to be the same size or in a grid. + */ + + + setViewOffset(fullWidth, fullHeight, x, y, width, height) { + this.aspect = fullWidth / fullHeight; + + if (this.view === null) { + this.view = { + enabled: true, + fullWidth: 1, + fullHeight: 1, + offsetX: 0, + offsetY: 0, + width: 1, + height: 1 + }; + } + + this.view.enabled = true; + this.view.fullWidth = fullWidth; + this.view.fullHeight = fullHeight; + this.view.offsetX = x; + this.view.offsetY = y; + this.view.width = width; + this.view.height = height; + this.updateProjectionMatrix(); + } + + clearViewOffset() { + if (this.view !== null) { + this.view.enabled = false; + } + + this.updateProjectionMatrix(); + } + + updateProjectionMatrix() { + const near = this.near; + let top = near * Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom; + let height = 2 * top; + let width = this.aspect * height; + let left = -0.5 * width; + const view = this.view; + + if (this.view !== null && this.view.enabled) { + const fullWidth = view.fullWidth, + fullHeight = view.fullHeight; + left += view.offsetX * width / fullWidth; + top -= view.offsetY * height / fullHeight; + width *= view.width / fullWidth; + height *= view.height / fullHeight; + } + + const skew = this.filmOffset; + if (skew !== 0) left += near * skew / this.getFilmWidth(); + this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far); + this.projectionMatrixInverse.copy(this.projectionMatrix).invert(); + } + + toJSON(meta) { + const data = super.toJSON(meta); + data.object.fov = this.fov; + data.object.zoom = this.zoom; + data.object.near = this.near; + data.object.far = this.far; + data.object.focus = this.focus; + data.object.aspect = this.aspect; + if (this.view !== null) data.object.view = Object.assign({}, this.view); + data.object.filmGauge = this.filmGauge; + data.object.filmOffset = this.filmOffset; + return data; + } + + } + + PerspectiveCamera.prototype.isPerspectiveCamera = true; + + const fov = 90, + aspect = 1; + + class CubeCamera extends Object3D { + constructor(near, far, renderTarget) { + super(); + this.type = 'CubeCamera'; + + if (renderTarget.isWebGLCubeRenderTarget !== true) { + console.error('THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.'); + return; + } + + this.renderTarget = renderTarget; + const cameraPX = new PerspectiveCamera(fov, aspect, near, far); + cameraPX.layers = this.layers; + cameraPX.up.set(0, -1, 0); + cameraPX.lookAt(new Vector3(1, 0, 0)); + this.add(cameraPX); + const cameraNX = new PerspectiveCamera(fov, aspect, near, far); + cameraNX.layers = this.layers; + cameraNX.up.set(0, -1, 0); + cameraNX.lookAt(new Vector3(-1, 0, 0)); + this.add(cameraNX); + const cameraPY = new PerspectiveCamera(fov, aspect, near, far); + cameraPY.layers = this.layers; + cameraPY.up.set(0, 0, 1); + cameraPY.lookAt(new Vector3(0, 1, 0)); + this.add(cameraPY); + const cameraNY = new PerspectiveCamera(fov, aspect, near, far); + cameraNY.layers = this.layers; + cameraNY.up.set(0, 0, -1); + cameraNY.lookAt(new Vector3(0, -1, 0)); + this.add(cameraNY); + const cameraPZ = new PerspectiveCamera(fov, aspect, near, far); + cameraPZ.layers = this.layers; + cameraPZ.up.set(0, -1, 0); + cameraPZ.lookAt(new Vector3(0, 0, 1)); + this.add(cameraPZ); + const cameraNZ = new PerspectiveCamera(fov, aspect, near, far); + cameraNZ.layers = this.layers; + cameraNZ.up.set(0, -1, 0); + cameraNZ.lookAt(new Vector3(0, 0, -1)); + this.add(cameraNZ); + } + + update(renderer, scene) { + if (this.parent === null) this.updateMatrixWorld(); + const renderTarget = this.renderTarget; + const [cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ] = this.children; + const currentXrEnabled = renderer.xr.enabled; + const currentRenderTarget = renderer.getRenderTarget(); + renderer.xr.enabled = false; + const generateMipmaps = renderTarget.texture.generateMipmaps; + renderTarget.texture.generateMipmaps = false; + renderer.setRenderTarget(renderTarget, 0); + renderer.render(scene, cameraPX); + renderer.setRenderTarget(renderTarget, 1); + renderer.render(scene, cameraNX); + renderer.setRenderTarget(renderTarget, 2); + renderer.render(scene, cameraPY); + renderer.setRenderTarget(renderTarget, 3); + renderer.render(scene, cameraNY); + renderer.setRenderTarget(renderTarget, 4); + renderer.render(scene, cameraPZ); + renderTarget.texture.generateMipmaps = generateMipmaps; + renderer.setRenderTarget(renderTarget, 5); + renderer.render(scene, cameraNZ); + renderer.setRenderTarget(currentRenderTarget); + renderer.xr.enabled = currentXrEnabled; + } + + } + + class CubeTexture extends Texture { + constructor(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) { + images = images !== undefined ? images : []; + mapping = mapping !== undefined ? mapping : CubeReflectionMapping; + super(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding); + this.flipY = false; + } + + get images() { + return this.image; + } + + set images(value) { + this.image = value; + } + + } + + CubeTexture.prototype.isCubeTexture = true; + + class WebGLCubeRenderTarget extends WebGLRenderTarget { + constructor(size, options, dummy) { + if (Number.isInteger(options)) { + console.warn('THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )'); + options = dummy; + } + + super(size, size, options); + options = options || {}; // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js) + // in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words, + // in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly. + // three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped + // and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture + // as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures). + + this.texture = new CubeTexture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding); + this.texture.isRenderTargetTexture = true; + this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; + this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; + this.texture._needsFlipEnvMap = false; + } + + fromEquirectangularTexture(renderer, texture) { + this.texture.type = texture.type; + this.texture.format = RGBAFormat; // see #18859 + + this.texture.encoding = texture.encoding; + this.texture.generateMipmaps = texture.generateMipmaps; + this.texture.minFilter = texture.minFilter; + this.texture.magFilter = texture.magFilter; + const shader = { + uniforms: { + tEquirect: { + value: null + } + }, + vertexShader: + /* glsl */ + ` + + varying vec3 vWorldDirection; + + vec3 transformDirection( in vec3 dir, in mat4 matrix ) { + + return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); + + } + + void main() { + + vWorldDirection = transformDirection( position, modelMatrix ); + + #include + #include + + } + `, + fragmentShader: + /* glsl */ + ` + + uniform sampler2D tEquirect; + + varying vec3 vWorldDirection; + + #include + + void main() { + + vec3 direction = normalize( vWorldDirection ); + + vec2 sampleUV = equirectUv( direction ); + + gl_FragColor = texture2D( tEquirect, sampleUV ); + + } + ` + }; + const geometry = new BoxGeometry(5, 5, 5); + const material = new ShaderMaterial({ + name: 'CubemapFromEquirect', + uniforms: cloneUniforms(shader.uniforms), + vertexShader: shader.vertexShader, + fragmentShader: shader.fragmentShader, + side: BackSide, + blending: NoBlending + }); + material.uniforms.tEquirect.value = texture; + const mesh = new Mesh(geometry, material); + const currentMinFilter = texture.minFilter; // Avoid blurred poles + + if (texture.minFilter === LinearMipmapLinearFilter) texture.minFilter = LinearFilter; + const camera = new CubeCamera(1, 10, this); + camera.update(renderer, mesh); + texture.minFilter = currentMinFilter; + mesh.geometry.dispose(); + mesh.material.dispose(); + return this; + } + + clear(renderer, color, depth, stencil) { + const currentRenderTarget = renderer.getRenderTarget(); + + for (let i = 0; i < 6; i++) { + renderer.setRenderTarget(this, i); + renderer.clear(color, depth, stencil); + } + + renderer.setRenderTarget(currentRenderTarget); + } + + } + + WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true; + + const _vector1 = /*@__PURE__*/new Vector3(); + + const _vector2 = /*@__PURE__*/new Vector3(); + + const _normalMatrix = /*@__PURE__*/new Matrix3(); + + class Plane { + constructor(normal = new Vector3(1, 0, 0), constant = 0) { + // normal is assumed to be normalized + this.normal = normal; + this.constant = constant; + } + + set(normal, constant) { + this.normal.copy(normal); + this.constant = constant; + return this; + } + + setComponents(x, y, z, w) { + this.normal.set(x, y, z); + this.constant = w; + return this; + } + + setFromNormalAndCoplanarPoint(normal, point) { + this.normal.copy(normal); + this.constant = -point.dot(this.normal); + return this; + } + + setFromCoplanarPoints(a, b, c) { + const normal = _vector1.subVectors(c, b).cross(_vector2.subVectors(a, b)).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? + + + this.setFromNormalAndCoplanarPoint(normal, a); + return this; + } + + copy(plane) { + this.normal.copy(plane.normal); + this.constant = plane.constant; + return this; + } + + normalize() { + // Note: will lead to a divide by zero if the plane is invalid. + const inverseNormalLength = 1.0 / this.normal.length(); + this.normal.multiplyScalar(inverseNormalLength); + this.constant *= inverseNormalLength; + return this; + } + + negate() { + this.constant *= -1; + this.normal.negate(); + return this; + } + + distanceToPoint(point) { + return this.normal.dot(point) + this.constant; + } + + distanceToSphere(sphere) { + return this.distanceToPoint(sphere.center) - sphere.radius; + } + + projectPoint(point, target) { + return target.copy(this.normal).multiplyScalar(-this.distanceToPoint(point)).add(point); + } + + intersectLine(line, target) { + const direction = line.delta(_vector1); + const denominator = this.normal.dot(direction); + + if (denominator === 0) { + // line is coplanar, return origin + if (this.distanceToPoint(line.start) === 0) { + return target.copy(line.start); + } // Unsure if this is the correct method to handle this case. + + + return null; + } + + const t = -(line.start.dot(this.normal) + this.constant) / denominator; + + if (t < 0 || t > 1) { + return null; + } + + return target.copy(direction).multiplyScalar(t).add(line.start); + } + + intersectsLine(line) { + // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. + const startSign = this.distanceToPoint(line.start); + const endSign = this.distanceToPoint(line.end); + return startSign < 0 && endSign > 0 || endSign < 0 && startSign > 0; + } + + intersectsBox(box) { + return box.intersectsPlane(this); + } + + intersectsSphere(sphere) { + return sphere.intersectsPlane(this); + } + + coplanarPoint(target) { + return target.copy(this.normal).multiplyScalar(-this.constant); + } + + applyMatrix4(matrix, optionalNormalMatrix) { + const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix(matrix); + + const referencePoint = this.coplanarPoint(_vector1).applyMatrix4(matrix); + const normal = this.normal.applyMatrix3(normalMatrix).normalize(); + this.constant = -referencePoint.dot(normal); + return this; + } + + translate(offset) { + this.constant -= offset.dot(this.normal); + return this; + } + + equals(plane) { + return plane.normal.equals(this.normal) && plane.constant === this.constant; + } + + clone() { + return new this.constructor().copy(this); + } + + } + + Plane.prototype.isPlane = true; + + const _sphere$2 = /*@__PURE__*/new Sphere(); + + const _vector$7 = /*@__PURE__*/new Vector3(); + + class Frustum { + constructor(p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane()) { + this.planes = [p0, p1, p2, p3, p4, p5]; + } + + set(p0, p1, p2, p3, p4, p5) { + const planes = this.planes; + planes[0].copy(p0); + planes[1].copy(p1); + planes[2].copy(p2); + planes[3].copy(p3); + planes[4].copy(p4); + planes[5].copy(p5); + return this; + } + + copy(frustum) { + const planes = this.planes; + + for (let i = 0; i < 6; i++) { + planes[i].copy(frustum.planes[i]); + } + + return this; + } + + setFromProjectionMatrix(m) { + const planes = this.planes; + const me = m.elements; + const me0 = me[0], + me1 = me[1], + me2 = me[2], + me3 = me[3]; + const me4 = me[4], + me5 = me[5], + me6 = me[6], + me7 = me[7]; + const me8 = me[8], + me9 = me[9], + me10 = me[10], + me11 = me[11]; + const me12 = me[12], + me13 = me[13], + me14 = me[14], + me15 = me[15]; + planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize(); + planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize(); + planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize(); + planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize(); + planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize(); + planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize(); + return this; + } + + intersectsObject(object) { + const geometry = object.geometry; + if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); + + _sphere$2.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld); + + return this.intersectsSphere(_sphere$2); + } + + intersectsSprite(sprite) { + _sphere$2.center.set(0, 0, 0); + + _sphere$2.radius = 0.7071067811865476; + + _sphere$2.applyMatrix4(sprite.matrixWorld); + + return this.intersectsSphere(_sphere$2); + } + + intersectsSphere(sphere) { + const planes = this.planes; + const center = sphere.center; + const negRadius = -sphere.radius; + + for (let i = 0; i < 6; i++) { + const distance = planes[i].distanceToPoint(center); + + if (distance < negRadius) { + return false; + } + } + + return true; + } + + intersectsBox(box) { + const planes = this.planes; + + for (let i = 0; i < 6; i++) { + const plane = planes[i]; // corner at max distance + + _vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x; + _vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y; + _vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z; + + if (plane.distanceToPoint(_vector$7) < 0) { + return false; + } + } + + return true; + } + + containsPoint(point) { + const planes = this.planes; + + for (let i = 0; i < 6; i++) { + if (planes[i].distanceToPoint(point) < 0) { + return false; + } + } + + return true; + } + + clone() { + return new this.constructor().copy(this); + } + + } + + function WebGLAnimation() { + let context = null; + let isAnimating = false; + let animationLoop = null; + let requestId = null; + + function onAnimationFrame(time, frame) { + animationLoop(time, frame); + requestId = context.requestAnimationFrame(onAnimationFrame); + } + + return { + start: function () { + if (isAnimating === true) return; + if (animationLoop === null) return; + requestId = context.requestAnimationFrame(onAnimationFrame); + isAnimating = true; + }, + stop: function () { + context.cancelAnimationFrame(requestId); + isAnimating = false; + }, + setAnimationLoop: function (callback) { + animationLoop = callback; + }, + setContext: function (value) { + context = value; + } + }; + } + + function WebGLAttributes(gl, capabilities) { + const isWebGL2 = capabilities.isWebGL2; + const buffers = new WeakMap(); + + function createBuffer(attribute, bufferType) { + const array = attribute.array; + const usage = attribute.usage; + const buffer = gl.createBuffer(); + gl.bindBuffer(bufferType, buffer); + gl.bufferData(bufferType, array, usage); + attribute.onUploadCallback(); + let type = gl.FLOAT; + + if (array instanceof Float32Array) { + type = gl.FLOAT; + } else if (array instanceof Float64Array) { + console.warn('THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.'); + } else if (array instanceof Uint16Array) { + if (attribute.isFloat16BufferAttribute) { + if (isWebGL2) { + type = gl.HALF_FLOAT; + } else { + console.warn('THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.'); + } + } else { + type = gl.UNSIGNED_SHORT; + } + } else if (array instanceof Int16Array) { + type = gl.SHORT; + } else if (array instanceof Uint32Array) { + type = gl.UNSIGNED_INT; + } else if (array instanceof Int32Array) { + type = gl.INT; + } else if (array instanceof Int8Array) { + type = gl.BYTE; + } else if (array instanceof Uint8Array) { + type = gl.UNSIGNED_BYTE; + } else if (array instanceof Uint8ClampedArray) { + type = gl.UNSIGNED_BYTE; + } + + return { + buffer: buffer, + type: type, + bytesPerElement: array.BYTES_PER_ELEMENT, + version: attribute.version + }; + } + + function updateBuffer(buffer, attribute, bufferType) { + const array = attribute.array; + const updateRange = attribute.updateRange; + gl.bindBuffer(bufferType, buffer); + + if (updateRange.count === -1) { + // Not using update ranges + gl.bufferSubData(bufferType, 0, array); + } else { + if (isWebGL2) { + gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count); + } else { + gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray(updateRange.offset, updateRange.offset + updateRange.count)); + } + + updateRange.count = -1; // reset range + } + } // + + + function get(attribute) { + if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; + return buffers.get(attribute); + } + + function remove(attribute) { + if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; + const data = buffers.get(attribute); + + if (data) { + gl.deleteBuffer(data.buffer); + buffers.delete(attribute); + } + } + + function update(attribute, bufferType) { + if (attribute.isGLBufferAttribute) { + const cached = buffers.get(attribute); + + if (!cached || cached.version < attribute.version) { + buffers.set(attribute, { + buffer: attribute.buffer, + type: attribute.type, + bytesPerElement: attribute.elementSize, + version: attribute.version + }); + } + + return; + } + + if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; + const data = buffers.get(attribute); + + if (data === undefined) { + buffers.set(attribute, createBuffer(attribute, bufferType)); + } else if (data.version < attribute.version) { + updateBuffer(data.buffer, attribute, bufferType); + data.version = attribute.version; + } + } + + return { + get: get, + remove: remove, + update: update + }; + } + + class PlaneGeometry extends BufferGeometry { + constructor(width = 1, height = 1, widthSegments = 1, heightSegments = 1) { + super(); + this.type = 'PlaneGeometry'; + this.parameters = { + width: width, + height: height, + widthSegments: widthSegments, + heightSegments: heightSegments + }; + const width_half = width / 2; + const height_half = height / 2; + const gridX = Math.floor(widthSegments); + const gridY = Math.floor(heightSegments); + const gridX1 = gridX + 1; + const gridY1 = gridY + 1; + const segment_width = width / gridX; + const segment_height = height / gridY; // + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; + + for (let iy = 0; iy < gridY1; iy++) { + const y = iy * segment_height - height_half; + + for (let ix = 0; ix < gridX1; ix++) { + const x = ix * segment_width - width_half; + vertices.push(x, -y, 0); + normals.push(0, 0, 1); + uvs.push(ix / gridX); + uvs.push(1 - iy / gridY); + } + } + + for (let iy = 0; iy < gridY; iy++) { + for (let ix = 0; ix < gridX; ix++) { + const a = ix + gridX1 * iy; + const b = ix + gridX1 * (iy + 1); + const c = ix + 1 + gridX1 * (iy + 1); + const d = ix + 1 + gridX1 * iy; + indices.push(a, b, d); + indices.push(b, c, d); + } + } + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + } + + static fromJSON(data) { + return new PlaneGeometry(data.width, data.height, data.widthSegments, data.heightSegments); + } + + } + + var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif"; + + var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; + + var alphatest_fragment = "#ifdef USE_ALPHATEST\n\tif ( diffuseColor.a < alphaTest ) discard;\n#endif"; + + var alphatest_pars_fragment = "#ifdef USE_ALPHATEST\n\tuniform float alphaTest;\n#endif"; + + var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n\t#endif\n#endif"; + + var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif"; + + var begin_vertex = "vec3 transformed = vec3( position );"; + + var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif"; + + var bsdfs = "vec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( V * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n\tfloat alpha = pow2( roughness );\n\tfloat invAlpha = 1.0 / alpha;\n\tfloat cos2h = dotNH * dotNH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenTint, const in float sheenRoughness ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat D = D_Charlie( sheenRoughness, dotNH );\n\tfloat V = V_Neubelt( dotNV, dotNL );\n\treturn sheenTint * ( D * V );\n}\n#endif"; + + var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif"; + + var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif"; + + var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif"; + + var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif"; + + var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif"; + + var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif"; + + var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif"; + + var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif"; + + var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif"; + + var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}"; + + var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 );\n\t\tvec2 f = fract( uv );\n\t\tuv += 0.5 - f;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\tvec3 tl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x += texelSize;\n\t\tvec3 tr = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.y += texelSize;\n\t\tvec3 br = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x -= texelSize;\n\t\tvec3 bl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tvec3 tm = mix( tl, tr, f.x );\n\t\tvec3 bm = mix( bl, br, f.x );\n\t\treturn mix( tm, bm, f.y );\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif"; + + var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif"; + + var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif"; + + var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif"; + + var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif"; + + var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif"; + + var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );"; + + var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}"; + + var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif"; + + var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif"; + + var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif"; + + var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif"; + + var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif"; + + var fog_vertex = "#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif"; + + var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif"; + + var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif"; + + var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif"; + + var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}"; + + var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tlightMapIrradiance *= PI;\n\t#endif\n\treflectedLight.indirectDiffuse += lightMapIrradiance;\n#endif"; + + var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif"; + + var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry.normal );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry.normal );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointLightInfo( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotLightInfo( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalLightInfo( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry.normal );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif"; + + var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tif ( cutoffDistance > 0.0 ) {\n\t\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t}\n\t\treturn distanceFalloff;\n\t#else\n\t\tif ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\t\treturn pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t\t}\n\t\treturn 1.0;\n\t#endif\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n\t\tfloat dotNL = dot( normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif"; + + var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getIBLIrradiance( const in vec3 normal ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 reflectVec;\n\t\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\t\treflectVec = reflect( - viewDir, normal );\n\t\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\t#else\n\t\t\t\treflectVec = refract( - viewDir, normal, refractionRatio );\n\t\t\t#endif\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n#endif"; + + var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;"; + + var lights_toon_pars_fragment = "varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)"; + + var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;"; + + var lights_phong_pars_fragment = "varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)"; + + var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\t#ifdef SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularTintFactor = specularTint;\n\t\t#ifdef USE_SPECULARINTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a;\n\t\t#endif\n\t\t#ifdef USE_SPECULARTINTMAP\n\t\t\tspecularTintFactor *= specularTintMapTexelToLinear( texture2D( specularTintMap, vUv ) ).rgb;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularTintFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( ior - 1.0 ) / ( ior + 1.0 ) ) * specularTintFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenTint = sheenTint;\n\tmaterial.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n#endif"; + + var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenTint;\n\t\tfloat sheenRoughness;\n\t#endif\n};\nvec3 clearcoatSpecular = vec3( 0.0 );\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\tvec3 FssEss = specularColor * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecular += ccIrradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += irradiance * BRDF_Sheen( directLight.direction, geometry.viewDir, geometry.normal, material.sheenTint, material.sheenRoughness );\n\t#endif\n\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness );\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tcomputeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}"; + + var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef USE_CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry.normal );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif"; + + var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometry.normal );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness );\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif"; + + var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif"; + + var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif"; + + var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif"; + + var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif"; + + var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif"; + + var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif"; + + var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif"; + + var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif"; + + var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; + + var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif"; + + var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif"; + + var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1, 2 ) * morphTargetInfluences[ i ];\n\t\t}\n\t#else\n\t\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\t\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\t\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\t\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n\t#endif\n#endif"; + + var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tuniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\t\tuniform sampler2DArray morphTargetsTexture;\n\t\tuniform vec2 morphTargetsTextureSize;\n\t\tvec3 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset, const in int stride ) {\n\t\t\tfloat texelIndex = float( vertexIndex * stride + offset );\n\t\t\tfloat y = floor( texelIndex / morphTargetsTextureSize.x );\n\t\t\tfloat x = texelIndex - y * morphTargetsTextureSize.x;\n\t\t\tvec3 morphUV = vec3( ( x + 0.5 ) / morphTargetsTextureSize.x, y / morphTargetsTextureSize.y, morphTargetIndex );\n\t\t\treturn texture( morphTargetsTexture, morphUV ).xyz;\n\t\t}\n\t#else\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\tuniform float morphTargetInfluences[ 8 ];\n\t\t#else\n\t\t\tuniform float morphTargetInfluences[ 4 ];\n\t\t#endif\n\t#endif\n#endif"; + + var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\t#ifndef USE_MORPHNORMALS\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 1 ) * morphTargetInfluences[ i ];\n\t\t\t#else\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 2 ) * morphTargetInfluences[ i ];\n\t\t\t#endif\n\t\t}\n\t#else\n\t\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\t\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\t\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\t\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t\t#endif\n\t#endif\n#endif"; + + var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;"; + + var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( - vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif"; + + var normal_pars_fragment = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif"; + + var normal_pars_vertex = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif"; + + var normal_vertex = "#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif"; + + var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif"; + + var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif"; + + var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif"; + + var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif"; + + var output_fragment = "#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= transmissionAlpha + 0.1;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );"; + + var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}"; + + var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif"; + + var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;"; + + var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif"; + + var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif"; + + var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif"; + + var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif"; + + var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif"; + + var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif"; + + var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif"; + + var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}"; + + var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif"; + + var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif"; + + var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif"; + + var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif"; + + var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif"; + + var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif"; + + var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif"; + + var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }"; + + var transmission_fragment = "#ifdef USE_TRANSMISSION\n\tfloat transmissionAlpha = 1.0;\n\tfloat transmissionFactor = transmission;\n\tfloat thicknessFactor = thickness;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttransmissionFactor *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmission = getIBLVolumeRefraction(\n\t\tn, v, roughnessFactor, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationTint, attenuationDistance );\n\ttotalDiffuse = mix( totalDiffuse, transmission.rgb, transmissionFactor );\n\ttransmissionAlpha = mix( transmissionAlpha, transmission.a, transmissionFactor );\n#endif"; + + var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationTint;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tvec3 getVolumeTransmissionRay( vec3 n, vec3 v, float thickness, float ior, mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( float roughness, float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( vec2 fragCoord, float roughness, float ior ) {\n\t\tfloat framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\treturn texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#else\n\t\t\treturn texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#endif\n\t}\n\tvec3 applyVolumeAttenuation( vec3 radiance, float transmissionDistance, vec3 attenuationColor, float attenuationDistance ) {\n\t\tif ( attenuationDistance == 0.0 ) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( vec3 n, vec3 v, float roughness, vec3 diffuseColor, vec3 specularColor, float specularF90,\n\t\tvec3 position, mat4 modelMatrix, mat4 viewMatrix, mat4 projMatrix, float ior, float thickness,\n\t\tvec3 attenuationColor, float attenuationDistance ) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\tvec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );\n\t}\n#endif"; + + var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif"; + + var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif"; + + var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif"; + + var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif"; + + var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif"; + + var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif"; + + var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif"; + + const vertex$g = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}"; + const fragment$g = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}"; + + const vertex$f = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}"; + const fragment$f = "#include \nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include \n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}"; + + const vertex$e = "#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}"; + const fragment$e = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}"; + + const vertex$d = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}"; + const fragment$d = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}"; + + const vertex$c = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}"; + const fragment$c = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}"; + + const vertex$b = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + const fragment$b = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + const vertex$a = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + const fragment$a = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + const vertex$9 = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + const fragment$9 = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + const vertex$8 = "#define MATCAP\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n}"; + const fragment$8 = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + const vertex$7 = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}"; + const fragment$7 = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}"; + + const vertex$6 = "#define PHONG\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; + const fragment$6 = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + const vertex$5 = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}"; + const fragment$5 = "#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularTint;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARTINTMAP\n\t\tuniform sampler2D specularTintMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenTint;\n\tuniform float sheenRoughness;\n#endif\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include \n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - clearcoat * Fcc ) + clearcoatSpecular * clearcoat;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + const vertex$4 = "#define TOON\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}"; + const fragment$4 = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + const vertex$3 = "uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}"; + const fragment$3 = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + const vertex$2 = "#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + const fragment$2 = "uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n\t#include \n\t#include \n}"; + + const vertex$1 = "uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}"; + const fragment$1 = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + const ShaderChunk = { + alphamap_fragment: alphamap_fragment, + alphamap_pars_fragment: alphamap_pars_fragment, + alphatest_fragment: alphatest_fragment, + alphatest_pars_fragment: alphatest_pars_fragment, + aomap_fragment: aomap_fragment, + aomap_pars_fragment: aomap_pars_fragment, + begin_vertex: begin_vertex, + beginnormal_vertex: beginnormal_vertex, + bsdfs: bsdfs, + bumpmap_pars_fragment: bumpmap_pars_fragment, + clipping_planes_fragment: clipping_planes_fragment, + clipping_planes_pars_fragment: clipping_planes_pars_fragment, + clipping_planes_pars_vertex: clipping_planes_pars_vertex, + clipping_planes_vertex: clipping_planes_vertex, + color_fragment: color_fragment, + color_pars_fragment: color_pars_fragment, + color_pars_vertex: color_pars_vertex, + color_vertex: color_vertex, + common: common, + cube_uv_reflection_fragment: cube_uv_reflection_fragment, + defaultnormal_vertex: defaultnormal_vertex, + displacementmap_pars_vertex: displacementmap_pars_vertex, + displacementmap_vertex: displacementmap_vertex, + emissivemap_fragment: emissivemap_fragment, + emissivemap_pars_fragment: emissivemap_pars_fragment, + encodings_fragment: encodings_fragment, + encodings_pars_fragment: encodings_pars_fragment, + envmap_fragment: envmap_fragment, + envmap_common_pars_fragment: envmap_common_pars_fragment, + envmap_pars_fragment: envmap_pars_fragment, + envmap_pars_vertex: envmap_pars_vertex, + envmap_physical_pars_fragment: envmap_physical_pars_fragment, + envmap_vertex: envmap_vertex, + fog_vertex: fog_vertex, + fog_pars_vertex: fog_pars_vertex, + fog_fragment: fog_fragment, + fog_pars_fragment: fog_pars_fragment, + gradientmap_pars_fragment: gradientmap_pars_fragment, + lightmap_fragment: lightmap_fragment, + lightmap_pars_fragment: lightmap_pars_fragment, + lights_lambert_vertex: lights_lambert_vertex, + lights_pars_begin: lights_pars_begin, + lights_toon_fragment: lights_toon_fragment, + lights_toon_pars_fragment: lights_toon_pars_fragment, + lights_phong_fragment: lights_phong_fragment, + lights_phong_pars_fragment: lights_phong_pars_fragment, + lights_physical_fragment: lights_physical_fragment, + lights_physical_pars_fragment: lights_physical_pars_fragment, + lights_fragment_begin: lights_fragment_begin, + lights_fragment_maps: lights_fragment_maps, + lights_fragment_end: lights_fragment_end, + logdepthbuf_fragment: logdepthbuf_fragment, + logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, + logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, + logdepthbuf_vertex: logdepthbuf_vertex, + map_fragment: map_fragment, + map_pars_fragment: map_pars_fragment, + map_particle_fragment: map_particle_fragment, + map_particle_pars_fragment: map_particle_pars_fragment, + metalnessmap_fragment: metalnessmap_fragment, + metalnessmap_pars_fragment: metalnessmap_pars_fragment, + morphnormal_vertex: morphnormal_vertex, + morphtarget_pars_vertex: morphtarget_pars_vertex, + morphtarget_vertex: morphtarget_vertex, + normal_fragment_begin: normal_fragment_begin, + normal_fragment_maps: normal_fragment_maps, + normal_pars_fragment: normal_pars_fragment, + normal_pars_vertex: normal_pars_vertex, + normal_vertex: normal_vertex, + normalmap_pars_fragment: normalmap_pars_fragment, + clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin, + clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps, + clearcoat_pars_fragment: clearcoat_pars_fragment, + output_fragment: output_fragment, + packing: packing, + premultiplied_alpha_fragment: premultiplied_alpha_fragment, + project_vertex: project_vertex, + dithering_fragment: dithering_fragment, + dithering_pars_fragment: dithering_pars_fragment, + roughnessmap_fragment: roughnessmap_fragment, + roughnessmap_pars_fragment: roughnessmap_pars_fragment, + shadowmap_pars_fragment: shadowmap_pars_fragment, + shadowmap_pars_vertex: shadowmap_pars_vertex, + shadowmap_vertex: shadowmap_vertex, + shadowmask_pars_fragment: shadowmask_pars_fragment, + skinbase_vertex: skinbase_vertex, + skinning_pars_vertex: skinning_pars_vertex, + skinning_vertex: skinning_vertex, + skinnormal_vertex: skinnormal_vertex, + specularmap_fragment: specularmap_fragment, + specularmap_pars_fragment: specularmap_pars_fragment, + tonemapping_fragment: tonemapping_fragment, + tonemapping_pars_fragment: tonemapping_pars_fragment, + transmission_fragment: transmission_fragment, + transmission_pars_fragment: transmission_pars_fragment, + uv_pars_fragment: uv_pars_fragment, + uv_pars_vertex: uv_pars_vertex, + uv_vertex: uv_vertex, + uv2_pars_fragment: uv2_pars_fragment, + uv2_pars_vertex: uv2_pars_vertex, + uv2_vertex: uv2_vertex, + worldpos_vertex: worldpos_vertex, + background_vert: vertex$g, + background_frag: fragment$g, + cube_vert: vertex$f, + cube_frag: fragment$f, + depth_vert: vertex$e, + depth_frag: fragment$e, + distanceRGBA_vert: vertex$d, + distanceRGBA_frag: fragment$d, + equirect_vert: vertex$c, + equirect_frag: fragment$c, + linedashed_vert: vertex$b, + linedashed_frag: fragment$b, + meshbasic_vert: vertex$a, + meshbasic_frag: fragment$a, + meshlambert_vert: vertex$9, + meshlambert_frag: fragment$9, + meshmatcap_vert: vertex$8, + meshmatcap_frag: fragment$8, + meshnormal_vert: vertex$7, + meshnormal_frag: fragment$7, + meshphong_vert: vertex$6, + meshphong_frag: fragment$6, + meshphysical_vert: vertex$5, + meshphysical_frag: fragment$5, + meshtoon_vert: vertex$4, + meshtoon_frag: fragment$4, + points_vert: vertex$3, + points_frag: fragment$3, + shadow_vert: vertex$2, + shadow_frag: fragment$2, + sprite_vert: vertex$1, + sprite_frag: fragment$1 + }; + + /** + * Uniforms library for shared webgl shaders + */ + + const UniformsLib = { + common: { + diffuse: { + value: new Color(0xffffff) + }, + opacity: { + value: 1.0 + }, + map: { + value: null + }, + uvTransform: { + value: new Matrix3() + }, + uv2Transform: { + value: new Matrix3() + }, + alphaMap: { + value: null + }, + alphaTest: { + value: 0 + } + }, + specularmap: { + specularMap: { + value: null + } + }, + envmap: { + envMap: { + value: null + }, + flipEnvMap: { + value: -1 + }, + reflectivity: { + value: 1.0 + }, + // basic, lambert, phong + ior: { + value: 1.5 + }, + // standard, physical + refractionRatio: { + value: 0.98 + }, + maxMipLevel: { + value: 0 + } + }, + aomap: { + aoMap: { + value: null + }, + aoMapIntensity: { + value: 1 + } + }, + lightmap: { + lightMap: { + value: null + }, + lightMapIntensity: { + value: 1 + } + }, + emissivemap: { + emissiveMap: { + value: null + } + }, + bumpmap: { + bumpMap: { + value: null + }, + bumpScale: { + value: 1 + } + }, + normalmap: { + normalMap: { + value: null + }, + normalScale: { + value: new Vector2(1, 1) + } + }, + displacementmap: { + displacementMap: { + value: null + }, + displacementScale: { + value: 1 + }, + displacementBias: { + value: 0 + } + }, + roughnessmap: { + roughnessMap: { + value: null + } + }, + metalnessmap: { + metalnessMap: { + value: null + } + }, + gradientmap: { + gradientMap: { + value: null + } + }, + fog: { + fogDensity: { + value: 0.00025 + }, + fogNear: { + value: 1 + }, + fogFar: { + value: 2000 + }, + fogColor: { + value: new Color(0xffffff) + } + }, + lights: { + ambientLightColor: { + value: [] + }, + lightProbe: { + value: [] + }, + directionalLights: { + value: [], + properties: { + direction: {}, + color: {} + } + }, + directionalLightShadows: { + value: [], + properties: { + shadowBias: {}, + shadowNormalBias: {}, + shadowRadius: {}, + shadowMapSize: {} + } + }, + directionalShadowMap: { + value: [] + }, + directionalShadowMatrix: { + value: [] + }, + spotLights: { + value: [], + properties: { + color: {}, + position: {}, + direction: {}, + distance: {}, + coneCos: {}, + penumbraCos: {}, + decay: {} + } + }, + spotLightShadows: { + value: [], + properties: { + shadowBias: {}, + shadowNormalBias: {}, + shadowRadius: {}, + shadowMapSize: {} + } + }, + spotShadowMap: { + value: [] + }, + spotShadowMatrix: { + value: [] + }, + pointLights: { + value: [], + properties: { + color: {}, + position: {}, + decay: {}, + distance: {} + } + }, + pointLightShadows: { + value: [], + properties: { + shadowBias: {}, + shadowNormalBias: {}, + shadowRadius: {}, + shadowMapSize: {}, + shadowCameraNear: {}, + shadowCameraFar: {} + } + }, + pointShadowMap: { + value: [] + }, + pointShadowMatrix: { + value: [] + }, + hemisphereLights: { + value: [], + properties: { + direction: {}, + skyColor: {}, + groundColor: {} + } + }, + // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src + rectAreaLights: { + value: [], + properties: { + color: {}, + position: {}, + width: {}, + height: {} + } + }, + ltc_1: { + value: null + }, + ltc_2: { + value: null + } + }, + points: { + diffuse: { + value: new Color(0xffffff) + }, + opacity: { + value: 1.0 + }, + size: { + value: 1.0 + }, + scale: { + value: 1.0 + }, + map: { + value: null + }, + alphaMap: { + value: null + }, + alphaTest: { + value: 0 + }, + uvTransform: { + value: new Matrix3() + } + }, + sprite: { + diffuse: { + value: new Color(0xffffff) + }, + opacity: { + value: 1.0 + }, + center: { + value: new Vector2(0.5, 0.5) + }, + rotation: { + value: 0.0 + }, + map: { + value: null + }, + alphaMap: { + value: null + }, + alphaTest: { + value: 0 + }, + uvTransform: { + value: new Matrix3() + } + } + }; + + const ShaderLib = { + basic: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog]), + vertexShader: ShaderChunk.meshbasic_vert, + fragmentShader: ShaderChunk.meshbasic_frag + }, + lambert: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, { + emissive: { + value: new Color(0x000000) + } + }]), + vertexShader: ShaderChunk.meshlambert_vert, + fragmentShader: ShaderChunk.meshlambert_frag + }, + phong: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, { + emissive: { + value: new Color(0x000000) + }, + specular: { + value: new Color(0x111111) + }, + shininess: { + value: 30 + } + }]), + vertexShader: ShaderChunk.meshphong_vert, + fragmentShader: ShaderChunk.meshphong_frag + }, + standard: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, { + emissive: { + value: new Color(0x000000) + }, + roughness: { + value: 1.0 + }, + metalness: { + value: 0.0 + }, + envMapIntensity: { + value: 1 + } // temporary + + }]), + vertexShader: ShaderChunk.meshphysical_vert, + fragmentShader: ShaderChunk.meshphysical_frag + }, + toon: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, { + emissive: { + value: new Color(0x000000) + } + }]), + vertexShader: ShaderChunk.meshtoon_vert, + fragmentShader: ShaderChunk.meshtoon_frag + }, + matcap: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, { + matcap: { + value: null + } + }]), + vertexShader: ShaderChunk.meshmatcap_vert, + fragmentShader: ShaderChunk.meshmatcap_frag + }, + points: { + uniforms: mergeUniforms([UniformsLib.points, UniformsLib.fog]), + vertexShader: ShaderChunk.points_vert, + fragmentShader: ShaderChunk.points_frag + }, + dashed: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.fog, { + scale: { + value: 1 + }, + dashSize: { + value: 1 + }, + totalSize: { + value: 2 + } + }]), + vertexShader: ShaderChunk.linedashed_vert, + fragmentShader: ShaderChunk.linedashed_frag + }, + depth: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap]), + vertexShader: ShaderChunk.depth_vert, + fragmentShader: ShaderChunk.depth_frag + }, + normal: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, { + opacity: { + value: 1.0 + } + }]), + vertexShader: ShaderChunk.meshnormal_vert, + fragmentShader: ShaderChunk.meshnormal_frag + }, + sprite: { + uniforms: mergeUniforms([UniformsLib.sprite, UniformsLib.fog]), + vertexShader: ShaderChunk.sprite_vert, + fragmentShader: ShaderChunk.sprite_frag + }, + background: { + uniforms: { + uvTransform: { + value: new Matrix3() + }, + t2D: { + value: null + } + }, + vertexShader: ShaderChunk.background_vert, + fragmentShader: ShaderChunk.background_frag + }, + + /* ------------------------------------------------------------------------- + // Cube map shader + ------------------------------------------------------------------------- */ + cube: { + uniforms: mergeUniforms([UniformsLib.envmap, { + opacity: { + value: 1.0 + } + }]), + vertexShader: ShaderChunk.cube_vert, + fragmentShader: ShaderChunk.cube_frag + }, + equirect: { + uniforms: { + tEquirect: { + value: null + } + }, + vertexShader: ShaderChunk.equirect_vert, + fragmentShader: ShaderChunk.equirect_frag + }, + distanceRGBA: { + uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap, { + referencePosition: { + value: new Vector3() + }, + nearDistance: { + value: 1 + }, + farDistance: { + value: 1000 + } + }]), + vertexShader: ShaderChunk.distanceRGBA_vert, + fragmentShader: ShaderChunk.distanceRGBA_frag + }, + shadow: { + uniforms: mergeUniforms([UniformsLib.lights, UniformsLib.fog, { + color: { + value: new Color(0x00000) + }, + opacity: { + value: 1.0 + } + }]), + vertexShader: ShaderChunk.shadow_vert, + fragmentShader: ShaderChunk.shadow_frag + } + }; + ShaderLib.physical = { + uniforms: mergeUniforms([ShaderLib.standard.uniforms, { + clearcoat: { + value: 0 + }, + clearcoatMap: { + value: null + }, + clearcoatRoughness: { + value: 0 + }, + clearcoatRoughnessMap: { + value: null + }, + clearcoatNormalScale: { + value: new Vector2(1, 1) + }, + clearcoatNormalMap: { + value: null + }, + sheen: { + value: 0 + }, + sheenTint: { + value: new Color(0x000000) + }, + sheenRoughness: { + value: 0 + }, + transmission: { + value: 0 + }, + transmissionMap: { + value: null + }, + transmissionSamplerSize: { + value: new Vector2() + }, + transmissionSamplerMap: { + value: null + }, + thickness: { + value: 0 + }, + thicknessMap: { + value: null + }, + attenuationDistance: { + value: 0 + }, + attenuationTint: { + value: new Color(0x000000) + }, + specularIntensity: { + value: 0 + }, + specularIntensityMap: { + value: null + }, + specularTint: { + value: new Color(1, 1, 1) + }, + specularTintMap: { + value: null + } + }]), + vertexShader: ShaderChunk.meshphysical_vert, + fragmentShader: ShaderChunk.meshphysical_frag + }; + + function WebGLBackground(renderer, cubemaps, state, objects, premultipliedAlpha) { + const clearColor = new Color(0x000000); + let clearAlpha = 0; + let planeMesh; + let boxMesh; + let currentBackground = null; + let currentBackgroundVersion = 0; + let currentTonemapping = null; + + function render(renderList, scene) { + let forceClear = false; + let background = scene.isScene === true ? scene.background : null; + + if (background && background.isTexture) { + background = cubemaps.get(background); + } // Ignore background in AR + // TODO: Reconsider this. + + + const xr = renderer.xr; + const session = xr.getSession && xr.getSession(); + + if (session && session.environmentBlendMode === 'additive') { + background = null; + } + + if (background === null) { + setClear(clearColor, clearAlpha); + } else if (background && background.isColor) { + setClear(background, 1); + forceClear = true; + } + + if (renderer.autoClear || forceClear) { + renderer.clear(renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil); + } + + if (background && (background.isCubeTexture || background.mapping === CubeUVReflectionMapping)) { + if (boxMesh === undefined) { + boxMesh = new Mesh(new BoxGeometry(1, 1, 1), new ShaderMaterial({ + name: 'BackgroundCubeMaterial', + uniforms: cloneUniforms(ShaderLib.cube.uniforms), + vertexShader: ShaderLib.cube.vertexShader, + fragmentShader: ShaderLib.cube.fragmentShader, + side: BackSide, + depthTest: false, + depthWrite: false, + fog: false + })); + boxMesh.geometry.deleteAttribute('normal'); + boxMesh.geometry.deleteAttribute('uv'); + + boxMesh.onBeforeRender = function (renderer, scene, camera) { + this.matrixWorld.copyPosition(camera.matrixWorld); + }; // enable code injection for non-built-in material + + + Object.defineProperty(boxMesh.material, 'envMap', { + get: function () { + return this.uniforms.envMap.value; + } + }); + objects.update(boxMesh); + } + + boxMesh.material.uniforms.envMap.value = background; + boxMesh.material.uniforms.flipEnvMap.value = background.isCubeTexture && background.isRenderTargetTexture === false ? -1 : 1; + + if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) { + boxMesh.material.needsUpdate = true; + currentBackground = background; + currentBackgroundVersion = background.version; + currentTonemapping = renderer.toneMapping; + } // push to the pre-sorted opaque render list + + + renderList.unshift(boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null); + } else if (background && background.isTexture) { + if (planeMesh === undefined) { + planeMesh = new Mesh(new PlaneGeometry(2, 2), new ShaderMaterial({ + name: 'BackgroundMaterial', + uniforms: cloneUniforms(ShaderLib.background.uniforms), + vertexShader: ShaderLib.background.vertexShader, + fragmentShader: ShaderLib.background.fragmentShader, + side: FrontSide, + depthTest: false, + depthWrite: false, + fog: false + })); + planeMesh.geometry.deleteAttribute('normal'); // enable code injection for non-built-in material + + Object.defineProperty(planeMesh.material, 'map', { + get: function () { + return this.uniforms.t2D.value; + } + }); + objects.update(planeMesh); + } + + planeMesh.material.uniforms.t2D.value = background; + + if (background.matrixAutoUpdate === true) { + background.updateMatrix(); + } + + planeMesh.material.uniforms.uvTransform.value.copy(background.matrix); + + if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) { + planeMesh.material.needsUpdate = true; + currentBackground = background; + currentBackgroundVersion = background.version; + currentTonemapping = renderer.toneMapping; + } // push to the pre-sorted opaque render list + + + renderList.unshift(planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null); + } + } + + function setClear(color, alpha) { + state.buffers.color.setClear(color.r, color.g, color.b, alpha, premultipliedAlpha); + } + + return { + getClearColor: function () { + return clearColor; + }, + setClearColor: function (color, alpha = 1) { + clearColor.set(color); + clearAlpha = alpha; + setClear(clearColor, clearAlpha); + }, + getClearAlpha: function () { + return clearAlpha; + }, + setClearAlpha: function (alpha) { + clearAlpha = alpha; + setClear(clearColor, clearAlpha); + }, + render: render + }; + } + + function WebGLBindingStates(gl, extensions, attributes, capabilities) { + const maxVertexAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS); + const extension = capabilities.isWebGL2 ? null : extensions.get('OES_vertex_array_object'); + const vaoAvailable = capabilities.isWebGL2 || extension !== null; + const bindingStates = {}; + const defaultState = createBindingState(null); + let currentState = defaultState; + + function setup(object, material, program, geometry, index) { + let updateBuffers = false; + + if (vaoAvailable) { + const state = getBindingState(geometry, program, material); + + if (currentState !== state) { + currentState = state; + bindVertexArrayObject(currentState.object); + } + + updateBuffers = needsUpdate(geometry, index); + if (updateBuffers) saveCache(geometry, index); + } else { + const wireframe = material.wireframe === true; + + if (currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe) { + currentState.geometry = geometry.id; + currentState.program = program.id; + currentState.wireframe = wireframe; + updateBuffers = true; + } + } + + if (object.isInstancedMesh === true) { + updateBuffers = true; + } + + if (index !== null) { + attributes.update(index, gl.ELEMENT_ARRAY_BUFFER); + } + + if (updateBuffers) { + setupVertexAttributes(object, material, program, geometry); + + if (index !== null) { + gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, attributes.get(index).buffer); + } + } + } + + function createVertexArrayObject() { + if (capabilities.isWebGL2) return gl.createVertexArray(); + return extension.createVertexArrayOES(); + } + + function bindVertexArrayObject(vao) { + if (capabilities.isWebGL2) return gl.bindVertexArray(vao); + return extension.bindVertexArrayOES(vao); + } + + function deleteVertexArrayObject(vao) { + if (capabilities.isWebGL2) return gl.deleteVertexArray(vao); + return extension.deleteVertexArrayOES(vao); + } + + function getBindingState(geometry, program, material) { + const wireframe = material.wireframe === true; + let programMap = bindingStates[geometry.id]; + + if (programMap === undefined) { + programMap = {}; + bindingStates[geometry.id] = programMap; + } + + let stateMap = programMap[program.id]; + + if (stateMap === undefined) { + stateMap = {}; + programMap[program.id] = stateMap; + } + + let state = stateMap[wireframe]; + + if (state === undefined) { + state = createBindingState(createVertexArrayObject()); + stateMap[wireframe] = state; + } + + return state; + } + + function createBindingState(vao) { + const newAttributes = []; + const enabledAttributes = []; + const attributeDivisors = []; + + for (let i = 0; i < maxVertexAttributes; i++) { + newAttributes[i] = 0; + enabledAttributes[i] = 0; + attributeDivisors[i] = 0; + } + + return { + // for backward compatibility on non-VAO support browser + geometry: null, + program: null, + wireframe: false, + newAttributes: newAttributes, + enabledAttributes: enabledAttributes, + attributeDivisors: attributeDivisors, + object: vao, + attributes: {}, + index: null + }; + } + + function needsUpdate(geometry, index) { + const cachedAttributes = currentState.attributes; + const geometryAttributes = geometry.attributes; + let attributesNum = 0; + + for (const key in geometryAttributes) { + const cachedAttribute = cachedAttributes[key]; + const geometryAttribute = geometryAttributes[key]; + if (cachedAttribute === undefined) return true; + if (cachedAttribute.attribute !== geometryAttribute) return true; + if (cachedAttribute.data !== geometryAttribute.data) return true; + attributesNum++; + } + + if (currentState.attributesNum !== attributesNum) return true; + if (currentState.index !== index) return true; + return false; + } + + function saveCache(geometry, index) { + const cache = {}; + const attributes = geometry.attributes; + let attributesNum = 0; + + for (const key in attributes) { + const attribute = attributes[key]; + const data = {}; + data.attribute = attribute; + + if (attribute.data) { + data.data = attribute.data; + } + + cache[key] = data; + attributesNum++; + } + + currentState.attributes = cache; + currentState.attributesNum = attributesNum; + currentState.index = index; + } + + function initAttributes() { + const newAttributes = currentState.newAttributes; + + for (let i = 0, il = newAttributes.length; i < il; i++) { + newAttributes[i] = 0; + } + } + + function enableAttribute(attribute) { + enableAttributeAndDivisor(attribute, 0); + } + + function enableAttributeAndDivisor(attribute, meshPerAttribute) { + const newAttributes = currentState.newAttributes; + const enabledAttributes = currentState.enabledAttributes; + const attributeDivisors = currentState.attributeDivisors; + newAttributes[attribute] = 1; + + if (enabledAttributes[attribute] === 0) { + gl.enableVertexAttribArray(attribute); + enabledAttributes[attribute] = 1; + } + + if (attributeDivisors[attribute] !== meshPerAttribute) { + const extension = capabilities.isWebGL2 ? gl : extensions.get('ANGLE_instanced_arrays'); + extension[capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE'](attribute, meshPerAttribute); + attributeDivisors[attribute] = meshPerAttribute; + } + } + + function disableUnusedAttributes() { + const newAttributes = currentState.newAttributes; + const enabledAttributes = currentState.enabledAttributes; + + for (let i = 0, il = enabledAttributes.length; i < il; i++) { + if (enabledAttributes[i] !== newAttributes[i]) { + gl.disableVertexAttribArray(i); + enabledAttributes[i] = 0; + } + } + } + + function vertexAttribPointer(index, size, type, normalized, stride, offset) { + if (capabilities.isWebGL2 === true && (type === gl.INT || type === gl.UNSIGNED_INT)) { + gl.vertexAttribIPointer(index, size, type, stride, offset); + } else { + gl.vertexAttribPointer(index, size, type, normalized, stride, offset); + } + } + + function setupVertexAttributes(object, material, program, geometry) { + if (capabilities.isWebGL2 === false && (object.isInstancedMesh || geometry.isInstancedBufferGeometry)) { + if (extensions.get('ANGLE_instanced_arrays') === null) return; + } + + initAttributes(); + const geometryAttributes = geometry.attributes; + const programAttributes = program.getAttributes(); + const materialDefaultAttributeValues = material.defaultAttributeValues; + + for (const name in programAttributes) { + const programAttribute = programAttributes[name]; + + if (programAttribute.location >= 0) { + let geometryAttribute = geometryAttributes[name]; + + if (geometryAttribute === undefined) { + if (name === 'instanceMatrix' && object.instanceMatrix) geometryAttribute = object.instanceMatrix; + if (name === 'instanceColor' && object.instanceColor) geometryAttribute = object.instanceColor; + } + + if (geometryAttribute !== undefined) { + const normalized = geometryAttribute.normalized; + const size = geometryAttribute.itemSize; + const attribute = attributes.get(geometryAttribute); // TODO Attribute may not be available on context restore + + if (attribute === undefined) continue; + const buffer = attribute.buffer; + const type = attribute.type; + const bytesPerElement = attribute.bytesPerElement; + + if (geometryAttribute.isInterleavedBufferAttribute) { + const data = geometryAttribute.data; + const stride = data.stride; + const offset = geometryAttribute.offset; + + if (data && data.isInstancedInterleavedBuffer) { + for (let i = 0; i < programAttribute.locationSize; i++) { + enableAttributeAndDivisor(programAttribute.location + i, data.meshPerAttribute); + } + + if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) { + geometry._maxInstanceCount = data.meshPerAttribute * data.count; + } + } else { + for (let i = 0; i < programAttribute.locationSize; i++) { + enableAttribute(programAttribute.location + i); + } + } + + gl.bindBuffer(gl.ARRAY_BUFFER, buffer); + + for (let i = 0; i < programAttribute.locationSize; i++) { + vertexAttribPointer(programAttribute.location + i, size / programAttribute.locationSize, type, normalized, stride * bytesPerElement, (offset + size / programAttribute.locationSize * i) * bytesPerElement); + } + } else { + if (geometryAttribute.isInstancedBufferAttribute) { + for (let i = 0; i < programAttribute.locationSize; i++) { + enableAttributeAndDivisor(programAttribute.location + i, geometryAttribute.meshPerAttribute); + } + + if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) { + geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; + } + } else { + for (let i = 0; i < programAttribute.locationSize; i++) { + enableAttribute(programAttribute.location + i); + } + } + + gl.bindBuffer(gl.ARRAY_BUFFER, buffer); + + for (let i = 0; i < programAttribute.locationSize; i++) { + vertexAttribPointer(programAttribute.location + i, size / programAttribute.locationSize, type, normalized, size * bytesPerElement, size / programAttribute.locationSize * i * bytesPerElement); + } + } + } else if (materialDefaultAttributeValues !== undefined) { + const value = materialDefaultAttributeValues[name]; + + if (value !== undefined) { + switch (value.length) { + case 2: + gl.vertexAttrib2fv(programAttribute.location, value); + break; + + case 3: + gl.vertexAttrib3fv(programAttribute.location, value); + break; + + case 4: + gl.vertexAttrib4fv(programAttribute.location, value); + break; + + default: + gl.vertexAttrib1fv(programAttribute.location, value); + } + } + } + } + } + + disableUnusedAttributes(); + } + + function dispose() { + reset(); + + for (const geometryId in bindingStates) { + const programMap = bindingStates[geometryId]; + + for (const programId in programMap) { + const stateMap = programMap[programId]; + + for (const wireframe in stateMap) { + deleteVertexArrayObject(stateMap[wireframe].object); + delete stateMap[wireframe]; + } + + delete programMap[programId]; + } + + delete bindingStates[geometryId]; + } + } + + function releaseStatesOfGeometry(geometry) { + if (bindingStates[geometry.id] === undefined) return; + const programMap = bindingStates[geometry.id]; + + for (const programId in programMap) { + const stateMap = programMap[programId]; + + for (const wireframe in stateMap) { + deleteVertexArrayObject(stateMap[wireframe].object); + delete stateMap[wireframe]; + } + + delete programMap[programId]; + } + + delete bindingStates[geometry.id]; + } + + function releaseStatesOfProgram(program) { + for (const geometryId in bindingStates) { + const programMap = bindingStates[geometryId]; + if (programMap[program.id] === undefined) continue; + const stateMap = programMap[program.id]; + + for (const wireframe in stateMap) { + deleteVertexArrayObject(stateMap[wireframe].object); + delete stateMap[wireframe]; + } + + delete programMap[program.id]; + } + } + + function reset() { + resetDefaultState(); + if (currentState === defaultState) return; + currentState = defaultState; + bindVertexArrayObject(currentState.object); + } // for backward-compatilibity + + + function resetDefaultState() { + defaultState.geometry = null; + defaultState.program = null; + defaultState.wireframe = false; + } + + return { + setup: setup, + reset: reset, + resetDefaultState: resetDefaultState, + dispose: dispose, + releaseStatesOfGeometry: releaseStatesOfGeometry, + releaseStatesOfProgram: releaseStatesOfProgram, + initAttributes: initAttributes, + enableAttribute: enableAttribute, + disableUnusedAttributes: disableUnusedAttributes + }; + } + + function WebGLBufferRenderer(gl, extensions, info, capabilities) { + const isWebGL2 = capabilities.isWebGL2; + let mode; + + function setMode(value) { + mode = value; + } + + function render(start, count) { + gl.drawArrays(mode, start, count); + info.update(count, mode, 1); + } + + function renderInstances(start, count, primcount) { + if (primcount === 0) return; + let extension, methodName; + + if (isWebGL2) { + extension = gl; + methodName = 'drawArraysInstanced'; + } else { + extension = extensions.get('ANGLE_instanced_arrays'); + methodName = 'drawArraysInstancedANGLE'; + + if (extension === null) { + console.error('THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.'); + return; + } + } + + extension[methodName](mode, start, count, primcount); + info.update(count, mode, primcount); + } // + + + this.setMode = setMode; + this.render = render; + this.renderInstances = renderInstances; + } + + function WebGLCapabilities(gl, extensions, parameters) { + let maxAnisotropy; + + function getMaxAnisotropy() { + if (maxAnisotropy !== undefined) return maxAnisotropy; + + if (extensions.has('EXT_texture_filter_anisotropic') === true) { + const extension = extensions.get('EXT_texture_filter_anisotropic'); + maxAnisotropy = gl.getParameter(extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT); + } else { + maxAnisotropy = 0; + } + + return maxAnisotropy; + } + + function getMaxPrecision(precision) { + if (precision === 'highp') { + if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.HIGH_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.HIGH_FLOAT).precision > 0) { + return 'highp'; + } + + precision = 'mediump'; + } + + if (precision === 'mediump') { + if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.MEDIUM_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT).precision > 0) { + return 'mediump'; + } + } + + return 'lowp'; + } + /* eslint-disable no-undef */ + + + const isWebGL2 = typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext || typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext; + /* eslint-enable no-undef */ + + let precision = parameters.precision !== undefined ? parameters.precision : 'highp'; + const maxPrecision = getMaxPrecision(precision); + + if (maxPrecision !== precision) { + console.warn('THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.'); + precision = maxPrecision; + } + + const drawBuffers = isWebGL2 || extensions.has('WEBGL_draw_buffers'); + const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true; + const maxTextures = gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS); + const maxVertexTextures = gl.getParameter(gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS); + const maxTextureSize = gl.getParameter(gl.MAX_TEXTURE_SIZE); + const maxCubemapSize = gl.getParameter(gl.MAX_CUBE_MAP_TEXTURE_SIZE); + const maxAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS); + const maxVertexUniforms = gl.getParameter(gl.MAX_VERTEX_UNIFORM_VECTORS); + const maxVaryings = gl.getParameter(gl.MAX_VARYING_VECTORS); + const maxFragmentUniforms = gl.getParameter(gl.MAX_FRAGMENT_UNIFORM_VECTORS); + const vertexTextures = maxVertexTextures > 0; + const floatFragmentTextures = isWebGL2 || extensions.has('OES_texture_float'); + const floatVertexTextures = vertexTextures && floatFragmentTextures; + const maxSamples = isWebGL2 ? gl.getParameter(gl.MAX_SAMPLES) : 0; + return { + isWebGL2: isWebGL2, + drawBuffers: drawBuffers, + getMaxAnisotropy: getMaxAnisotropy, + getMaxPrecision: getMaxPrecision, + precision: precision, + logarithmicDepthBuffer: logarithmicDepthBuffer, + maxTextures: maxTextures, + maxVertexTextures: maxVertexTextures, + maxTextureSize: maxTextureSize, + maxCubemapSize: maxCubemapSize, + maxAttributes: maxAttributes, + maxVertexUniforms: maxVertexUniforms, + maxVaryings: maxVaryings, + maxFragmentUniforms: maxFragmentUniforms, + vertexTextures: vertexTextures, + floatFragmentTextures: floatFragmentTextures, + floatVertexTextures: floatVertexTextures, + maxSamples: maxSamples + }; + } + + function WebGLClipping(properties) { + const scope = this; + let globalState = null, + numGlobalPlanes = 0, + localClippingEnabled = false, + renderingShadows = false; + const plane = new Plane(), + viewNormalMatrix = new Matrix3(), + uniform = { + value: null, + needsUpdate: false + }; + this.uniform = uniform; + this.numPlanes = 0; + this.numIntersection = 0; + + this.init = function (planes, enableLocalClipping, camera) { + const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to + // run another frame in order to reset the state: + numGlobalPlanes !== 0 || localClippingEnabled; + localClippingEnabled = enableLocalClipping; + globalState = projectPlanes(planes, camera, 0); + numGlobalPlanes = planes.length; + return enabled; + }; + + this.beginShadows = function () { + renderingShadows = true; + projectPlanes(null); + }; + + this.endShadows = function () { + renderingShadows = false; + resetGlobalState(); + }; + + this.setState = function (material, camera, useCache) { + const planes = material.clippingPlanes, + clipIntersection = material.clipIntersection, + clipShadows = material.clipShadows; + const materialProperties = properties.get(material); + + if (!localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && !clipShadows) { + // there's no local clipping + if (renderingShadows) { + // there's no global clipping + projectPlanes(null); + } else { + resetGlobalState(); + } + } else { + const nGlobal = renderingShadows ? 0 : numGlobalPlanes, + lGlobal = nGlobal * 4; + let dstArray = materialProperties.clippingState || null; + uniform.value = dstArray; // ensure unique state + + dstArray = projectPlanes(planes, camera, lGlobal, useCache); + + for (let i = 0; i !== lGlobal; ++i) { + dstArray[i] = globalState[i]; + } + + materialProperties.clippingState = dstArray; + this.numIntersection = clipIntersection ? this.numPlanes : 0; + this.numPlanes += nGlobal; + } + }; + + function resetGlobalState() { + if (uniform.value !== globalState) { + uniform.value = globalState; + uniform.needsUpdate = numGlobalPlanes > 0; + } + + scope.numPlanes = numGlobalPlanes; + scope.numIntersection = 0; + } + + function projectPlanes(planes, camera, dstOffset, skipTransform) { + const nPlanes = planes !== null ? planes.length : 0; + let dstArray = null; + + if (nPlanes !== 0) { + dstArray = uniform.value; + + if (skipTransform !== true || dstArray === null) { + const flatSize = dstOffset + nPlanes * 4, + viewMatrix = camera.matrixWorldInverse; + viewNormalMatrix.getNormalMatrix(viewMatrix); + + if (dstArray === null || dstArray.length < flatSize) { + dstArray = new Float32Array(flatSize); + } + + for (let i = 0, i4 = dstOffset; i !== nPlanes; ++i, i4 += 4) { + plane.copy(planes[i]).applyMatrix4(viewMatrix, viewNormalMatrix); + plane.normal.toArray(dstArray, i4); + dstArray[i4 + 3] = plane.constant; + } + } + + uniform.value = dstArray; + uniform.needsUpdate = true; + } + + scope.numPlanes = nPlanes; + scope.numIntersection = 0; + return dstArray; + } + } + + function WebGLCubeMaps(renderer) { + let cubemaps = new WeakMap(); + + function mapTextureMapping(texture, mapping) { + if (mapping === EquirectangularReflectionMapping) { + texture.mapping = CubeReflectionMapping; + } else if (mapping === EquirectangularRefractionMapping) { + texture.mapping = CubeRefractionMapping; + } + + return texture; + } + + function get(texture) { + if (texture && texture.isTexture && texture.isRenderTargetTexture === false) { + const mapping = texture.mapping; + + if (mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping) { + if (cubemaps.has(texture)) { + const cubemap = cubemaps.get(texture).texture; + return mapTextureMapping(cubemap, texture.mapping); + } else { + const image = texture.image; + + if (image && image.height > 0) { + const currentRenderTarget = renderer.getRenderTarget(); + const renderTarget = new WebGLCubeRenderTarget(image.height / 2); + renderTarget.fromEquirectangularTexture(renderer, texture); + cubemaps.set(texture, renderTarget); + renderer.setRenderTarget(currentRenderTarget); + texture.addEventListener('dispose', onTextureDispose); + return mapTextureMapping(renderTarget.texture, texture.mapping); + } else { + // image not yet ready. try the conversion next frame + return null; + } + } + } + } + + return texture; + } + + function onTextureDispose(event) { + const texture = event.target; + texture.removeEventListener('dispose', onTextureDispose); + const cubemap = cubemaps.get(texture); + + if (cubemap !== undefined) { + cubemaps.delete(texture); + cubemap.dispose(); + } + } + + function dispose() { + cubemaps = new WeakMap(); + } + + return { + get: get, + dispose: dispose + }; + } + + class OrthographicCamera extends Camera { + constructor(left = -1, right = 1, top = 1, bottom = -1, near = 0.1, far = 2000) { + super(); + this.type = 'OrthographicCamera'; + this.zoom = 1; + this.view = null; + this.left = left; + this.right = right; + this.top = top; + this.bottom = bottom; + this.near = near; + this.far = far; + this.updateProjectionMatrix(); + } + + copy(source, recursive) { + super.copy(source, recursive); + this.left = source.left; + this.right = source.right; + this.top = source.top; + this.bottom = source.bottom; + this.near = source.near; + this.far = source.far; + this.zoom = source.zoom; + this.view = source.view === null ? null : Object.assign({}, source.view); + return this; + } + + setViewOffset(fullWidth, fullHeight, x, y, width, height) { + if (this.view === null) { + this.view = { + enabled: true, + fullWidth: 1, + fullHeight: 1, + offsetX: 0, + offsetY: 0, + width: 1, + height: 1 + }; + } + + this.view.enabled = true; + this.view.fullWidth = fullWidth; + this.view.fullHeight = fullHeight; + this.view.offsetX = x; + this.view.offsetY = y; + this.view.width = width; + this.view.height = height; + this.updateProjectionMatrix(); + } + + clearViewOffset() { + if (this.view !== null) { + this.view.enabled = false; + } + + this.updateProjectionMatrix(); + } + + updateProjectionMatrix() { + const dx = (this.right - this.left) / (2 * this.zoom); + const dy = (this.top - this.bottom) / (2 * this.zoom); + const cx = (this.right + this.left) / 2; + const cy = (this.top + this.bottom) / 2; + let left = cx - dx; + let right = cx + dx; + let top = cy + dy; + let bottom = cy - dy; + + if (this.view !== null && this.view.enabled) { + const scaleW = (this.right - this.left) / this.view.fullWidth / this.zoom; + const scaleH = (this.top - this.bottom) / this.view.fullHeight / this.zoom; + left += scaleW * this.view.offsetX; + right = left + scaleW * this.view.width; + top -= scaleH * this.view.offsetY; + bottom = top - scaleH * this.view.height; + } + + this.projectionMatrix.makeOrthographic(left, right, top, bottom, this.near, this.far); + this.projectionMatrixInverse.copy(this.projectionMatrix).invert(); + } + + toJSON(meta) { + const data = super.toJSON(meta); + data.object.zoom = this.zoom; + data.object.left = this.left; + data.object.right = this.right; + data.object.top = this.top; + data.object.bottom = this.bottom; + data.object.near = this.near; + data.object.far = this.far; + if (this.view !== null) data.object.view = Object.assign({}, this.view); + return data; + } + + } + + OrthographicCamera.prototype.isOrthographicCamera = true; + + class RawShaderMaterial extends ShaderMaterial { + constructor(parameters) { + super(parameters); + this.type = 'RawShaderMaterial'; + } + + } + + RawShaderMaterial.prototype.isRawShaderMaterial = true; + + const LOD_MIN = 4; + const LOD_MAX = 8; + const SIZE_MAX = Math.pow(2, LOD_MAX); // The standard deviations (radians) associated with the extra mips. These are + // chosen to approximate a Trowbridge-Reitz distribution function times the + // geometric shadowing function. These sigma values squared must match the + // variance #defines in cube_uv_reflection_fragment.glsl.js. + + const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582]; + const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; // The maximum length of the blur for loop. Smaller sigmas will use fewer + // samples and exit early, but not recompile the shader. + + const MAX_SAMPLES = 20; + const ENCODINGS = { + [LinearEncoding]: 0, + [sRGBEncoding]: 1, + [RGBEEncoding]: 2, + [RGBM7Encoding]: 3, + [RGBM16Encoding]: 4, + [RGBDEncoding]: 5, + [GammaEncoding]: 6 + }; + + const _flatCamera = /*@__PURE__*/new OrthographicCamera(); + + const { + _lodPlanes, + _sizeLods, + _sigmas + } = /*@__PURE__*/_createPlanes(); + + const _clearColor = /*@__PURE__*/new Color(); + + let _oldTarget = null; // Golden Ratio + + const PHI = (1 + Math.sqrt(5)) / 2; + const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the + // same axis), used as axis directions evenly spread on a sphere. + + const _axisDirections = [/*@__PURE__*/new Vector3(1, 1, 1), /*@__PURE__*/new Vector3(-1, 1, 1), /*@__PURE__*/new Vector3(1, 1, -1), /*@__PURE__*/new Vector3(-1, 1, -1), /*@__PURE__*/new Vector3(0, PHI, INV_PHI), /*@__PURE__*/new Vector3(0, PHI, -INV_PHI), /*@__PURE__*/new Vector3(INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(-INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(PHI, INV_PHI, 0), /*@__PURE__*/new Vector3(-PHI, INV_PHI, 0)]; + /** + * This class generates a Prefiltered, Mipmapped Radiance Environment Map + * (PMREM) from a cubeMap environment texture. This allows different levels of + * blur to be quickly accessed based on material roughness. It is packed into a + * special CubeUV format that allows us to perform custom interpolation so that + * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap + * chain, it only goes down to the LOD_MIN level (above), and then creates extra + * even more filtered 'mips' at the same LOD_MIN resolution, associated with + * higher roughness levels. In this way we maintain resolution to smoothly + * interpolate diffuse lighting while limiting sampling computation. + * + * Paper: Fast, Accurate Image-Based Lighting + * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view + */ + + class PMREMGenerator { + constructor(renderer) { + this._renderer = renderer; + this._pingPongRenderTarget = null; + this._blurMaterial = _getBlurShader(MAX_SAMPLES); + this._equirectShader = null; + this._cubemapShader = null; + + this._compileMaterial(this._blurMaterial); + } + /** + * Generates a PMREM from a supplied Scene, which can be faster than using an + * image if networking bandwidth is low. Optional sigma specifies a blur radius + * in radians to be applied to the scene before PMREM generation. Optional near + * and far planes ensure the scene is rendered in its entirety (the cubeCamera + * is placed at the origin). + */ + + + fromScene(scene, sigma = 0, near = 0.1, far = 100) { + _oldTarget = this._renderer.getRenderTarget(); + + const cubeUVRenderTarget = this._allocateTargets(); + + this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget); + + if (sigma > 0) { + this._blur(cubeUVRenderTarget, 0, 0, sigma); + } + + this._applyPMREM(cubeUVRenderTarget); + + this._cleanup(cubeUVRenderTarget); + + return cubeUVRenderTarget; + } + /** + * Generates a PMREM from an equirectangular texture, which can be either LDR + * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512), + * as this matches best with the 256 x 256 cubemap output. + */ + + + fromEquirectangular(equirectangular) { + return this._fromTexture(equirectangular); + } + /** + * Generates a PMREM from an cubemap texture, which can be either LDR + * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256, + * as this matches best with the 256 x 256 cubemap output. + */ + + + fromCubemap(cubemap) { + return this._fromTexture(cubemap); + } + /** + * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during + * your texture's network fetch for increased concurrency. + */ + + + compileCubemapShader() { + if (this._cubemapShader === null) { + this._cubemapShader = _getCubemapShader(); + + this._compileMaterial(this._cubemapShader); + } + } + /** + * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during + * your texture's network fetch for increased concurrency. + */ + + + compileEquirectangularShader() { + if (this._equirectShader === null) { + this._equirectShader = _getEquirectShader(); + + this._compileMaterial(this._equirectShader); + } + } + /** + * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, + * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on + * one of them will cause any others to also become unusable. + */ + + + dispose() { + this._blurMaterial.dispose(); + + if (this._cubemapShader !== null) this._cubemapShader.dispose(); + if (this._equirectShader !== null) this._equirectShader.dispose(); + + for (let i = 0; i < _lodPlanes.length; i++) { + _lodPlanes[i].dispose(); + } + } // private interface + + + _cleanup(outputTarget) { + this._pingPongRenderTarget.dispose(); + + this._renderer.setRenderTarget(_oldTarget); + + outputTarget.scissorTest = false; + + _setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height); + } + + _fromTexture(texture) { + _oldTarget = this._renderer.getRenderTarget(); + + const cubeUVRenderTarget = this._allocateTargets(texture); + + this._textureToCubeUV(texture, cubeUVRenderTarget); + + this._applyPMREM(cubeUVRenderTarget); + + this._cleanup(cubeUVRenderTarget); + + return cubeUVRenderTarget; + } + + _allocateTargets(texture) { + // warning: null texture is valid + const params = { + magFilter: NearestFilter, + minFilter: NearestFilter, + generateMipmaps: false, + type: UnsignedByteType, + format: RGBEFormat, + encoding: _isLDR(texture) ? texture.encoding : RGBEEncoding, + depthBuffer: false + }; + + const cubeUVRenderTarget = _createRenderTarget(params); + + cubeUVRenderTarget.depthBuffer = texture ? false : true; + this._pingPongRenderTarget = _createRenderTarget(params); + return cubeUVRenderTarget; + } + + _compileMaterial(material) { + const tmpMesh = new Mesh(_lodPlanes[0], material); + + this._renderer.compile(tmpMesh, _flatCamera); + } + + _sceneToCubeUV(scene, near, far, cubeUVRenderTarget) { + const fov = 90; + const aspect = 1; + const cubeCamera = new PerspectiveCamera(fov, aspect, near, far); + const upSign = [1, -1, 1, 1, 1, 1]; + const forwardSign = [1, 1, 1, -1, -1, -1]; + const renderer = this._renderer; + const originalAutoClear = renderer.autoClear; + const outputEncoding = renderer.outputEncoding; + const toneMapping = renderer.toneMapping; + renderer.getClearColor(_clearColor); + renderer.toneMapping = NoToneMapping; + renderer.outputEncoding = LinearEncoding; + renderer.autoClear = false; + const backgroundMaterial = new MeshBasicMaterial({ + name: 'PMREM.Background', + side: BackSide, + depthWrite: false, + depthTest: false + }); + const backgroundBox = new Mesh(new BoxGeometry(), backgroundMaterial); + let useSolidColor = false; + const background = scene.background; + + if (background) { + if (background.isColor) { + backgroundMaterial.color.copy(background); + scene.background = null; + useSolidColor = true; + } + } else { + backgroundMaterial.color.copy(_clearColor); + useSolidColor = true; + } + + for (let i = 0; i < 6; i++) { + const col = i % 3; + + if (col == 0) { + cubeCamera.up.set(0, upSign[i], 0); + cubeCamera.lookAt(forwardSign[i], 0, 0); + } else if (col == 1) { + cubeCamera.up.set(0, 0, upSign[i]); + cubeCamera.lookAt(0, forwardSign[i], 0); + } else { + cubeCamera.up.set(0, upSign[i], 0); + cubeCamera.lookAt(0, 0, forwardSign[i]); + } + + _setViewport(cubeUVRenderTarget, col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX); + + renderer.setRenderTarget(cubeUVRenderTarget); + + if (useSolidColor) { + renderer.render(backgroundBox, cubeCamera); + } + + renderer.render(scene, cubeCamera); + } + + backgroundBox.geometry.dispose(); + backgroundBox.material.dispose(); + renderer.toneMapping = toneMapping; + renderer.outputEncoding = outputEncoding; + renderer.autoClear = originalAutoClear; + scene.background = background; + } + + _setEncoding(uniform, texture) { + if (this._renderer.capabilities.isWebGL2 === true && texture.format === RGBAFormat && texture.type === UnsignedByteType && texture.encoding === sRGBEncoding) { + uniform.value = ENCODINGS[LinearEncoding]; + } else { + uniform.value = ENCODINGS[texture.encoding]; + } + } + + _textureToCubeUV(texture, cubeUVRenderTarget) { + const renderer = this._renderer; + + if (texture.isCubeTexture) { + if (this._cubemapShader == null) { + this._cubemapShader = _getCubemapShader(); + } + } else { + if (this._equirectShader == null) { + this._equirectShader = _getEquirectShader(); + } + } + + const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader; + const mesh = new Mesh(_lodPlanes[0], material); + const uniforms = material.uniforms; + uniforms['envMap'].value = texture; + + if (!texture.isCubeTexture) { + uniforms['texelSize'].value.set(1.0 / texture.image.width, 1.0 / texture.image.height); + } + + this._setEncoding(uniforms['inputEncoding'], texture); + + this._setEncoding(uniforms['outputEncoding'], cubeUVRenderTarget.texture); + + _setViewport(cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX); + + renderer.setRenderTarget(cubeUVRenderTarget); + renderer.render(mesh, _flatCamera); + } + + _applyPMREM(cubeUVRenderTarget) { + const renderer = this._renderer; + const autoClear = renderer.autoClear; + renderer.autoClear = false; + + for (let i = 1; i < TOTAL_LODS; i++) { + const sigma = Math.sqrt(_sigmas[i] * _sigmas[i] - _sigmas[i - 1] * _sigmas[i - 1]); + const poleAxis = _axisDirections[(i - 1) % _axisDirections.length]; + + this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis); + } + + renderer.autoClear = autoClear; + } + /** + * This is a two-pass Gaussian blur for a cubemap. Normally this is done + * vertically and horizontally, but this breaks down on a cube. Here we apply + * the blur latitudinally (around the poles), and then longitudinally (towards + * the poles) to approximate the orthogonally-separable blur. It is least + * accurate at the poles, but still does a decent job. + */ + + + _blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis) { + const pingPongRenderTarget = this._pingPongRenderTarget; + + this._halfBlur(cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis); + + this._halfBlur(pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis); + } + + _halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis) { + const renderer = this._renderer; + const blurMaterial = this._blurMaterial; + + if (direction !== 'latitudinal' && direction !== 'longitudinal') { + console.error('blur direction must be either latitudinal or longitudinal!'); + } // Number of standard deviations at which to cut off the discrete approximation. + + + const STANDARD_DEVIATIONS = 3; + const blurMesh = new Mesh(_lodPlanes[lodOut], blurMaterial); + const blurUniforms = blurMaterial.uniforms; + const pixels = _sizeLods[lodIn] - 1; + const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1); + const sigmaPixels = sigmaRadians / radiansPerPixel; + const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES; + + if (samples > MAX_SAMPLES) { + console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`); + } + + const weights = []; + let sum = 0; + + for (let i = 0; i < MAX_SAMPLES; ++i) { + const x = i / sigmaPixels; + const weight = Math.exp(-x * x / 2); + weights.push(weight); + + if (i == 0) { + sum += weight; + } else if (i < samples) { + sum += 2 * weight; + } + } + + for (let i = 0; i < weights.length; i++) { + weights[i] = weights[i] / sum; + } + + blurUniforms['envMap'].value = targetIn.texture; + blurUniforms['samples'].value = samples; + blurUniforms['weights'].value = weights; + blurUniforms['latitudinal'].value = direction === 'latitudinal'; + + if (poleAxis) { + blurUniforms['poleAxis'].value = poleAxis; + } + + blurUniforms['dTheta'].value = radiansPerPixel; + blurUniforms['mipInt'].value = LOD_MAX - lodIn; + + this._setEncoding(blurUniforms['inputEncoding'], targetIn.texture); + + this._setEncoding(blurUniforms['outputEncoding'], targetIn.texture); + + const outputSize = _sizeLods[lodOut]; + const x = 3 * Math.max(0, SIZE_MAX - 2 * outputSize); + const y = (lodOut === 0 ? 0 : 2 * SIZE_MAX) + 2 * outputSize * (lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0); + + _setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize); + + renderer.setRenderTarget(targetOut); + renderer.render(blurMesh, _flatCamera); + } + + } + + function _isLDR(texture) { + if (texture === undefined || texture.type !== UnsignedByteType) return false; + return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding; + } + + function _createPlanes() { + const _lodPlanes = []; + const _sizeLods = []; + const _sigmas = []; + let lod = LOD_MAX; + + for (let i = 0; i < TOTAL_LODS; i++) { + const sizeLod = Math.pow(2, lod); + + _sizeLods.push(sizeLod); + + let sigma = 1.0 / sizeLod; + + if (i > LOD_MAX - LOD_MIN) { + sigma = EXTRA_LOD_SIGMA[i - LOD_MAX + LOD_MIN - 1]; + } else if (i == 0) { + sigma = 0; + } + + _sigmas.push(sigma); + + const texelSize = 1.0 / (sizeLod - 1); + const min = -texelSize / 2; + const max = 1 + texelSize / 2; + const uv1 = [min, min, max, min, max, max, min, min, max, max, min, max]; + const cubeFaces = 6; + const vertices = 6; + const positionSize = 3; + const uvSize = 2; + const faceIndexSize = 1; + const position = new Float32Array(positionSize * vertices * cubeFaces); + const uv = new Float32Array(uvSize * vertices * cubeFaces); + const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces); + + for (let face = 0; face < cubeFaces; face++) { + const x = face % 3 * 2 / 3 - 1; + const y = face > 2 ? 0 : -1; + const coordinates = [x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0]; + position.set(coordinates, positionSize * vertices * face); + uv.set(uv1, uvSize * vertices * face); + const fill = [face, face, face, face, face, face]; + faceIndex.set(fill, faceIndexSize * vertices * face); + } + + const planes = new BufferGeometry(); + planes.setAttribute('position', new BufferAttribute(position, positionSize)); + planes.setAttribute('uv', new BufferAttribute(uv, uvSize)); + planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize)); + + _lodPlanes.push(planes); + + if (lod > LOD_MIN) { + lod--; + } + } + + return { + _lodPlanes, + _sizeLods, + _sigmas + }; + } + + function _createRenderTarget(params) { + const cubeUVRenderTarget = new WebGLRenderTarget(3 * SIZE_MAX, 3 * SIZE_MAX, params); + cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; + cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; + cubeUVRenderTarget.scissorTest = true; + return cubeUVRenderTarget; + } + + function _setViewport(target, x, y, width, height) { + target.viewport.set(x, y, width, height); + target.scissor.set(x, y, width, height); + } + + function _getBlurShader(maxSamples) { + const weights = new Float32Array(maxSamples); + const poleAxis = new Vector3(0, 1, 0); + const shaderMaterial = new RawShaderMaterial({ + name: 'SphericalGaussianBlur', + defines: { + 'n': maxSamples + }, + uniforms: { + 'envMap': { + value: null + }, + 'samples': { + value: 1 + }, + 'weights': { + value: weights + }, + 'latitudinal': { + value: false + }, + 'dTheta': { + value: 0 + }, + 'mipInt': { + value: 0 + }, + 'poleAxis': { + value: poleAxis + }, + 'inputEncoding': { + value: ENCODINGS[LinearEncoding] + }, + 'outputEncoding': { + value: ENCODINGS[LinearEncoding] + } + }, + vertexShader: _getCommonVertexShader(), + fragmentShader: + /* glsl */ + ` + + precision mediump float; + precision mediump int; + + varying vec3 vOutputDirection; + + uniform sampler2D envMap; + uniform int samples; + uniform float weights[ n ]; + uniform bool latitudinal; + uniform float dTheta; + uniform float mipInt; + uniform vec3 poleAxis; + + ${_getEncodings()} + + #define ENVMAP_TYPE_CUBE_UV + #include + + vec3 getSample( float theta, vec3 axis ) { + + float cosTheta = cos( theta ); + // Rodrigues' axis-angle rotation + vec3 sampleDirection = vOutputDirection * cosTheta + + cross( axis, vOutputDirection ) * sin( theta ) + + axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta ); + + return bilinearCubeUV( envMap, sampleDirection, mipInt ); + + } + + void main() { + + vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection ); + + if ( all( equal( axis, vec3( 0.0 ) ) ) ) { + + axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x ); + + } + + axis = normalize( axis ); + + gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); + gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis ); + + for ( int i = 1; i < n; i++ ) { + + if ( i >= samples ) { + + break; + + } + + float theta = dTheta * float( i ); + gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis ); + gl_FragColor.rgb += weights[ i ] * getSample( theta, axis ); + + } + + gl_FragColor = linearToOutputTexel( gl_FragColor ); + + } + `, + blending: NoBlending, + depthTest: false, + depthWrite: false + }); + return shaderMaterial; + } + + function _getEquirectShader() { + const texelSize = new Vector2(1, 1); + const shaderMaterial = new RawShaderMaterial({ + name: 'EquirectangularToCubeUV', + uniforms: { + 'envMap': { + value: null + }, + 'texelSize': { + value: texelSize + }, + 'inputEncoding': { + value: ENCODINGS[LinearEncoding] + }, + 'outputEncoding': { + value: ENCODINGS[LinearEncoding] + } + }, + vertexShader: _getCommonVertexShader(), + fragmentShader: + /* glsl */ + ` + + precision mediump float; + precision mediump int; + + varying vec3 vOutputDirection; + + uniform sampler2D envMap; + uniform vec2 texelSize; + + ${_getEncodings()} + + #include + + void main() { + + gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); + + vec3 outputDirection = normalize( vOutputDirection ); + vec2 uv = equirectUv( outputDirection ); + + vec2 f = fract( uv / texelSize - 0.5 ); + uv -= f * texelSize; + vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; + uv.x += texelSize.x; + vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; + uv.y += texelSize.y; + vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; + uv.x -= texelSize.x; + vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; + + vec3 tm = mix( tl, tr, f.x ); + vec3 bm = mix( bl, br, f.x ); + gl_FragColor.rgb = mix( tm, bm, f.y ); + + gl_FragColor = linearToOutputTexel( gl_FragColor ); + + } + `, + blending: NoBlending, + depthTest: false, + depthWrite: false + }); + return shaderMaterial; + } + + function _getCubemapShader() { + const shaderMaterial = new RawShaderMaterial({ + name: 'CubemapToCubeUV', + uniforms: { + 'envMap': { + value: null + }, + 'inputEncoding': { + value: ENCODINGS[LinearEncoding] + }, + 'outputEncoding': { + value: ENCODINGS[LinearEncoding] + } + }, + vertexShader: _getCommonVertexShader(), + fragmentShader: + /* glsl */ + ` + + precision mediump float; + precision mediump int; + + varying vec3 vOutputDirection; + + uniform samplerCube envMap; + + ${_getEncodings()} + + void main() { + + gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); + gl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb; + gl_FragColor = linearToOutputTexel( gl_FragColor ); + + } + `, + blending: NoBlending, + depthTest: false, + depthWrite: false + }); + return shaderMaterial; + } + + function _getCommonVertexShader() { + return ( + /* glsl */ + ` + + precision mediump float; + precision mediump int; + + attribute vec3 position; + attribute vec2 uv; + attribute float faceIndex; + + varying vec3 vOutputDirection; + + // RH coordinate system; PMREM face-indexing convention + vec3 getDirection( vec2 uv, float face ) { + + uv = 2.0 * uv - 1.0; + + vec3 direction = vec3( uv, 1.0 ); + + if ( face == 0.0 ) { + + direction = direction.zyx; // ( 1, v, u ) pos x + + } else if ( face == 1.0 ) { + + direction = direction.xzy; + direction.xz *= -1.0; // ( -u, 1, -v ) pos y + + } else if ( face == 2.0 ) { + + direction.x *= -1.0; // ( -u, v, 1 ) pos z + + } else if ( face == 3.0 ) { + + direction = direction.zyx; + direction.xz *= -1.0; // ( -1, v, -u ) neg x + + } else if ( face == 4.0 ) { + + direction = direction.xzy; + direction.xy *= -1.0; // ( -u, -1, v ) neg y + + } else if ( face == 5.0 ) { + + direction.z *= -1.0; // ( u, v, -1 ) neg z + + } + + return direction; + + } + + void main() { + + vOutputDirection = getDirection( uv, faceIndex ); + gl_Position = vec4( position, 1.0 ); + + } + ` + ); + } + + function _getEncodings() { + return ( + /* glsl */ + ` + + uniform int inputEncoding; + uniform int outputEncoding; + + #include + + vec4 inputTexelToLinear( vec4 value ) { + + if ( inputEncoding == 0 ) { + + return value; + + } else if ( inputEncoding == 1 ) { + + return sRGBToLinear( value ); + + } else if ( inputEncoding == 2 ) { + + return RGBEToLinear( value ); + + } else if ( inputEncoding == 3 ) { + + return RGBMToLinear( value, 7.0 ); + + } else if ( inputEncoding == 4 ) { + + return RGBMToLinear( value, 16.0 ); + + } else if ( inputEncoding == 5 ) { + + return RGBDToLinear( value, 256.0 ); + + } else { + + return GammaToLinear( value, 2.2 ); + + } + + } + + vec4 linearToOutputTexel( vec4 value ) { + + if ( outputEncoding == 0 ) { + + return value; + + } else if ( outputEncoding == 1 ) { + + return LinearTosRGB( value ); + + } else if ( outputEncoding == 2 ) { + + return LinearToRGBE( value ); + + } else if ( outputEncoding == 3 ) { + + return LinearToRGBM( value, 7.0 ); + + } else if ( outputEncoding == 4 ) { + + return LinearToRGBM( value, 16.0 ); + + } else if ( outputEncoding == 5 ) { + + return LinearToRGBD( value, 256.0 ); + + } else { + + return LinearToGamma( value, 2.2 ); + + } + + } + + vec4 envMapTexelToLinear( vec4 color ) { + + return inputTexelToLinear( color ); + + } + ` + ); + } + + function WebGLCubeUVMaps(renderer) { + let cubeUVmaps = new WeakMap(); + let pmremGenerator = null; + + function get(texture) { + if (texture && texture.isTexture && texture.isRenderTargetTexture === false) { + const mapping = texture.mapping; + const isEquirectMap = mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping; + const isCubeMap = mapping === CubeReflectionMapping || mapping === CubeRefractionMapping; + + if (isEquirectMap || isCubeMap) { + // equirect/cube map to cubeUV conversion + if (cubeUVmaps.has(texture)) { + return cubeUVmaps.get(texture).texture; + } else { + const image = texture.image; + + if (isEquirectMap && image && image.height > 0 || isCubeMap && image && isCubeTextureComplete(image)) { + const currentRenderTarget = renderer.getRenderTarget(); + if (pmremGenerator === null) pmremGenerator = new PMREMGenerator(renderer); + const renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular(texture) : pmremGenerator.fromCubemap(texture); + cubeUVmaps.set(texture, renderTarget); + renderer.setRenderTarget(currentRenderTarget); + texture.addEventListener('dispose', onTextureDispose); + return renderTarget.texture; + } else { + // image not yet ready. try the conversion next frame + return null; + } + } + } + } + + return texture; + } + + function isCubeTextureComplete(image) { + let count = 0; + const length = 6; + + for (let i = 0; i < length; i++) { + if (image[i] !== undefined) count++; + } + + return count === length; + } + + function onTextureDispose(event) { + const texture = event.target; + texture.removeEventListener('dispose', onTextureDispose); + const cubemapUV = cubeUVmaps.get(texture); + + if (cubemapUV !== undefined) { + cubeUVmaps.delete(texture); + cubemapUV.dispose(); + } + } + + function dispose() { + cubeUVmaps = new WeakMap(); + + if (pmremGenerator !== null) { + pmremGenerator.dispose(); + pmremGenerator = null; + } + } + + return { + get: get, + dispose: dispose + }; + } + + function WebGLExtensions(gl) { + const extensions = {}; + + function getExtension(name) { + if (extensions[name] !== undefined) { + return extensions[name]; + } + + let extension; + + switch (name) { + case 'WEBGL_depth_texture': + extension = gl.getExtension('WEBGL_depth_texture') || gl.getExtension('MOZ_WEBGL_depth_texture') || gl.getExtension('WEBKIT_WEBGL_depth_texture'); + break; + + case 'EXT_texture_filter_anisotropic': + extension = gl.getExtension('EXT_texture_filter_anisotropic') || gl.getExtension('MOZ_EXT_texture_filter_anisotropic') || gl.getExtension('WEBKIT_EXT_texture_filter_anisotropic'); + break; + + case 'WEBGL_compressed_texture_s3tc': + extension = gl.getExtension('WEBGL_compressed_texture_s3tc') || gl.getExtension('MOZ_WEBGL_compressed_texture_s3tc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_s3tc'); + break; + + case 'WEBGL_compressed_texture_pvrtc': + extension = gl.getExtension('WEBGL_compressed_texture_pvrtc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_pvrtc'); + break; + + default: + extension = gl.getExtension(name); + } + + extensions[name] = extension; + return extension; + } + + return { + has: function (name) { + return getExtension(name) !== null; + }, + init: function (capabilities) { + if (capabilities.isWebGL2) { + getExtension('EXT_color_buffer_float'); + } else { + getExtension('WEBGL_depth_texture'); + getExtension('OES_texture_float'); + getExtension('OES_texture_half_float'); + getExtension('OES_texture_half_float_linear'); + getExtension('OES_standard_derivatives'); + getExtension('OES_element_index_uint'); + getExtension('OES_vertex_array_object'); + getExtension('ANGLE_instanced_arrays'); + } + + getExtension('OES_texture_float_linear'); + getExtension('EXT_color_buffer_half_float'); + getExtension('EXT_multisampled_render_to_texture'); + }, + get: function (name) { + const extension = getExtension(name); + + if (extension === null) { + console.warn('THREE.WebGLRenderer: ' + name + ' extension not supported.'); + } + + return extension; + } + }; + } + + function WebGLGeometries(gl, attributes, info, bindingStates) { + const geometries = {}; + const wireframeAttributes = new WeakMap(); + + function onGeometryDispose(event) { + const geometry = event.target; + + if (geometry.index !== null) { + attributes.remove(geometry.index); + } + + for (const name in geometry.attributes) { + attributes.remove(geometry.attributes[name]); + } + + geometry.removeEventListener('dispose', onGeometryDispose); + delete geometries[geometry.id]; + const attribute = wireframeAttributes.get(geometry); + + if (attribute) { + attributes.remove(attribute); + wireframeAttributes.delete(geometry); + } + + bindingStates.releaseStatesOfGeometry(geometry); + + if (geometry.isInstancedBufferGeometry === true) { + delete geometry._maxInstanceCount; + } // + + + info.memory.geometries--; + } + + function get(object, geometry) { + if (geometries[geometry.id] === true) return geometry; + geometry.addEventListener('dispose', onGeometryDispose); + geometries[geometry.id] = true; + info.memory.geometries++; + return geometry; + } + + function update(geometry) { + const geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates. + + for (const name in geometryAttributes) { + attributes.update(geometryAttributes[name], gl.ARRAY_BUFFER); + } // morph targets + + + const morphAttributes = geometry.morphAttributes; + + for (const name in morphAttributes) { + const array = morphAttributes[name]; + + for (let i = 0, l = array.length; i < l; i++) { + attributes.update(array[i], gl.ARRAY_BUFFER); + } + } + } + + function updateWireframeAttribute(geometry) { + const indices = []; + const geometryIndex = geometry.index; + const geometryPosition = geometry.attributes.position; + let version = 0; + + if (geometryIndex !== null) { + const array = geometryIndex.array; + version = geometryIndex.version; + + for (let i = 0, l = array.length; i < l; i += 3) { + const a = array[i + 0]; + const b = array[i + 1]; + const c = array[i + 2]; + indices.push(a, b, b, c, c, a); + } + } else { + const array = geometryPosition.array; + version = geometryPosition.version; + + for (let i = 0, l = array.length / 3 - 1; i < l; i += 3) { + const a = i + 0; + const b = i + 1; + const c = i + 2; + indices.push(a, b, b, c, c, a); + } + } + + const attribute = new (arrayMax(indices) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(indices, 1); + attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates + // + + const previousAttribute = wireframeAttributes.get(geometry); + if (previousAttribute) attributes.remove(previousAttribute); // + + wireframeAttributes.set(geometry, attribute); + } + + function getWireframeAttribute(geometry) { + const currentAttribute = wireframeAttributes.get(geometry); + + if (currentAttribute) { + const geometryIndex = geometry.index; + + if (geometryIndex !== null) { + // if the attribute is obsolete, create a new one + if (currentAttribute.version < geometryIndex.version) { + updateWireframeAttribute(geometry); + } + } + } else { + updateWireframeAttribute(geometry); + } + + return wireframeAttributes.get(geometry); + } + + return { + get: get, + update: update, + getWireframeAttribute: getWireframeAttribute + }; + } + + function WebGLIndexedBufferRenderer(gl, extensions, info, capabilities) { + const isWebGL2 = capabilities.isWebGL2; + let mode; + + function setMode(value) { + mode = value; + } + + let type, bytesPerElement; + + function setIndex(value) { + type = value.type; + bytesPerElement = value.bytesPerElement; + } + + function render(start, count) { + gl.drawElements(mode, count, type, start * bytesPerElement); + info.update(count, mode, 1); + } + + function renderInstances(start, count, primcount) { + if (primcount === 0) return; + let extension, methodName; + + if (isWebGL2) { + extension = gl; + methodName = 'drawElementsInstanced'; + } else { + extension = extensions.get('ANGLE_instanced_arrays'); + methodName = 'drawElementsInstancedANGLE'; + + if (extension === null) { + console.error('THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.'); + return; + } + } + + extension[methodName](mode, count, type, start * bytesPerElement, primcount); + info.update(count, mode, primcount); + } // + + + this.setMode = setMode; + this.setIndex = setIndex; + this.render = render; + this.renderInstances = renderInstances; + } + + function WebGLInfo(gl) { + const memory = { + geometries: 0, + textures: 0 + }; + const render = { + frame: 0, + calls: 0, + triangles: 0, + points: 0, + lines: 0 + }; + + function update(count, mode, instanceCount) { + render.calls++; + + switch (mode) { + case gl.TRIANGLES: + render.triangles += instanceCount * (count / 3); + break; + + case gl.LINES: + render.lines += instanceCount * (count / 2); + break; + + case gl.LINE_STRIP: + render.lines += instanceCount * (count - 1); + break; + + case gl.LINE_LOOP: + render.lines += instanceCount * count; + break; + + case gl.POINTS: + render.points += instanceCount * count; + break; + + default: + console.error('THREE.WebGLInfo: Unknown draw mode:', mode); + break; + } + } + + function reset() { + render.frame++; + render.calls = 0; + render.triangles = 0; + render.points = 0; + render.lines = 0; + } + + return { + memory: memory, + render: render, + programs: null, + autoReset: true, + reset: reset, + update: update + }; + } + + class DataTexture2DArray extends Texture { + constructor(data = null, width = 1, height = 1, depth = 1) { + super(null); + this.image = { + data, + width, + height, + depth + }; + this.magFilter = NearestFilter; + this.minFilter = NearestFilter; + this.wrapR = ClampToEdgeWrapping; + this.generateMipmaps = false; + this.flipY = false; + this.unpackAlignment = 1; + this.needsUpdate = true; + } + + } + + DataTexture2DArray.prototype.isDataTexture2DArray = true; + + function numericalSort(a, b) { + return a[0] - b[0]; + } + + function absNumericalSort(a, b) { + return Math.abs(b[1]) - Math.abs(a[1]); + } + + function denormalize(morph, attribute) { + let denominator = 1; + const array = attribute.isInterleavedBufferAttribute ? attribute.data.array : attribute.array; + if (array instanceof Int8Array) denominator = 127;else if (array instanceof Int16Array) denominator = 32767;else if (array instanceof Int32Array) denominator = 2147483647;else console.error('THREE.WebGLMorphtargets: Unsupported morph attribute data type: ', array); + morph.divideScalar(denominator); + } + + function WebGLMorphtargets(gl, capabilities, textures) { + const influencesList = {}; + const morphInfluences = new Float32Array(8); + const morphTextures = new WeakMap(); + const morph = new Vector3(); + const workInfluences = []; + + for (let i = 0; i < 8; i++) { + workInfluences[i] = [i, 0]; + } + + function update(object, geometry, material, program) { + const objectInfluences = object.morphTargetInfluences; + + if (capabilities.isWebGL2 === true) { + // instead of using attributes, the WebGL 2 code path encodes morph targets + // into an array of data textures. Each layer represents a single morph target. + const numberOfMorphTargets = geometry.morphAttributes.position.length; + let entry = morphTextures.get(geometry); + + if (entry === undefined || entry.count !== numberOfMorphTargets) { + if (entry !== undefined) entry.texture.dispose(); + const hasMorphNormals = geometry.morphAttributes.normal !== undefined; + const morphTargets = geometry.morphAttributes.position; + const morphNormals = geometry.morphAttributes.normal || []; + const numberOfVertices = geometry.attributes.position.count; + const numberOfVertexData = hasMorphNormals === true ? 2 : 1; // (v,n) vs. (v) + + let width = numberOfVertices * numberOfVertexData; + let height = 1; + + if (width > capabilities.maxTextureSize) { + height = Math.ceil(width / capabilities.maxTextureSize); + width = capabilities.maxTextureSize; + } + + const buffer = new Float32Array(width * height * 4 * numberOfMorphTargets); + const texture = new DataTexture2DArray(buffer, width, height, numberOfMorphTargets); + texture.format = RGBAFormat; // using RGBA since RGB might be emulated (and is thus slower) + + texture.type = FloatType; // fill buffer + + const vertexDataStride = numberOfVertexData * 4; + + for (let i = 0; i < numberOfMorphTargets; i++) { + const morphTarget = morphTargets[i]; + const morphNormal = morphNormals[i]; + const offset = width * height * 4 * i; + + for (let j = 0; j < morphTarget.count; j++) { + morph.fromBufferAttribute(morphTarget, j); + if (morphTarget.normalized === true) denormalize(morph, morphTarget); + const stride = j * vertexDataStride; + buffer[offset + stride + 0] = morph.x; + buffer[offset + stride + 1] = morph.y; + buffer[offset + stride + 2] = morph.z; + buffer[offset + stride + 3] = 0; + + if (hasMorphNormals === true) { + morph.fromBufferAttribute(morphNormal, j); + if (morphNormal.normalized === true) denormalize(morph, morphNormal); + buffer[offset + stride + 4] = morph.x; + buffer[offset + stride + 5] = morph.y; + buffer[offset + stride + 6] = morph.z; + buffer[offset + stride + 7] = 0; + } + } + } + + entry = { + count: numberOfMorphTargets, + texture: texture, + size: new Vector2(width, height) + }; + morphTextures.set(geometry, entry); + } // + + + let morphInfluencesSum = 0; + + for (let i = 0; i < objectInfluences.length; i++) { + morphInfluencesSum += objectInfluences[i]; + } + + const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; + program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence); + program.getUniforms().setValue(gl, 'morphTargetInfluences', objectInfluences); + program.getUniforms().setValue(gl, 'morphTargetsTexture', entry.texture, textures); + program.getUniforms().setValue(gl, 'morphTargetsTextureSize', entry.size); + } else { + // When object doesn't have morph target influences defined, we treat it as a 0-length array + // This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences + const length = objectInfluences === undefined ? 0 : objectInfluences.length; + let influences = influencesList[geometry.id]; + + if (influences === undefined || influences.length !== length) { + // initialise list + influences = []; + + for (let i = 0; i < length; i++) { + influences[i] = [i, 0]; + } + + influencesList[geometry.id] = influences; + } // Collect influences + + + for (let i = 0; i < length; i++) { + const influence = influences[i]; + influence[0] = i; + influence[1] = objectInfluences[i]; + } + + influences.sort(absNumericalSort); + + for (let i = 0; i < 8; i++) { + if (i < length && influences[i][1]) { + workInfluences[i][0] = influences[i][0]; + workInfluences[i][1] = influences[i][1]; + } else { + workInfluences[i][0] = Number.MAX_SAFE_INTEGER; + workInfluences[i][1] = 0; + } + } + + workInfluences.sort(numericalSort); + const morphTargets = geometry.morphAttributes.position; + const morphNormals = geometry.morphAttributes.normal; + let morphInfluencesSum = 0; + + for (let i = 0; i < 8; i++) { + const influence = workInfluences[i]; + const index = influence[0]; + const value = influence[1]; + + if (index !== Number.MAX_SAFE_INTEGER && value) { + if (morphTargets && geometry.getAttribute('morphTarget' + i) !== morphTargets[index]) { + geometry.setAttribute('morphTarget' + i, morphTargets[index]); + } + + if (morphNormals && geometry.getAttribute('morphNormal' + i) !== morphNormals[index]) { + geometry.setAttribute('morphNormal' + i, morphNormals[index]); + } + + morphInfluences[i] = value; + morphInfluencesSum += value; + } else { + if (morphTargets && geometry.hasAttribute('morphTarget' + i) === true) { + geometry.deleteAttribute('morphTarget' + i); + } + + if (morphNormals && geometry.hasAttribute('morphNormal' + i) === true) { + geometry.deleteAttribute('morphNormal' + i); + } + + morphInfluences[i] = 0; + } + } // GLSL shader uses formula baseinfluence * base + sum(target * influence) + // This allows us to switch between absolute morphs and relative morphs without changing shader code + // When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence) + + + const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; + program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence); + program.getUniforms().setValue(gl, 'morphTargetInfluences', morphInfluences); + } + } + + return { + update: update + }; + } + + function WebGLObjects(gl, geometries, attributes, info) { + let updateMap = new WeakMap(); + + function update(object) { + const frame = info.render.frame; + const geometry = object.geometry; + const buffergeometry = geometries.get(object, geometry); // Update once per frame + + if (updateMap.get(buffergeometry) !== frame) { + geometries.update(buffergeometry); + updateMap.set(buffergeometry, frame); + } + + if (object.isInstancedMesh) { + if (object.hasEventListener('dispose', onInstancedMeshDispose) === false) { + object.addEventListener('dispose', onInstancedMeshDispose); + } + + attributes.update(object.instanceMatrix, gl.ARRAY_BUFFER); + + if (object.instanceColor !== null) { + attributes.update(object.instanceColor, gl.ARRAY_BUFFER); + } + } + + return buffergeometry; + } + + function dispose() { + updateMap = new WeakMap(); + } + + function onInstancedMeshDispose(event) { + const instancedMesh = event.target; + instancedMesh.removeEventListener('dispose', onInstancedMeshDispose); + attributes.remove(instancedMesh.instanceMatrix); + if (instancedMesh.instanceColor !== null) attributes.remove(instancedMesh.instanceColor); + } + + return { + update: update, + dispose: dispose + }; + } + + class DataTexture3D extends Texture { + constructor(data = null, width = 1, height = 1, depth = 1) { + // We're going to add .setXXX() methods for setting properties later. + // Users can still set in DataTexture3D directly. + // + // const texture = new THREE.DataTexture3D( data, width, height, depth ); + // texture.anisotropy = 16; + // + // See #14839 + super(null); + this.image = { + data, + width, + height, + depth + }; + this.magFilter = NearestFilter; + this.minFilter = NearestFilter; + this.wrapR = ClampToEdgeWrapping; + this.generateMipmaps = false; + this.flipY = false; + this.unpackAlignment = 1; + this.needsUpdate = true; + } + + } + + DataTexture3D.prototype.isDataTexture3D = true; + + /** + * Uniforms of a program. + * Those form a tree structure with a special top-level container for the root, + * which you get by calling 'new WebGLUniforms( gl, program )'. + * + * + * Properties of inner nodes including the top-level container: + * + * .seq - array of nested uniforms + * .map - nested uniforms by name + * + * + * Methods of all nodes except the top-level container: + * + * .setValue( gl, value, [textures] ) + * + * uploads a uniform value(s) + * the 'textures' parameter is needed for sampler uniforms + * + * + * Static methods of the top-level container (textures factorizations): + * + * .upload( gl, seq, values, textures ) + * + * sets uniforms in 'seq' to 'values[id].value' + * + * .seqWithValue( seq, values ) : filteredSeq + * + * filters 'seq' entries with corresponding entry in values + * + * + * Methods of the top-level container (textures factorizations): + * + * .setValue( gl, name, value, textures ) + * + * sets uniform with name 'name' to 'value' + * + * .setOptional( gl, obj, prop ) + * + * like .set for an optional property of the object + * + */ + const emptyTexture = new Texture(); + const emptyTexture2dArray = new DataTexture2DArray(); + const emptyTexture3d = new DataTexture3D(); + const emptyCubeTexture = new CubeTexture(); // --- Utilities --- + // Array Caches (provide typed arrays for temporary by size) + + const arrayCacheF32 = []; + const arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms + + const mat4array = new Float32Array(16); + const mat3array = new Float32Array(9); + const mat2array = new Float32Array(4); // Flattening for arrays of vectors and matrices + + function flatten(array, nBlocks, blockSize) { + const firstElem = array[0]; + if (firstElem <= 0 || firstElem > 0) return array; // unoptimized: ! isNaN( firstElem ) + // see http://jacksondunstan.com/articles/983 + + const n = nBlocks * blockSize; + let r = arrayCacheF32[n]; + + if (r === undefined) { + r = new Float32Array(n); + arrayCacheF32[n] = r; + } + + if (nBlocks !== 0) { + firstElem.toArray(r, 0); + + for (let i = 1, offset = 0; i !== nBlocks; ++i) { + offset += blockSize; + array[i].toArray(r, offset); + } + } + + return r; + } + + function arraysEqual(a, b) { + if (a.length !== b.length) return false; + + for (let i = 0, l = a.length; i < l; i++) { + if (a[i] !== b[i]) return false; + } + + return true; + } + + function copyArray(a, b) { + for (let i = 0, l = b.length; i < l; i++) { + a[i] = b[i]; + } + } // Texture unit allocation + + + function allocTexUnits(textures, n) { + let r = arrayCacheI32[n]; + + if (r === undefined) { + r = new Int32Array(n); + arrayCacheI32[n] = r; + } + + for (let i = 0; i !== n; ++i) { + r[i] = textures.allocateTextureUnit(); + } + + return r; + } // --- Setters --- + // Note: Defining these methods externally, because they come in a bunch + // and this way their names minify. + // Single scalar + + + function setValueV1f(gl, v) { + const cache = this.cache; + if (cache[0] === v) return; + gl.uniform1f(this.addr, v); + cache[0] = v; + } // Single float vector (from flat array or THREE.VectorN) + + + function setValueV2f(gl, v) { + const cache = this.cache; + + if (v.x !== undefined) { + if (cache[0] !== v.x || cache[1] !== v.y) { + gl.uniform2f(this.addr, v.x, v.y); + cache[0] = v.x; + cache[1] = v.y; + } + } else { + if (arraysEqual(cache, v)) return; + gl.uniform2fv(this.addr, v); + copyArray(cache, v); + } + } + + function setValueV3f(gl, v) { + const cache = this.cache; + + if (v.x !== undefined) { + if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z) { + gl.uniform3f(this.addr, v.x, v.y, v.z); + cache[0] = v.x; + cache[1] = v.y; + cache[2] = v.z; + } + } else if (v.r !== undefined) { + if (cache[0] !== v.r || cache[1] !== v.g || cache[2] !== v.b) { + gl.uniform3f(this.addr, v.r, v.g, v.b); + cache[0] = v.r; + cache[1] = v.g; + cache[2] = v.b; + } + } else { + if (arraysEqual(cache, v)) return; + gl.uniform3fv(this.addr, v); + copyArray(cache, v); + } + } + + function setValueV4f(gl, v) { + const cache = this.cache; + + if (v.x !== undefined) { + if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z || cache[3] !== v.w) { + gl.uniform4f(this.addr, v.x, v.y, v.z, v.w); + cache[0] = v.x; + cache[1] = v.y; + cache[2] = v.z; + cache[3] = v.w; + } + } else { + if (arraysEqual(cache, v)) return; + gl.uniform4fv(this.addr, v); + copyArray(cache, v); + } + } // Single matrix (from flat array or THREE.MatrixN) + + + function setValueM2(gl, v) { + const cache = this.cache; + const elements = v.elements; + + if (elements === undefined) { + if (arraysEqual(cache, v)) return; + gl.uniformMatrix2fv(this.addr, false, v); + copyArray(cache, v); + } else { + if (arraysEqual(cache, elements)) return; + mat2array.set(elements); + gl.uniformMatrix2fv(this.addr, false, mat2array); + copyArray(cache, elements); + } + } + + function setValueM3(gl, v) { + const cache = this.cache; + const elements = v.elements; + + if (elements === undefined) { + if (arraysEqual(cache, v)) return; + gl.uniformMatrix3fv(this.addr, false, v); + copyArray(cache, v); + } else { + if (arraysEqual(cache, elements)) return; + mat3array.set(elements); + gl.uniformMatrix3fv(this.addr, false, mat3array); + copyArray(cache, elements); + } + } + + function setValueM4(gl, v) { + const cache = this.cache; + const elements = v.elements; + + if (elements === undefined) { + if (arraysEqual(cache, v)) return; + gl.uniformMatrix4fv(this.addr, false, v); + copyArray(cache, v); + } else { + if (arraysEqual(cache, elements)) return; + mat4array.set(elements); + gl.uniformMatrix4fv(this.addr, false, mat4array); + copyArray(cache, elements); + } + } // Single integer / boolean + + + function setValueV1i(gl, v) { + const cache = this.cache; + if (cache[0] === v) return; + gl.uniform1i(this.addr, v); + cache[0] = v; + } // Single integer / boolean vector (from flat array) + + + function setValueV2i(gl, v) { + const cache = this.cache; + if (arraysEqual(cache, v)) return; + gl.uniform2iv(this.addr, v); + copyArray(cache, v); + } + + function setValueV3i(gl, v) { + const cache = this.cache; + if (arraysEqual(cache, v)) return; + gl.uniform3iv(this.addr, v); + copyArray(cache, v); + } + + function setValueV4i(gl, v) { + const cache = this.cache; + if (arraysEqual(cache, v)) return; + gl.uniform4iv(this.addr, v); + copyArray(cache, v); + } // Single unsigned integer + + + function setValueV1ui(gl, v) { + const cache = this.cache; + if (cache[0] === v) return; + gl.uniform1ui(this.addr, v); + cache[0] = v; + } // Single unsigned integer vector (from flat array) + + + function setValueV2ui(gl, v) { + const cache = this.cache; + if (arraysEqual(cache, v)) return; + gl.uniform2uiv(this.addr, v); + copyArray(cache, v); + } + + function setValueV3ui(gl, v) { + const cache = this.cache; + if (arraysEqual(cache, v)) return; + gl.uniform3uiv(this.addr, v); + copyArray(cache, v); + } + + function setValueV4ui(gl, v) { + const cache = this.cache; + if (arraysEqual(cache, v)) return; + gl.uniform4uiv(this.addr, v); + copyArray(cache, v); + } // Single texture (2D / Cube) + + + function setValueT1(gl, v, textures) { + const cache = this.cache; + const unit = textures.allocateTextureUnit(); + + if (cache[0] !== unit) { + gl.uniform1i(this.addr, unit); + cache[0] = unit; + } + + textures.safeSetTexture2D(v || emptyTexture, unit); + } + + function setValueT3D1(gl, v, textures) { + const cache = this.cache; + const unit = textures.allocateTextureUnit(); + + if (cache[0] !== unit) { + gl.uniform1i(this.addr, unit); + cache[0] = unit; + } + + textures.setTexture3D(v || emptyTexture3d, unit); + } + + function setValueT6(gl, v, textures) { + const cache = this.cache; + const unit = textures.allocateTextureUnit(); + + if (cache[0] !== unit) { + gl.uniform1i(this.addr, unit); + cache[0] = unit; + } + + textures.safeSetTextureCube(v || emptyCubeTexture, unit); + } + + function setValueT2DArray1(gl, v, textures) { + const cache = this.cache; + const unit = textures.allocateTextureUnit(); + + if (cache[0] !== unit) { + gl.uniform1i(this.addr, unit); + cache[0] = unit; + } + + textures.setTexture2DArray(v || emptyTexture2dArray, unit); + } // Helper to pick the right setter for the singular case + + + function getSingularSetter(type) { + switch (type) { + case 0x1406: + return setValueV1f; + // FLOAT + + case 0x8b50: + return setValueV2f; + // _VEC2 + + case 0x8b51: + return setValueV3f; + // _VEC3 + + case 0x8b52: + return setValueV4f; + // _VEC4 + + case 0x8b5a: + return setValueM2; + // _MAT2 + + case 0x8b5b: + return setValueM3; + // _MAT3 + + case 0x8b5c: + return setValueM4; + // _MAT4 + + case 0x1404: + case 0x8b56: + return setValueV1i; + // INT, BOOL + + case 0x8b53: + case 0x8b57: + return setValueV2i; + // _VEC2 + + case 0x8b54: + case 0x8b58: + return setValueV3i; + // _VEC3 + + case 0x8b55: + case 0x8b59: + return setValueV4i; + // _VEC4 + + case 0x1405: + return setValueV1ui; + // UINT + + case 0x8dc6: + return setValueV2ui; + // _VEC2 + + case 0x8dc7: + return setValueV3ui; + // _VEC3 + + case 0x8dc8: + return setValueV4ui; + // _VEC4 + + case 0x8b5e: // SAMPLER_2D + + case 0x8d66: // SAMPLER_EXTERNAL_OES + + case 0x8dca: // INT_SAMPLER_2D + + case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D + + case 0x8b62: + // SAMPLER_2D_SHADOW + return setValueT1; + + case 0x8b5f: // SAMPLER_3D + + case 0x8dcb: // INT_SAMPLER_3D + + case 0x8dd3: + // UNSIGNED_INT_SAMPLER_3D + return setValueT3D1; + + case 0x8b60: // SAMPLER_CUBE + + case 0x8dcc: // INT_SAMPLER_CUBE + + case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE + + case 0x8dc5: + // SAMPLER_CUBE_SHADOW + return setValueT6; + + case 0x8dc1: // SAMPLER_2D_ARRAY + + case 0x8dcf: // INT_SAMPLER_2D_ARRAY + + case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY + + case 0x8dc4: + // SAMPLER_2D_ARRAY_SHADOW + return setValueT2DArray1; + } + } // Array of scalars + + + function setValueV1fArray(gl, v) { + gl.uniform1fv(this.addr, v); + } // Array of vectors (from flat array or array of THREE.VectorN) + + + function setValueV2fArray(gl, v) { + const data = flatten(v, this.size, 2); + gl.uniform2fv(this.addr, data); + } + + function setValueV3fArray(gl, v) { + const data = flatten(v, this.size, 3); + gl.uniform3fv(this.addr, data); + } + + function setValueV4fArray(gl, v) { + const data = flatten(v, this.size, 4); + gl.uniform4fv(this.addr, data); + } // Array of matrices (from flat array or array of THREE.MatrixN) + + + function setValueM2Array(gl, v) { + const data = flatten(v, this.size, 4); + gl.uniformMatrix2fv(this.addr, false, data); + } + + function setValueM3Array(gl, v) { + const data = flatten(v, this.size, 9); + gl.uniformMatrix3fv(this.addr, false, data); + } + + function setValueM4Array(gl, v) { + const data = flatten(v, this.size, 16); + gl.uniformMatrix4fv(this.addr, false, data); + } // Array of integer / boolean + + + function setValueV1iArray(gl, v) { + gl.uniform1iv(this.addr, v); + } // Array of integer / boolean vectors (from flat array) + + + function setValueV2iArray(gl, v) { + gl.uniform2iv(this.addr, v); + } + + function setValueV3iArray(gl, v) { + gl.uniform3iv(this.addr, v); + } + + function setValueV4iArray(gl, v) { + gl.uniform4iv(this.addr, v); + } // Array of unsigned integer + + + function setValueV1uiArray(gl, v) { + gl.uniform1uiv(this.addr, v); + } // Array of unsigned integer vectors (from flat array) + + + function setValueV2uiArray(gl, v) { + gl.uniform2uiv(this.addr, v); + } + + function setValueV3uiArray(gl, v) { + gl.uniform3uiv(this.addr, v); + } + + function setValueV4uiArray(gl, v) { + gl.uniform4uiv(this.addr, v); + } // Array of textures (2D / Cube) + + + function setValueT1Array(gl, v, textures) { + const n = v.length; + const units = allocTexUnits(textures, n); + gl.uniform1iv(this.addr, units); + + for (let i = 0; i !== n; ++i) { + textures.safeSetTexture2D(v[i] || emptyTexture, units[i]); + } + } + + function setValueT6Array(gl, v, textures) { + const n = v.length; + const units = allocTexUnits(textures, n); + gl.uniform1iv(this.addr, units); + + for (let i = 0; i !== n; ++i) { + textures.safeSetTextureCube(v[i] || emptyCubeTexture, units[i]); + } + } // Helper to pick the right setter for a pure (bottom-level) array + + + function getPureArraySetter(type) { + switch (type) { + case 0x1406: + return setValueV1fArray; + // FLOAT + + case 0x8b50: + return setValueV2fArray; + // _VEC2 + + case 0x8b51: + return setValueV3fArray; + // _VEC3 + + case 0x8b52: + return setValueV4fArray; + // _VEC4 + + case 0x8b5a: + return setValueM2Array; + // _MAT2 + + case 0x8b5b: + return setValueM3Array; + // _MAT3 + + case 0x8b5c: + return setValueM4Array; + // _MAT4 + + case 0x1404: + case 0x8b56: + return setValueV1iArray; + // INT, BOOL + + case 0x8b53: + case 0x8b57: + return setValueV2iArray; + // _VEC2 + + case 0x8b54: + case 0x8b58: + return setValueV3iArray; + // _VEC3 + + case 0x8b55: + case 0x8b59: + return setValueV4iArray; + // _VEC4 + + case 0x1405: + return setValueV1uiArray; + // UINT + + case 0x8dc6: + return setValueV2uiArray; + // _VEC2 + + case 0x8dc7: + return setValueV3uiArray; + // _VEC3 + + case 0x8dc8: + return setValueV4uiArray; + // _VEC4 + + case 0x8b5e: // SAMPLER_2D + + case 0x8d66: // SAMPLER_EXTERNAL_OES + + case 0x8dca: // INT_SAMPLER_2D + + case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D + + case 0x8b62: + // SAMPLER_2D_SHADOW + return setValueT1Array; + + case 0x8b60: // SAMPLER_CUBE + + case 0x8dcc: // INT_SAMPLER_CUBE + + case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE + + case 0x8dc5: + // SAMPLER_CUBE_SHADOW + return setValueT6Array; + } + } // --- Uniform Classes --- + + + function SingleUniform(id, activeInfo, addr) { + this.id = id; + this.addr = addr; + this.cache = []; + this.setValue = getSingularSetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG + } + + function PureArrayUniform(id, activeInfo, addr) { + this.id = id; + this.addr = addr; + this.cache = []; + this.size = activeInfo.size; + this.setValue = getPureArraySetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG + } + + PureArrayUniform.prototype.updateCache = function (data) { + const cache = this.cache; + + if (data instanceof Float32Array && cache.length !== data.length) { + this.cache = new Float32Array(data.length); + } + + copyArray(cache, data); + }; + + function StructuredUniform(id) { + this.id = id; + this.seq = []; + this.map = {}; + } + + StructuredUniform.prototype.setValue = function (gl, value, textures) { + const seq = this.seq; + + for (let i = 0, n = seq.length; i !== n; ++i) { + const u = seq[i]; + u.setValue(gl, value[u.id], textures); + } + }; // --- Top-level --- + // Parser - builds up the property tree from the path strings + + + const RePathPart = /(\w+)(\])?(\[|\.)?/g; // extracts + // - the identifier (member name or array index) + // - followed by an optional right bracket (found when array index) + // - followed by an optional left bracket or dot (type of subscript) + // + // Note: These portions can be read in a non-overlapping fashion and + // allow straightforward parsing of the hierarchy that WebGL encodes + // in the uniform names. + + function addUniform(container, uniformObject) { + container.seq.push(uniformObject); + container.map[uniformObject.id] = uniformObject; + } + + function parseUniform(activeInfo, addr, container) { + const path = activeInfo.name, + pathLength = path.length; // reset RegExp object, because of the early exit of a previous run + + RePathPart.lastIndex = 0; + + while (true) { + const match = RePathPart.exec(path), + matchEnd = RePathPart.lastIndex; + let id = match[1]; + const idIsIndex = match[2] === ']', + subscript = match[3]; + if (idIsIndex) id = id | 0; // convert to integer + + if (subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength) { + // bare name or "pure" bottom-level array "[0]" suffix + addUniform(container, subscript === undefined ? new SingleUniform(id, activeInfo, addr) : new PureArrayUniform(id, activeInfo, addr)); + break; + } else { + // step into inner node / create it in case it doesn't exist + const map = container.map; + let next = map[id]; + + if (next === undefined) { + next = new StructuredUniform(id); + addUniform(container, next); + } + + container = next; + } + } + } // Root Container + + + function WebGLUniforms(gl, program) { + this.seq = []; + this.map = {}; + const n = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS); + + for (let i = 0; i < n; ++i) { + const info = gl.getActiveUniform(program, i), + addr = gl.getUniformLocation(program, info.name); + parseUniform(info, addr, this); + } + } + + WebGLUniforms.prototype.setValue = function (gl, name, value, textures) { + const u = this.map[name]; + if (u !== undefined) u.setValue(gl, value, textures); + }; + + WebGLUniforms.prototype.setOptional = function (gl, object, name) { + const v = object[name]; + if (v !== undefined) this.setValue(gl, name, v); + }; // Static interface + + + WebGLUniforms.upload = function (gl, seq, values, textures) { + for (let i = 0, n = seq.length; i !== n; ++i) { + const u = seq[i], + v = values[u.id]; + + if (v.needsUpdate !== false) { + // note: always updating when .needsUpdate is undefined + u.setValue(gl, v.value, textures); + } + } + }; + + WebGLUniforms.seqWithValue = function (seq, values) { + const r = []; + + for (let i = 0, n = seq.length; i !== n; ++i) { + const u = seq[i]; + if (u.id in values) r.push(u); + } + + return r; + }; + + function WebGLShader(gl, type, string) { + const shader = gl.createShader(type); + gl.shaderSource(shader, string); + gl.compileShader(shader); + return shader; + } + + let programIdCount = 0; + + function addLineNumbers(string) { + const lines = string.split('\n'); + + for (let i = 0; i < lines.length; i++) { + lines[i] = i + 1 + ': ' + lines[i]; + } + + return lines.join('\n'); + } + + function getEncodingComponents(encoding) { + switch (encoding) { + case LinearEncoding: + return ['Linear', '( value )']; + + case sRGBEncoding: + return ['sRGB', '( value )']; + + case RGBEEncoding: + return ['RGBE', '( value )']; + + case RGBM7Encoding: + return ['RGBM', '( value, 7.0 )']; + + case RGBM16Encoding: + return ['RGBM', '( value, 16.0 )']; + + case RGBDEncoding: + return ['RGBD', '( value, 256.0 )']; + + case GammaEncoding: + return ['Gamma', '( value, float( GAMMA_FACTOR ) )']; + + case LogLuvEncoding: + return ['LogLuv', '( value )']; + + default: + console.warn('THREE.WebGLProgram: Unsupported encoding:', encoding); + return ['Linear', '( value )']; + } + } + + function getShaderErrors(gl, shader, type) { + const status = gl.getShaderParameter(shader, gl.COMPILE_STATUS); + const errors = gl.getShaderInfoLog(shader).trim(); + if (status && errors === '') return ''; // --enable-privileged-webgl-extension + // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); + + return type.toUpperCase() + '\n\n' + errors + '\n\n' + addLineNumbers(gl.getShaderSource(shader)); + } + + function getTexelDecodingFunction(functionName, encoding) { + const components = getEncodingComponents(encoding); + return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[0] + 'ToLinear' + components[1] + '; }'; + } + + function getTexelEncodingFunction(functionName, encoding) { + const components = getEncodingComponents(encoding); + return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[0] + components[1] + '; }'; + } + + function getToneMappingFunction(functionName, toneMapping) { + let toneMappingName; + + switch (toneMapping) { + case LinearToneMapping: + toneMappingName = 'Linear'; + break; + + case ReinhardToneMapping: + toneMappingName = 'Reinhard'; + break; + + case CineonToneMapping: + toneMappingName = 'OptimizedCineon'; + break; + + case ACESFilmicToneMapping: + toneMappingName = 'ACESFilmic'; + break; + + case CustomToneMapping: + toneMappingName = 'Custom'; + break; + + default: + console.warn('THREE.WebGLProgram: Unsupported toneMapping:', toneMapping); + toneMappingName = 'Linear'; + } + + return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }'; + } + + function generateExtensions(parameters) { + const chunks = [parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ? '#extension GL_OES_standard_derivatives : enable' : '', (parameters.extensionFragDepth || parameters.logarithmicDepthBuffer) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ? '#extension GL_EXT_draw_buffers : require' : '', (parameters.extensionShaderTextureLOD || parameters.envMap || parameters.transmission) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : '']; + return chunks.filter(filterEmptyLine).join('\n'); + } + + function generateDefines(defines) { + const chunks = []; + + for (const name in defines) { + const value = defines[name]; + if (value === false) continue; + chunks.push('#define ' + name + ' ' + value); + } + + return chunks.join('\n'); + } + + function fetchAttributeLocations(gl, program) { + const attributes = {}; + const n = gl.getProgramParameter(program, gl.ACTIVE_ATTRIBUTES); + + for (let i = 0; i < n; i++) { + const info = gl.getActiveAttrib(program, i); + const name = info.name; + let locationSize = 1; + if (info.type === gl.FLOAT_MAT2) locationSize = 2; + if (info.type === gl.FLOAT_MAT3) locationSize = 3; + if (info.type === gl.FLOAT_MAT4) locationSize = 4; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i ); + + attributes[name] = { + type: info.type, + location: gl.getAttribLocation(program, name), + locationSize: locationSize + }; + } + + return attributes; + } + + function filterEmptyLine(string) { + return string !== ''; + } + + function replaceLightNums(string, parameters) { + return string.replace(/NUM_DIR_LIGHTS/g, parameters.numDirLights).replace(/NUM_SPOT_LIGHTS/g, parameters.numSpotLights).replace(/NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights).replace(/NUM_POINT_LIGHTS/g, parameters.numPointLights).replace(/NUM_HEMI_LIGHTS/g, parameters.numHemiLights).replace(/NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows).replace(/NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows).replace(/NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows); + } + + function replaceClippingPlaneNums(string, parameters) { + return string.replace(/NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes).replace(/UNION_CLIPPING_PLANES/g, parameters.numClippingPlanes - parameters.numClipIntersection); + } // Resolve Includes + + + const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm; + + function resolveIncludes(string) { + return string.replace(includePattern, includeReplacer); + } + + function includeReplacer(match, include) { + const string = ShaderChunk[include]; + + if (string === undefined) { + throw new Error('Can not resolve #include <' + include + '>'); + } + + return resolveIncludes(string); + } // Unroll Loops + + + const deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g; + const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g; + + function unrollLoops(string) { + return string.replace(unrollLoopPattern, loopReplacer).replace(deprecatedUnrollLoopPattern, deprecatedLoopReplacer); + } + + function deprecatedLoopReplacer(match, start, end, snippet) { + console.warn('WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.'); + return loopReplacer(match, start, end, snippet); + } + + function loopReplacer(match, start, end, snippet) { + let string = ''; + + for (let i = parseInt(start); i < parseInt(end); i++) { + string += snippet.replace(/\[\s*i\s*\]/g, '[ ' + i + ' ]').replace(/UNROLLED_LOOP_INDEX/g, i); + } + + return string; + } // + + + function generatePrecision(parameters) { + let precisionstring = 'precision ' + parameters.precision + ' float;\nprecision ' + parameters.precision + ' int;'; + + if (parameters.precision === 'highp') { + precisionstring += '\n#define HIGH_PRECISION'; + } else if (parameters.precision === 'mediump') { + precisionstring += '\n#define MEDIUM_PRECISION'; + } else if (parameters.precision === 'lowp') { + precisionstring += '\n#define LOW_PRECISION'; + } + + return precisionstring; + } + + function generateShadowMapTypeDefine(parameters) { + let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC'; + + if (parameters.shadowMapType === PCFShadowMap) { + shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF'; + } else if (parameters.shadowMapType === PCFSoftShadowMap) { + shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT'; + } else if (parameters.shadowMapType === VSMShadowMap) { + shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM'; + } + + return shadowMapTypeDefine; + } + + function generateEnvMapTypeDefine(parameters) { + let envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; + + if (parameters.envMap) { + switch (parameters.envMapMode) { + case CubeReflectionMapping: + case CubeRefractionMapping: + envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; + break; + + case CubeUVReflectionMapping: + case CubeUVRefractionMapping: + envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV'; + break; + } + } + + return envMapTypeDefine; + } + + function generateEnvMapModeDefine(parameters) { + let envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; + + if (parameters.envMap) { + switch (parameters.envMapMode) { + case CubeRefractionMapping: + case CubeUVRefractionMapping: + envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; + break; + } + } + + return envMapModeDefine; + } + + function generateEnvMapBlendingDefine(parameters) { + let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE'; + + if (parameters.envMap) { + switch (parameters.combine) { + case MultiplyOperation: + envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; + break; + + case MixOperation: + envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; + break; + + case AddOperation: + envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; + break; + } + } + + return envMapBlendingDefine; + } + + function WebGLProgram(renderer, cacheKey, parameters, bindingStates) { + // TODO Send this event to Three.js DevTools + // console.log( 'WebGLProgram', cacheKey ); + const gl = renderer.getContext(); + const defines = parameters.defines; + let vertexShader = parameters.vertexShader; + let fragmentShader = parameters.fragmentShader; + const shadowMapTypeDefine = generateShadowMapTypeDefine(parameters); + const envMapTypeDefine = generateEnvMapTypeDefine(parameters); + const envMapModeDefine = generateEnvMapModeDefine(parameters); + const envMapBlendingDefine = generateEnvMapBlendingDefine(parameters); + const gammaFactorDefine = renderer.gammaFactor > 0 ? renderer.gammaFactor : 1.0; + const customExtensions = parameters.isWebGL2 ? '' : generateExtensions(parameters); + const customDefines = generateDefines(defines); + const program = gl.createProgram(); + let prefixVertex, prefixFragment; + let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : ''; + + if (parameters.isRawShaderMaterial) { + prefixVertex = [customDefines].filter(filterEmptyLine).join('\n'); + + if (prefixVertex.length > 0) { + prefixVertex += '\n'; + } + + prefixFragment = [customExtensions, customDefines].filter(filterEmptyLine).join('\n'); + + if (prefixFragment.length > 0) { + prefixFragment += '\n'; + } + } else { + prefixVertex = [generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularTintMap ? '#define USE_SPECULARTINTMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.morphTargets && parameters.isWebGL2 ? '#define MORPHTARGETS_TEXTURE' : '', parameters.morphTargets && parameters.isWebGL2 ? '#define MORPHTARGETS_COUNT ' + parameters.morphTargetsCount : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#if defined( USE_COLOR_ALPHA )', ' attribute vec4 color;', '#elif defined( USE_COLOR )', ' attribute vec3 color;', '#endif', '#if ( defined( USE_MORPHTARGETS ) && ! defined( MORPHTARGETS_TEXTURE ) )', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n'].filter(filterEmptyLine).join('\n'); + prefixFragment = [customExtensions, generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, '#define GAMMA_FACTOR ' + gammaFactorDefine, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoat ? '#define USE_CLEARCOAT' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularTintMap ? '#define USE_SPECULARTINTMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.alphaTest ? '#define USE_ALPHATEST' : '', parameters.sheen ? '#define USE_SHEEN' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', (parameters.extensionShaderTextureLOD || parameters.envMap) && parameters.rendererExtensionShaderTextureLod ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', parameters.toneMapping !== NoToneMapping ? '#define TONE_MAPPING' : '', parameters.toneMapping !== NoToneMapping ? ShaderChunk['tonemapping_pars_fragment'] : '', // this code is required here because it is used by the toneMapping() function defined below + parameters.toneMapping !== NoToneMapping ? getToneMappingFunction('toneMapping', parameters.toneMapping) : '', parameters.dithering ? '#define DITHERING' : '', parameters.format === RGBFormat ? '#define OPAQUE' : '', ShaderChunk['encodings_pars_fragment'], // this code is required here because it is used by the various encoding/decoding function defined below + parameters.map ? getTexelDecodingFunction('mapTexelToLinear', parameters.mapEncoding) : '', parameters.matcap ? getTexelDecodingFunction('matcapTexelToLinear', parameters.matcapEncoding) : '', parameters.envMap ? getTexelDecodingFunction('envMapTexelToLinear', parameters.envMapEncoding) : '', parameters.emissiveMap ? getTexelDecodingFunction('emissiveMapTexelToLinear', parameters.emissiveMapEncoding) : '', parameters.specularTintMap ? getTexelDecodingFunction('specularTintMapTexelToLinear', parameters.specularTintMapEncoding) : '', parameters.lightMap ? getTexelDecodingFunction('lightMapTexelToLinear', parameters.lightMapEncoding) : '', getTexelEncodingFunction('linearToOutputTexel', parameters.outputEncoding), parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n'].filter(filterEmptyLine).join('\n'); + } + + vertexShader = resolveIncludes(vertexShader); + vertexShader = replaceLightNums(vertexShader, parameters); + vertexShader = replaceClippingPlaneNums(vertexShader, parameters); + fragmentShader = resolveIncludes(fragmentShader); + fragmentShader = replaceLightNums(fragmentShader, parameters); + fragmentShader = replaceClippingPlaneNums(fragmentShader, parameters); + vertexShader = unrollLoops(vertexShader); + fragmentShader = unrollLoops(fragmentShader); + + if (parameters.isWebGL2 && parameters.isRawShaderMaterial !== true) { + // GLSL 3.0 conversion for built-in materials and ShaderMaterial + versionString = '#version 300 es\n'; + prefixVertex = ['precision mediump sampler2DArray;', '#define attribute in', '#define varying out', '#define texture2D texture'].join('\n') + '\n' + prefixVertex; + prefixFragment = ['#define varying in', parameters.glslVersion === GLSL3 ? '' : 'out highp vec4 pc_fragColor;', parameters.glslVersion === GLSL3 ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad'].join('\n') + '\n' + prefixFragment; + } + + const vertexGlsl = versionString + prefixVertex + vertexShader; + const fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl ); + // console.log( '*FRAGMENT*', fragmentGlsl ); + + const glVertexShader = WebGLShader(gl, gl.VERTEX_SHADER, vertexGlsl); + const glFragmentShader = WebGLShader(gl, gl.FRAGMENT_SHADER, fragmentGlsl); + gl.attachShader(program, glVertexShader); + gl.attachShader(program, glFragmentShader); // Force a particular attribute to index 0. + + if (parameters.index0AttributeName !== undefined) { + gl.bindAttribLocation(program, 0, parameters.index0AttributeName); + } else if (parameters.morphTargets === true) { + // programs with morphTargets displace position out of attribute 0 + gl.bindAttribLocation(program, 0, 'position'); + } + + gl.linkProgram(program); // check for link errors + + if (renderer.debug.checkShaderErrors) { + const programLog = gl.getProgramInfoLog(program).trim(); + const vertexLog = gl.getShaderInfoLog(glVertexShader).trim(); + const fragmentLog = gl.getShaderInfoLog(glFragmentShader).trim(); + let runnable = true; + let haveDiagnostics = true; + + if (gl.getProgramParameter(program, gl.LINK_STATUS) === false) { + runnable = false; + const vertexErrors = getShaderErrors(gl, glVertexShader, 'vertex'); + const fragmentErrors = getShaderErrors(gl, glFragmentShader, 'fragment'); + console.error('THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + 'VALIDATE_STATUS ' + gl.getProgramParameter(program, gl.VALIDATE_STATUS) + '\n\n' + 'Program Info Log: ' + programLog + '\n' + vertexErrors + '\n' + fragmentErrors); + } else if (programLog !== '') { + console.warn('THREE.WebGLProgram: Program Info Log:', programLog); + } else if (vertexLog === '' || fragmentLog === '') { + haveDiagnostics = false; + } + + if (haveDiagnostics) { + this.diagnostics = { + runnable: runnable, + programLog: programLog, + vertexShader: { + log: vertexLog, + prefix: prefixVertex + }, + fragmentShader: { + log: fragmentLog, + prefix: prefixFragment + } + }; + } + } // Clean up + // Crashes in iOS9 and iOS10. #18402 + // gl.detachShader( program, glVertexShader ); + // gl.detachShader( program, glFragmentShader ); + + + gl.deleteShader(glVertexShader); + gl.deleteShader(glFragmentShader); // set up caching for uniform locations + + let cachedUniforms; + + this.getUniforms = function () { + if (cachedUniforms === undefined) { + cachedUniforms = new WebGLUniforms(gl, program); + } + + return cachedUniforms; + }; // set up caching for attribute locations + + + let cachedAttributes; + + this.getAttributes = function () { + if (cachedAttributes === undefined) { + cachedAttributes = fetchAttributeLocations(gl, program); + } + + return cachedAttributes; + }; // free resource + + + this.destroy = function () { + bindingStates.releaseStatesOfProgram(this); + gl.deleteProgram(program); + this.program = undefined; + }; // + + + this.name = parameters.shaderName; + this.id = programIdCount++; + this.cacheKey = cacheKey; + this.usedTimes = 1; + this.program = program; + this.vertexShader = glVertexShader; + this.fragmentShader = glFragmentShader; + return this; + } + + function WebGLPrograms(renderer, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping) { + const programs = []; + const isWebGL2 = capabilities.isWebGL2; + const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer; + const floatVertexTextures = capabilities.floatVertexTextures; + const maxVertexUniforms = capabilities.maxVertexUniforms; + const vertexTextures = capabilities.vertexTextures; + let precision = capabilities.precision; + const shaderIDs = { + MeshDepthMaterial: 'depth', + MeshDistanceMaterial: 'distanceRGBA', + MeshNormalMaterial: 'normal', + MeshBasicMaterial: 'basic', + MeshLambertMaterial: 'lambert', + MeshPhongMaterial: 'phong', + MeshToonMaterial: 'toon', + MeshStandardMaterial: 'physical', + MeshPhysicalMaterial: 'physical', + MeshMatcapMaterial: 'matcap', + LineBasicMaterial: 'basic', + LineDashedMaterial: 'dashed', + PointsMaterial: 'points', + ShadowMaterial: 'shadow', + SpriteMaterial: 'sprite' + }; + const parameterNames = ['precision', 'isWebGL2', 'supportsVertexTextures', 'outputEncoding', 'instancing', 'instancingColor', 'map', 'mapEncoding', 'matcap', 'matcapEncoding', 'envMap', 'envMapMode', 'envMapEncoding', 'envMapCubeUV', 'lightMap', 'lightMapEncoding', 'aoMap', 'emissiveMap', 'emissiveMapEncoding', 'bumpMap', 'normalMap', 'objectSpaceNormalMap', 'tangentSpaceNormalMap', 'clearcoat', 'clearcoatMap', 'clearcoatRoughnessMap', 'clearcoatNormalMap', 'displacementMap', 'specularMap', 'specularIntensityMap', 'specularTintMap', 'specularTintMapEncoding', 'roughnessMap', 'metalnessMap', 'gradientMap', 'alphaMap', 'alphaTest', 'combine', 'vertexColors', 'vertexAlphas', 'vertexTangents', 'vertexUvs', 'uvsVertexOnly', 'fog', 'useFog', 'fogExp2', 'flatShading', 'sizeAttenuation', 'logarithmicDepthBuffer', 'skinning', 'maxBones', 'useVertexTexture', 'morphTargets', 'morphNormals', 'morphTargetsCount', 'premultipliedAlpha', 'numDirLights', 'numPointLights', 'numSpotLights', 'numHemiLights', 'numRectAreaLights', 'numDirLightShadows', 'numPointLightShadows', 'numSpotLightShadows', 'shadowMapEnabled', 'shadowMapType', 'toneMapping', 'physicallyCorrectLights', 'doubleSided', 'flipSided', 'numClippingPlanes', 'numClipIntersection', 'depthPacking', 'dithering', 'format', 'sheen', 'transmission', 'transmissionMap', 'thicknessMap']; + + function getMaxBones(object) { + const skeleton = object.skeleton; + const bones = skeleton.bones; + + if (floatVertexTextures) { + return 1024; + } else { + // default for when object is not specified + // ( for example when prebuilding shader to be used with multiple objects ) + // + // - leave some extra space for other uniforms + // - limit here is ANGLE's 254 max uniform vectors + // (up to 54 should be safe) + const nVertexUniforms = maxVertexUniforms; + const nVertexMatrices = Math.floor((nVertexUniforms - 20) / 4); + const maxBones = Math.min(nVertexMatrices, bones.length); + + if (maxBones < bones.length) { + console.warn('THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.'); + return 0; + } + + return maxBones; + } + } + + function getTextureEncodingFromMap(map) { + let encoding; + + if (map && map.isTexture) { + encoding = map.encoding; + } else if (map && map.isWebGLRenderTarget) { + console.warn('THREE.WebGLPrograms.getTextureEncodingFromMap: don\'t use render targets as textures. Use their .texture property instead.'); + encoding = map.texture.encoding; + } else { + encoding = LinearEncoding; + } + + if (isWebGL2 && map && map.isTexture && map.format === RGBAFormat && map.type === UnsignedByteType && map.encoding === sRGBEncoding) { + encoding = LinearEncoding; // disable inline decode for sRGB textures in WebGL 2 + } + + return encoding; + } + + function getParameters(material, lights, shadows, scene, object) { + const fog = scene.fog; + const environment = material.isMeshStandardMaterial ? scene.environment : null; + const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment); + const shaderID = shaderIDs[material.type]; // heuristics to create shader parameters according to lights in the scene + // (not to blow over maxLights budget) + + const maxBones = object.isSkinnedMesh ? getMaxBones(object) : 0; + + if (material.precision !== null) { + precision = capabilities.getMaxPrecision(material.precision); + + if (precision !== material.precision) { + console.warn('THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.'); + } + } + + let vertexShader, fragmentShader; + + if (shaderID) { + const shader = ShaderLib[shaderID]; + vertexShader = shader.vertexShader; + fragmentShader = shader.fragmentShader; + } else { + vertexShader = material.vertexShader; + fragmentShader = material.fragmentShader; + } + + const currentRenderTarget = renderer.getRenderTarget(); + const useAlphaTest = material.alphaTest > 0; + const useClearcoat = material.clearcoat > 0; + const parameters = { + isWebGL2: isWebGL2, + shaderID: shaderID, + shaderName: material.type, + vertexShader: vertexShader, + fragmentShader: fragmentShader, + defines: material.defines, + isRawShaderMaterial: material.isRawShaderMaterial === true, + glslVersion: material.glslVersion, + precision: precision, + instancing: object.isInstancedMesh === true, + instancingColor: object.isInstancedMesh === true && object.instanceColor !== null, + supportsVertexTextures: vertexTextures, + outputEncoding: currentRenderTarget !== null ? getTextureEncodingFromMap(currentRenderTarget.texture) : renderer.outputEncoding, + map: !!material.map, + mapEncoding: getTextureEncodingFromMap(material.map), + matcap: !!material.matcap, + matcapEncoding: getTextureEncodingFromMap(material.matcap), + envMap: !!envMap, + envMapMode: envMap && envMap.mapping, + envMapEncoding: getTextureEncodingFromMap(envMap), + envMapCubeUV: !!envMap && (envMap.mapping === CubeUVReflectionMapping || envMap.mapping === CubeUVRefractionMapping), + lightMap: !!material.lightMap, + lightMapEncoding: getTextureEncodingFromMap(material.lightMap), + aoMap: !!material.aoMap, + emissiveMap: !!material.emissiveMap, + emissiveMapEncoding: getTextureEncodingFromMap(material.emissiveMap), + bumpMap: !!material.bumpMap, + normalMap: !!material.normalMap, + objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap, + tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap, + clearcoat: useClearcoat, + clearcoatMap: useClearcoat && !!material.clearcoatMap, + clearcoatRoughnessMap: useClearcoat && !!material.clearcoatRoughnessMap, + clearcoatNormalMap: useClearcoat && !!material.clearcoatNormalMap, + displacementMap: !!material.displacementMap, + roughnessMap: !!material.roughnessMap, + metalnessMap: !!material.metalnessMap, + specularMap: !!material.specularMap, + specularIntensityMap: !!material.specularIntensityMap, + specularTintMap: !!material.specularTintMap, + specularTintMapEncoding: getTextureEncodingFromMap(material.specularTintMap), + alphaMap: !!material.alphaMap, + alphaTest: useAlphaTest, + gradientMap: !!material.gradientMap, + sheen: material.sheen > 0, + transmission: material.transmission > 0, + transmissionMap: !!material.transmissionMap, + thicknessMap: !!material.thicknessMap, + combine: material.combine, + vertexTangents: !!material.normalMap && !!object.geometry && !!object.geometry.attributes.tangent, + vertexColors: material.vertexColors, + vertexAlphas: material.vertexColors === true && !!object.geometry && !!object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4, + vertexUvs: !!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatMap || !!material.clearcoatRoughnessMap || !!material.clearcoatNormalMap || !!material.displacementMap || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularTintMap, + uvsVertexOnly: !(!!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatNormalMap || material.transmission > 0 || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularTintMap) && !!material.displacementMap, + fog: !!fog, + useFog: material.fog, + fogExp2: fog && fog.isFogExp2, + flatShading: !!material.flatShading, + sizeAttenuation: material.sizeAttenuation, + logarithmicDepthBuffer: logarithmicDepthBuffer, + skinning: object.isSkinnedMesh === true && maxBones > 0, + maxBones: maxBones, + useVertexTexture: floatVertexTextures, + morphTargets: !!object.geometry && !!object.geometry.morphAttributes.position, + morphNormals: !!object.geometry && !!object.geometry.morphAttributes.normal, + morphTargetsCount: !!object.geometry && !!object.geometry.morphAttributes.position ? object.geometry.morphAttributes.position.length : 0, + numDirLights: lights.directional.length, + numPointLights: lights.point.length, + numSpotLights: lights.spot.length, + numRectAreaLights: lights.rectArea.length, + numHemiLights: lights.hemi.length, + numDirLightShadows: lights.directionalShadowMap.length, + numPointLightShadows: lights.pointShadowMap.length, + numSpotLightShadows: lights.spotShadowMap.length, + numClippingPlanes: clipping.numPlanes, + numClipIntersection: clipping.numIntersection, + format: material.format, + dithering: material.dithering, + shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0, + shadowMapType: renderer.shadowMap.type, + toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping, + physicallyCorrectLights: renderer.physicallyCorrectLights, + premultipliedAlpha: material.premultipliedAlpha, + doubleSided: material.side === DoubleSide, + flipSided: material.side === BackSide, + depthPacking: material.depthPacking !== undefined ? material.depthPacking : false, + index0AttributeName: material.index0AttributeName, + extensionDerivatives: material.extensions && material.extensions.derivatives, + extensionFragDepth: material.extensions && material.extensions.fragDepth, + extensionDrawBuffers: material.extensions && material.extensions.drawBuffers, + extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD, + rendererExtensionFragDepth: isWebGL2 || extensions.has('EXT_frag_depth'), + rendererExtensionDrawBuffers: isWebGL2 || extensions.has('WEBGL_draw_buffers'), + rendererExtensionShaderTextureLod: isWebGL2 || extensions.has('EXT_shader_texture_lod'), + customProgramCacheKey: material.customProgramCacheKey() + }; + return parameters; + } + + function getProgramCacheKey(parameters) { + const array = []; + + if (parameters.shaderID) { + array.push(parameters.shaderID); + } else { + array.push(parameters.fragmentShader); + array.push(parameters.vertexShader); + } + + if (parameters.defines !== undefined) { + for (const name in parameters.defines) { + array.push(name); + array.push(parameters.defines[name]); + } + } + + if (parameters.isRawShaderMaterial === false) { + for (let i = 0; i < parameterNames.length; i++) { + array.push(parameters[parameterNames[i]]); + } + + array.push(renderer.outputEncoding); + array.push(renderer.gammaFactor); + } + + array.push(parameters.customProgramCacheKey); + return array.join(); + } + + function getUniforms(material) { + const shaderID = shaderIDs[material.type]; + let uniforms; + + if (shaderID) { + const shader = ShaderLib[shaderID]; + uniforms = UniformsUtils.clone(shader.uniforms); + } else { + uniforms = material.uniforms; + } + + return uniforms; + } + + function acquireProgram(parameters, cacheKey) { + let program; // Check if code has been already compiled + + for (let p = 0, pl = programs.length; p < pl; p++) { + const preexistingProgram = programs[p]; + + if (preexistingProgram.cacheKey === cacheKey) { + program = preexistingProgram; + ++program.usedTimes; + break; + } + } + + if (program === undefined) { + program = new WebGLProgram(renderer, cacheKey, parameters, bindingStates); + programs.push(program); + } + + return program; + } + + function releaseProgram(program) { + if (--program.usedTimes === 0) { + // Remove from unordered set + const i = programs.indexOf(program); + programs[i] = programs[programs.length - 1]; + programs.pop(); // Free WebGL resources + + program.destroy(); + } + } + + return { + getParameters: getParameters, + getProgramCacheKey: getProgramCacheKey, + getUniforms: getUniforms, + acquireProgram: acquireProgram, + releaseProgram: releaseProgram, + // Exposed for resource monitoring & error feedback via renderer.info: + programs: programs + }; + } + + function WebGLProperties() { + let properties = new WeakMap(); + + function get(object) { + let map = properties.get(object); + + if (map === undefined) { + map = {}; + properties.set(object, map); + } + + return map; + } + + function remove(object) { + properties.delete(object); + } + + function update(object, key, value) { + properties.get(object)[key] = value; + } + + function dispose() { + properties = new WeakMap(); + } + + return { + get: get, + remove: remove, + update: update, + dispose: dispose + }; + } + + function painterSortStable(a, b) { + if (a.groupOrder !== b.groupOrder) { + return a.groupOrder - b.groupOrder; + } else if (a.renderOrder !== b.renderOrder) { + return a.renderOrder - b.renderOrder; + } else if (a.program !== b.program) { + return a.program.id - b.program.id; + } else if (a.material.id !== b.material.id) { + return a.material.id - b.material.id; + } else if (a.z !== b.z) { + return a.z - b.z; + } else { + return a.id - b.id; + } + } + + function reversePainterSortStable(a, b) { + if (a.groupOrder !== b.groupOrder) { + return a.groupOrder - b.groupOrder; + } else if (a.renderOrder !== b.renderOrder) { + return a.renderOrder - b.renderOrder; + } else if (a.z !== b.z) { + return b.z - a.z; + } else { + return a.id - b.id; + } + } + + function WebGLRenderList(properties) { + const renderItems = []; + let renderItemsIndex = 0; + const opaque = []; + const transmissive = []; + const transparent = []; + const defaultProgram = { + id: -1 + }; + + function init() { + renderItemsIndex = 0; + opaque.length = 0; + transmissive.length = 0; + transparent.length = 0; + } + + function getNextRenderItem(object, geometry, material, groupOrder, z, group) { + let renderItem = renderItems[renderItemsIndex]; + const materialProperties = properties.get(material); + + if (renderItem === undefined) { + renderItem = { + id: object.id, + object: object, + geometry: geometry, + material: material, + program: materialProperties.program || defaultProgram, + groupOrder: groupOrder, + renderOrder: object.renderOrder, + z: z, + group: group + }; + renderItems[renderItemsIndex] = renderItem; + } else { + renderItem.id = object.id; + renderItem.object = object; + renderItem.geometry = geometry; + renderItem.material = material; + renderItem.program = materialProperties.program || defaultProgram; + renderItem.groupOrder = groupOrder; + renderItem.renderOrder = object.renderOrder; + renderItem.z = z; + renderItem.group = group; + } + + renderItemsIndex++; + return renderItem; + } + + function push(object, geometry, material, groupOrder, z, group) { + const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group); + + if (material.transmission > 0.0) { + transmissive.push(renderItem); + } else if (material.transparent === true) { + transparent.push(renderItem); + } else { + opaque.push(renderItem); + } + } + + function unshift(object, geometry, material, groupOrder, z, group) { + const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group); + + if (material.transmission > 0.0) { + transmissive.unshift(renderItem); + } else if (material.transparent === true) { + transparent.unshift(renderItem); + } else { + opaque.unshift(renderItem); + } + } + + function sort(customOpaqueSort, customTransparentSort) { + if (opaque.length > 1) opaque.sort(customOpaqueSort || painterSortStable); + if (transmissive.length > 1) transmissive.sort(customTransparentSort || reversePainterSortStable); + if (transparent.length > 1) transparent.sort(customTransparentSort || reversePainterSortStable); + } + + function finish() { + // Clear references from inactive renderItems in the list + for (let i = renderItemsIndex, il = renderItems.length; i < il; i++) { + const renderItem = renderItems[i]; + if (renderItem.id === null) break; + renderItem.id = null; + renderItem.object = null; + renderItem.geometry = null; + renderItem.material = null; + renderItem.program = null; + renderItem.group = null; + } + } + + return { + opaque: opaque, + transmissive: transmissive, + transparent: transparent, + init: init, + push: push, + unshift: unshift, + finish: finish, + sort: sort + }; + } + + function WebGLRenderLists(properties) { + let lists = new WeakMap(); + + function get(scene, renderCallDepth) { + let list; + + if (lists.has(scene) === false) { + list = new WebGLRenderList(properties); + lists.set(scene, [list]); + } else { + if (renderCallDepth >= lists.get(scene).length) { + list = new WebGLRenderList(properties); + lists.get(scene).push(list); + } else { + list = lists.get(scene)[renderCallDepth]; + } + } + + return list; + } + + function dispose() { + lists = new WeakMap(); + } + + return { + get: get, + dispose: dispose + }; + } + + function UniformsCache() { + const lights = {}; + return { + get: function (light) { + if (lights[light.id] !== undefined) { + return lights[light.id]; + } + + let uniforms; + + switch (light.type) { + case 'DirectionalLight': + uniforms = { + direction: new Vector3(), + color: new Color() + }; + break; + + case 'SpotLight': + uniforms = { + position: new Vector3(), + direction: new Vector3(), + color: new Color(), + distance: 0, + coneCos: 0, + penumbraCos: 0, + decay: 0 + }; + break; + + case 'PointLight': + uniforms = { + position: new Vector3(), + color: new Color(), + distance: 0, + decay: 0 + }; + break; + + case 'HemisphereLight': + uniforms = { + direction: new Vector3(), + skyColor: new Color(), + groundColor: new Color() + }; + break; + + case 'RectAreaLight': + uniforms = { + color: new Color(), + position: new Vector3(), + halfWidth: new Vector3(), + halfHeight: new Vector3() + }; + break; + } + + lights[light.id] = uniforms; + return uniforms; + } + }; + } + + function ShadowUniformsCache() { + const lights = {}; + return { + get: function (light) { + if (lights[light.id] !== undefined) { + return lights[light.id]; + } + + let uniforms; + + switch (light.type) { + case 'DirectionalLight': + uniforms = { + shadowBias: 0, + shadowNormalBias: 0, + shadowRadius: 1, + shadowMapSize: new Vector2() + }; + break; + + case 'SpotLight': + uniforms = { + shadowBias: 0, + shadowNormalBias: 0, + shadowRadius: 1, + shadowMapSize: new Vector2() + }; + break; + + case 'PointLight': + uniforms = { + shadowBias: 0, + shadowNormalBias: 0, + shadowRadius: 1, + shadowMapSize: new Vector2(), + shadowCameraNear: 1, + shadowCameraFar: 1000 + }; + break; + // TODO (abelnation): set RectAreaLight shadow uniforms + } + + lights[light.id] = uniforms; + return uniforms; + } + }; + } + + let nextVersion = 0; + + function shadowCastingLightsFirst(lightA, lightB) { + return (lightB.castShadow ? 1 : 0) - (lightA.castShadow ? 1 : 0); + } + + function WebGLLights(extensions, capabilities) { + const cache = new UniformsCache(); + const shadowCache = ShadowUniformsCache(); + const state = { + version: 0, + hash: { + directionalLength: -1, + pointLength: -1, + spotLength: -1, + rectAreaLength: -1, + hemiLength: -1, + numDirectionalShadows: -1, + numPointShadows: -1, + numSpotShadows: -1 + }, + ambient: [0, 0, 0], + probe: [], + directional: [], + directionalShadow: [], + directionalShadowMap: [], + directionalShadowMatrix: [], + spot: [], + spotShadow: [], + spotShadowMap: [], + spotShadowMatrix: [], + rectArea: [], + rectAreaLTC1: null, + rectAreaLTC2: null, + point: [], + pointShadow: [], + pointShadowMap: [], + pointShadowMatrix: [], + hemi: [] + }; + + for (let i = 0; i < 9; i++) state.probe.push(new Vector3()); + + const vector3 = new Vector3(); + const matrix4 = new Matrix4(); + const matrix42 = new Matrix4(); + + function setup(lights, physicallyCorrectLights) { + let r = 0, + g = 0, + b = 0; + + for (let i = 0; i < 9; i++) state.probe[i].set(0, 0, 0); + + let directionalLength = 0; + let pointLength = 0; + let spotLength = 0; + let rectAreaLength = 0; + let hemiLength = 0; + let numDirectionalShadows = 0; + let numPointShadows = 0; + let numSpotShadows = 0; + lights.sort(shadowCastingLightsFirst); // artist-friendly light intensity scaling factor + + const scaleFactor = physicallyCorrectLights !== true ? Math.PI : 1; + + for (let i = 0, l = lights.length; i < l; i++) { + const light = lights[i]; + const color = light.color; + const intensity = light.intensity; + const distance = light.distance; + const shadowMap = light.shadow && light.shadow.map ? light.shadow.map.texture : null; + + if (light.isAmbientLight) { + r += color.r * intensity * scaleFactor; + g += color.g * intensity * scaleFactor; + b += color.b * intensity * scaleFactor; + } else if (light.isLightProbe) { + for (let j = 0; j < 9; j++) { + state.probe[j].addScaledVector(light.sh.coefficients[j], intensity); + } + } else if (light.isDirectionalLight) { + const uniforms = cache.get(light); + uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor); + + if (light.castShadow) { + const shadow = light.shadow; + const shadowUniforms = shadowCache.get(light); + shadowUniforms.shadowBias = shadow.bias; + shadowUniforms.shadowNormalBias = shadow.normalBias; + shadowUniforms.shadowRadius = shadow.radius; + shadowUniforms.shadowMapSize = shadow.mapSize; + state.directionalShadow[directionalLength] = shadowUniforms; + state.directionalShadowMap[directionalLength] = shadowMap; + state.directionalShadowMatrix[directionalLength] = light.shadow.matrix; + numDirectionalShadows++; + } + + state.directional[directionalLength] = uniforms; + directionalLength++; + } else if (light.isSpotLight) { + const uniforms = cache.get(light); + uniforms.position.setFromMatrixPosition(light.matrixWorld); + uniforms.color.copy(color).multiplyScalar(intensity * scaleFactor); + uniforms.distance = distance; + uniforms.coneCos = Math.cos(light.angle); + uniforms.penumbraCos = Math.cos(light.angle * (1 - light.penumbra)); + uniforms.decay = light.decay; + + if (light.castShadow) { + const shadow = light.shadow; + const shadowUniforms = shadowCache.get(light); + shadowUniforms.shadowBias = shadow.bias; + shadowUniforms.shadowNormalBias = shadow.normalBias; + shadowUniforms.shadowRadius = shadow.radius; + shadowUniforms.shadowMapSize = shadow.mapSize; + state.spotShadow[spotLength] = shadowUniforms; + state.spotShadowMap[spotLength] = shadowMap; + state.spotShadowMatrix[spotLength] = light.shadow.matrix; + numSpotShadows++; + } + + state.spot[spotLength] = uniforms; + spotLength++; + } else if (light.isRectAreaLight) { + const uniforms = cache.get(light); // (a) intensity is the total visible light emitted + //uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) ); + // (b) intensity is the brightness of the light + + uniforms.color.copy(color).multiplyScalar(intensity); + uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0); + uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0); + state.rectArea[rectAreaLength] = uniforms; + rectAreaLength++; + } else if (light.isPointLight) { + const uniforms = cache.get(light); + uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor); + uniforms.distance = light.distance; + uniforms.decay = light.decay; + + if (light.castShadow) { + const shadow = light.shadow; + const shadowUniforms = shadowCache.get(light); + shadowUniforms.shadowBias = shadow.bias; + shadowUniforms.shadowNormalBias = shadow.normalBias; + shadowUniforms.shadowRadius = shadow.radius; + shadowUniforms.shadowMapSize = shadow.mapSize; + shadowUniforms.shadowCameraNear = shadow.camera.near; + shadowUniforms.shadowCameraFar = shadow.camera.far; + state.pointShadow[pointLength] = shadowUniforms; + state.pointShadowMap[pointLength] = shadowMap; + state.pointShadowMatrix[pointLength] = light.shadow.matrix; + numPointShadows++; + } + + state.point[pointLength] = uniforms; + pointLength++; + } else if (light.isHemisphereLight) { + const uniforms = cache.get(light); + uniforms.skyColor.copy(light.color).multiplyScalar(intensity * scaleFactor); + uniforms.groundColor.copy(light.groundColor).multiplyScalar(intensity * scaleFactor); + state.hemi[hemiLength] = uniforms; + hemiLength++; + } + } + + if (rectAreaLength > 0) { + if (capabilities.isWebGL2) { + // WebGL 2 + state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; + state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; + } else { + // WebGL 1 + if (extensions.has('OES_texture_float_linear') === true) { + state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; + state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; + } else if (extensions.has('OES_texture_half_float_linear') === true) { + state.rectAreaLTC1 = UniformsLib.LTC_HALF_1; + state.rectAreaLTC2 = UniformsLib.LTC_HALF_2; + } else { + console.error('THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.'); + } + } + } + + state.ambient[0] = r; + state.ambient[1] = g; + state.ambient[2] = b; + const hash = state.hash; + + if (hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows) { + state.directional.length = directionalLength; + state.spot.length = spotLength; + state.rectArea.length = rectAreaLength; + state.point.length = pointLength; + state.hemi.length = hemiLength; + state.directionalShadow.length = numDirectionalShadows; + state.directionalShadowMap.length = numDirectionalShadows; + state.pointShadow.length = numPointShadows; + state.pointShadowMap.length = numPointShadows; + state.spotShadow.length = numSpotShadows; + state.spotShadowMap.length = numSpotShadows; + state.directionalShadowMatrix.length = numDirectionalShadows; + state.pointShadowMatrix.length = numPointShadows; + state.spotShadowMatrix.length = numSpotShadows; + hash.directionalLength = directionalLength; + hash.pointLength = pointLength; + hash.spotLength = spotLength; + hash.rectAreaLength = rectAreaLength; + hash.hemiLength = hemiLength; + hash.numDirectionalShadows = numDirectionalShadows; + hash.numPointShadows = numPointShadows; + hash.numSpotShadows = numSpotShadows; + state.version = nextVersion++; + } + } + + function setupView(lights, camera) { + let directionalLength = 0; + let pointLength = 0; + let spotLength = 0; + let rectAreaLength = 0; + let hemiLength = 0; + const viewMatrix = camera.matrixWorldInverse; + + for (let i = 0, l = lights.length; i < l; i++) { + const light = lights[i]; + + if (light.isDirectionalLight) { + const uniforms = state.directional[directionalLength]; + uniforms.direction.setFromMatrixPosition(light.matrixWorld); + vector3.setFromMatrixPosition(light.target.matrixWorld); + uniforms.direction.sub(vector3); + uniforms.direction.transformDirection(viewMatrix); + directionalLength++; + } else if (light.isSpotLight) { + const uniforms = state.spot[spotLength]; + uniforms.position.setFromMatrixPosition(light.matrixWorld); + uniforms.position.applyMatrix4(viewMatrix); + uniforms.direction.setFromMatrixPosition(light.matrixWorld); + vector3.setFromMatrixPosition(light.target.matrixWorld); + uniforms.direction.sub(vector3); + uniforms.direction.transformDirection(viewMatrix); + spotLength++; + } else if (light.isRectAreaLight) { + const uniforms = state.rectArea[rectAreaLength]; + uniforms.position.setFromMatrixPosition(light.matrixWorld); + uniforms.position.applyMatrix4(viewMatrix); // extract local rotation of light to derive width/height half vectors + + matrix42.identity(); + matrix4.copy(light.matrixWorld); + matrix4.premultiply(viewMatrix); + matrix42.extractRotation(matrix4); + uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0); + uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0); + uniforms.halfWidth.applyMatrix4(matrix42); + uniforms.halfHeight.applyMatrix4(matrix42); + rectAreaLength++; + } else if (light.isPointLight) { + const uniforms = state.point[pointLength]; + uniforms.position.setFromMatrixPosition(light.matrixWorld); + uniforms.position.applyMatrix4(viewMatrix); + pointLength++; + } else if (light.isHemisphereLight) { + const uniforms = state.hemi[hemiLength]; + uniforms.direction.setFromMatrixPosition(light.matrixWorld); + uniforms.direction.transformDirection(viewMatrix); + uniforms.direction.normalize(); + hemiLength++; + } + } + } + + return { + setup: setup, + setupView: setupView, + state: state + }; + } + + function WebGLRenderState(extensions, capabilities) { + const lights = new WebGLLights(extensions, capabilities); + const lightsArray = []; + const shadowsArray = []; + + function init() { + lightsArray.length = 0; + shadowsArray.length = 0; + } + + function pushLight(light) { + lightsArray.push(light); + } + + function pushShadow(shadowLight) { + shadowsArray.push(shadowLight); + } + + function setupLights(physicallyCorrectLights) { + lights.setup(lightsArray, physicallyCorrectLights); + } + + function setupLightsView(camera) { + lights.setupView(lightsArray, camera); + } + + const state = { + lightsArray: lightsArray, + shadowsArray: shadowsArray, + lights: lights + }; + return { + init: init, + state: state, + setupLights: setupLights, + setupLightsView: setupLightsView, + pushLight: pushLight, + pushShadow: pushShadow + }; + } + + function WebGLRenderStates(extensions, capabilities) { + let renderStates = new WeakMap(); + + function get(scene, renderCallDepth = 0) { + let renderState; + + if (renderStates.has(scene) === false) { + renderState = new WebGLRenderState(extensions, capabilities); + renderStates.set(scene, [renderState]); + } else { + if (renderCallDepth >= renderStates.get(scene).length) { + renderState = new WebGLRenderState(extensions, capabilities); + renderStates.get(scene).push(renderState); + } else { + renderState = renderStates.get(scene)[renderCallDepth]; + } + } + + return renderState; + } + + function dispose() { + renderStates = new WeakMap(); + } + + return { + get: get, + dispose: dispose + }; + } + + /** + * parameters = { + * + * opacity: , + * + * map: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * wireframe: , + * wireframeLinewidth: + * } + */ + + class MeshDepthMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'MeshDepthMaterial'; + this.depthPacking = BasicDepthPacking; + this.map = null; + this.alphaMap = null; + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.fog = false; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.depthPacking = source.depthPacking; + this.map = source.map; + this.alphaMap = source.alphaMap; + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + return this; + } + + } + + MeshDepthMaterial.prototype.isMeshDepthMaterial = true; + + /** + * parameters = { + * + * referencePosition: , + * nearDistance: , + * farDistance: , + * + * map: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: + * + * } + */ + + class MeshDistanceMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'MeshDistanceMaterial'; + this.referencePosition = new Vector3(); + this.nearDistance = 1; + this.farDistance = 1000; + this.map = null; + this.alphaMap = null; + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + this.fog = false; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.referencePosition.copy(source.referencePosition); + this.nearDistance = source.nearDistance; + this.farDistance = source.farDistance; + this.map = source.map; + this.alphaMap = source.alphaMap; + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + return this; + } + + } + + MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true; + + const vertex = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}"; + const fragment = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\nuniform float samples;\n#include \nvoid main() {\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}"; + + function WebGLShadowMap(_renderer, _objects, _capabilities) { + let _frustum = new Frustum(); + + const _shadowMapSize = new Vector2(), + _viewportSize = new Vector2(), + _viewport = new Vector4(), + _depthMaterial = new MeshDepthMaterial({ + depthPacking: RGBADepthPacking + }), + _distanceMaterial = new MeshDistanceMaterial(), + _materialCache = {}, + _maxTextureSize = _capabilities.maxTextureSize; + + const shadowSide = { + 0: BackSide, + 1: FrontSide, + 2: DoubleSide + }; + const shadowMaterialVertical = new ShaderMaterial({ + uniforms: { + shadow_pass: { + value: null + }, + resolution: { + value: new Vector2() + }, + radius: { + value: 4.0 + }, + samples: { + value: 8.0 + } + }, + vertexShader: vertex, + fragmentShader: fragment + }); + const shadowMaterialHorizontal = shadowMaterialVertical.clone(); + shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1; + const fullScreenTri = new BufferGeometry(); + fullScreenTri.setAttribute('position', new BufferAttribute(new Float32Array([-1, -1, 0.5, 3, -1, 0.5, -1, 3, 0.5]), 3)); + const fullScreenMesh = new Mesh(fullScreenTri, shadowMaterialVertical); + const scope = this; + this.enabled = false; + this.autoUpdate = true; + this.needsUpdate = false; + this.type = PCFShadowMap; + + this.render = function (lights, scene, camera) { + if (scope.enabled === false) return; + if (scope.autoUpdate === false && scope.needsUpdate === false) return; + if (lights.length === 0) return; + + const currentRenderTarget = _renderer.getRenderTarget(); + + const activeCubeFace = _renderer.getActiveCubeFace(); + + const activeMipmapLevel = _renderer.getActiveMipmapLevel(); + + const _state = _renderer.state; // Set GL state for depth map. + + _state.setBlending(NoBlending); + + _state.buffers.color.setClear(1, 1, 1, 1); + + _state.buffers.depth.setTest(true); + + _state.setScissorTest(false); // render depth map + + + for (let i = 0, il = lights.length; i < il; i++) { + const light = lights[i]; + const shadow = light.shadow; + + if (shadow === undefined) { + console.warn('THREE.WebGLShadowMap:', light, 'has no shadow.'); + continue; + } + + if (shadow.autoUpdate === false && shadow.needsUpdate === false) continue; + + _shadowMapSize.copy(shadow.mapSize); + + const shadowFrameExtents = shadow.getFrameExtents(); + + _shadowMapSize.multiply(shadowFrameExtents); + + _viewportSize.copy(shadow.mapSize); + + if (_shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize) { + if (_shadowMapSize.x > _maxTextureSize) { + _viewportSize.x = Math.floor(_maxTextureSize / shadowFrameExtents.x); + _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x; + shadow.mapSize.x = _viewportSize.x; + } + + if (_shadowMapSize.y > _maxTextureSize) { + _viewportSize.y = Math.floor(_maxTextureSize / shadowFrameExtents.y); + _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y; + shadow.mapSize.y = _viewportSize.y; + } + } + + if (shadow.map === null && !shadow.isPointLightShadow && this.type === VSMShadowMap) { + const pars = { + minFilter: LinearFilter, + magFilter: LinearFilter, + format: RGBAFormat + }; + shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars); + shadow.map.texture.name = light.name + '.shadowMap'; + shadow.mapPass = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars); + shadow.camera.updateProjectionMatrix(); + } + + if (shadow.map === null) { + const pars = { + minFilter: NearestFilter, + magFilter: NearestFilter, + format: RGBAFormat + }; + shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars); + shadow.map.texture.name = light.name + '.shadowMap'; + shadow.camera.updateProjectionMatrix(); + } + + _renderer.setRenderTarget(shadow.map); + + _renderer.clear(); + + const viewportCount = shadow.getViewportCount(); + + for (let vp = 0; vp < viewportCount; vp++) { + const viewport = shadow.getViewport(vp); + + _viewport.set(_viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w); + + _state.viewport(_viewport); + + shadow.updateMatrices(light, vp); + _frustum = shadow.getFrustum(); + renderObject(scene, camera, shadow.camera, light, this.type); + } // do blur pass for VSM + + + if (!shadow.isPointLightShadow && this.type === VSMShadowMap) { + VSMPass(shadow, camera); + } + + shadow.needsUpdate = false; + } + + scope.needsUpdate = false; + + _renderer.setRenderTarget(currentRenderTarget, activeCubeFace, activeMipmapLevel); + }; + + function VSMPass(shadow, camera) { + const geometry = _objects.update(fullScreenMesh); // vertical pass + + + shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture; + shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize; + shadowMaterialVertical.uniforms.radius.value = shadow.radius; + shadowMaterialVertical.uniforms.samples.value = shadow.blurSamples; + + _renderer.setRenderTarget(shadow.mapPass); + + _renderer.clear(); + + _renderer.renderBufferDirect(camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null); // horizontal pass + + + shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture; + shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize; + shadowMaterialHorizontal.uniforms.radius.value = shadow.radius; + shadowMaterialHorizontal.uniforms.samples.value = shadow.blurSamples; + + _renderer.setRenderTarget(shadow.map); + + _renderer.clear(); + + _renderer.renderBufferDirect(camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null); + } + + function getDepthMaterial(object, geometry, material, light, shadowCameraNear, shadowCameraFar, type) { + let result = null; + const customMaterial = light.isPointLight === true ? object.customDistanceMaterial : object.customDepthMaterial; + + if (customMaterial !== undefined) { + result = customMaterial; + } else { + result = light.isPointLight === true ? _distanceMaterial : _depthMaterial; + } + + if (_renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0 || material.displacementMap && material.displacementScale !== 0 || material.alphaMap && material.alphaTest > 0) { + // in this case we need a unique material instance reflecting the + // appropriate state + const keyA = result.uuid, + keyB = material.uuid; + let materialsForVariant = _materialCache[keyA]; + + if (materialsForVariant === undefined) { + materialsForVariant = {}; + _materialCache[keyA] = materialsForVariant; + } + + let cachedMaterial = materialsForVariant[keyB]; + + if (cachedMaterial === undefined) { + cachedMaterial = result.clone(); + materialsForVariant[keyB] = cachedMaterial; + } + + result = cachedMaterial; + } + + result.visible = material.visible; + result.wireframe = material.wireframe; + + if (type === VSMShadowMap) { + result.side = material.shadowSide !== null ? material.shadowSide : material.side; + } else { + result.side = material.shadowSide !== null ? material.shadowSide : shadowSide[material.side]; + } + + result.alphaMap = material.alphaMap; + result.alphaTest = material.alphaTest; + result.clipShadows = material.clipShadows; + result.clippingPlanes = material.clippingPlanes; + result.clipIntersection = material.clipIntersection; + result.displacementMap = material.displacementMap; + result.displacementScale = material.displacementScale; + result.displacementBias = material.displacementBias; + result.wireframeLinewidth = material.wireframeLinewidth; + result.linewidth = material.linewidth; + + if (light.isPointLight === true && result.isMeshDistanceMaterial === true) { + result.referencePosition.setFromMatrixPosition(light.matrixWorld); + result.nearDistance = shadowCameraNear; + result.farDistance = shadowCameraFar; + } + + return result; + } + + function renderObject(object, camera, shadowCamera, light, type) { + if (object.visible === false) return; + const visible = object.layers.test(camera.layers); + + if (visible && (object.isMesh || object.isLine || object.isPoints)) { + if ((object.castShadow || object.receiveShadow && type === VSMShadowMap) && (!object.frustumCulled || _frustum.intersectsObject(object))) { + object.modelViewMatrix.multiplyMatrices(shadowCamera.matrixWorldInverse, object.matrixWorld); + + const geometry = _objects.update(object); + + const material = object.material; + + if (Array.isArray(material)) { + const groups = geometry.groups; + + for (let k = 0, kl = groups.length; k < kl; k++) { + const group = groups[k]; + const groupMaterial = material[group.materialIndex]; + + if (groupMaterial && groupMaterial.visible) { + const depthMaterial = getDepthMaterial(object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type); + + _renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, group); + } + } + } else if (material.visible) { + const depthMaterial = getDepthMaterial(object, geometry, material, light, shadowCamera.near, shadowCamera.far, type); + + _renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, null); + } + } + } + + const children = object.children; + + for (let i = 0, l = children.length; i < l; i++) { + renderObject(children[i], camera, shadowCamera, light, type); + } + } + } + + function WebGLState(gl, extensions, capabilities) { + const isWebGL2 = capabilities.isWebGL2; + + function ColorBuffer() { + let locked = false; + const color = new Vector4(); + let currentColorMask = null; + const currentColorClear = new Vector4(0, 0, 0, 0); + return { + setMask: function (colorMask) { + if (currentColorMask !== colorMask && !locked) { + gl.colorMask(colorMask, colorMask, colorMask, colorMask); + currentColorMask = colorMask; + } + }, + setLocked: function (lock) { + locked = lock; + }, + setClear: function (r, g, b, a, premultipliedAlpha) { + if (premultipliedAlpha === true) { + r *= a; + g *= a; + b *= a; + } + + color.set(r, g, b, a); + + if (currentColorClear.equals(color) === false) { + gl.clearColor(r, g, b, a); + currentColorClear.copy(color); + } + }, + reset: function () { + locked = false; + currentColorMask = null; + currentColorClear.set(-1, 0, 0, 0); // set to invalid state + } + }; + } + + function DepthBuffer() { + let locked = false; + let currentDepthMask = null; + let currentDepthFunc = null; + let currentDepthClear = null; + return { + setTest: function (depthTest) { + if (depthTest) { + enable(gl.DEPTH_TEST); + } else { + disable(gl.DEPTH_TEST); + } + }, + setMask: function (depthMask) { + if (currentDepthMask !== depthMask && !locked) { + gl.depthMask(depthMask); + currentDepthMask = depthMask; + } + }, + setFunc: function (depthFunc) { + if (currentDepthFunc !== depthFunc) { + if (depthFunc) { + switch (depthFunc) { + case NeverDepth: + gl.depthFunc(gl.NEVER); + break; + + case AlwaysDepth: + gl.depthFunc(gl.ALWAYS); + break; + + case LessDepth: + gl.depthFunc(gl.LESS); + break; + + case LessEqualDepth: + gl.depthFunc(gl.LEQUAL); + break; + + case EqualDepth: + gl.depthFunc(gl.EQUAL); + break; + + case GreaterEqualDepth: + gl.depthFunc(gl.GEQUAL); + break; + + case GreaterDepth: + gl.depthFunc(gl.GREATER); + break; + + case NotEqualDepth: + gl.depthFunc(gl.NOTEQUAL); + break; + + default: + gl.depthFunc(gl.LEQUAL); + } + } else { + gl.depthFunc(gl.LEQUAL); + } + + currentDepthFunc = depthFunc; + } + }, + setLocked: function (lock) { + locked = lock; + }, + setClear: function (depth) { + if (currentDepthClear !== depth) { + gl.clearDepth(depth); + currentDepthClear = depth; + } + }, + reset: function () { + locked = false; + currentDepthMask = null; + currentDepthFunc = null; + currentDepthClear = null; + } + }; + } + + function StencilBuffer() { + let locked = false; + let currentStencilMask = null; + let currentStencilFunc = null; + let currentStencilRef = null; + let currentStencilFuncMask = null; + let currentStencilFail = null; + let currentStencilZFail = null; + let currentStencilZPass = null; + let currentStencilClear = null; + return { + setTest: function (stencilTest) { + if (!locked) { + if (stencilTest) { + enable(gl.STENCIL_TEST); + } else { + disable(gl.STENCIL_TEST); + } + } + }, + setMask: function (stencilMask) { + if (currentStencilMask !== stencilMask && !locked) { + gl.stencilMask(stencilMask); + currentStencilMask = stencilMask; + } + }, + setFunc: function (stencilFunc, stencilRef, stencilMask) { + if (currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask) { + gl.stencilFunc(stencilFunc, stencilRef, stencilMask); + currentStencilFunc = stencilFunc; + currentStencilRef = stencilRef; + currentStencilFuncMask = stencilMask; + } + }, + setOp: function (stencilFail, stencilZFail, stencilZPass) { + if (currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass) { + gl.stencilOp(stencilFail, stencilZFail, stencilZPass); + currentStencilFail = stencilFail; + currentStencilZFail = stencilZFail; + currentStencilZPass = stencilZPass; + } + }, + setLocked: function (lock) { + locked = lock; + }, + setClear: function (stencil) { + if (currentStencilClear !== stencil) { + gl.clearStencil(stencil); + currentStencilClear = stencil; + } + }, + reset: function () { + locked = false; + currentStencilMask = null; + currentStencilFunc = null; + currentStencilRef = null; + currentStencilFuncMask = null; + currentStencilFail = null; + currentStencilZFail = null; + currentStencilZPass = null; + currentStencilClear = null; + } + }; + } // + + + const colorBuffer = new ColorBuffer(); + const depthBuffer = new DepthBuffer(); + const stencilBuffer = new StencilBuffer(); + let enabledCapabilities = {}; + let xrFramebuffer = null; + let currentBoundFramebuffers = {}; + let currentProgram = null; + let currentBlendingEnabled = false; + let currentBlending = null; + let currentBlendEquation = null; + let currentBlendSrc = null; + let currentBlendDst = null; + let currentBlendEquationAlpha = null; + let currentBlendSrcAlpha = null; + let currentBlendDstAlpha = null; + let currentPremultipledAlpha = false; + let currentFlipSided = null; + let currentCullFace = null; + let currentLineWidth = null; + let currentPolygonOffsetFactor = null; + let currentPolygonOffsetUnits = null; + const maxTextures = gl.getParameter(gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS); + let lineWidthAvailable = false; + let version = 0; + const glVersion = gl.getParameter(gl.VERSION); + + if (glVersion.indexOf('WebGL') !== -1) { + version = parseFloat(/^WebGL (\d)/.exec(glVersion)[1]); + lineWidthAvailable = version >= 1.0; + } else if (glVersion.indexOf('OpenGL ES') !== -1) { + version = parseFloat(/^OpenGL ES (\d)/.exec(glVersion)[1]); + lineWidthAvailable = version >= 2.0; + } + + let currentTextureSlot = null; + let currentBoundTextures = {}; + const scissorParam = gl.getParameter(gl.SCISSOR_BOX); + const viewportParam = gl.getParameter(gl.VIEWPORT); + const currentScissor = new Vector4().fromArray(scissorParam); + const currentViewport = new Vector4().fromArray(viewportParam); + + function createTexture(type, target, count) { + const data = new Uint8Array(4); // 4 is required to match default unpack alignment of 4. + + const texture = gl.createTexture(); + gl.bindTexture(type, texture); + gl.texParameteri(type, gl.TEXTURE_MIN_FILTER, gl.NEAREST); + gl.texParameteri(type, gl.TEXTURE_MAG_FILTER, gl.NEAREST); + + for (let i = 0; i < count; i++) { + gl.texImage2D(target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data); + } + + return texture; + } + + const emptyTextures = {}; + emptyTextures[gl.TEXTURE_2D] = createTexture(gl.TEXTURE_2D, gl.TEXTURE_2D, 1); + emptyTextures[gl.TEXTURE_CUBE_MAP] = createTexture(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6); // init + + colorBuffer.setClear(0, 0, 0, 1); + depthBuffer.setClear(1); + stencilBuffer.setClear(0); + enable(gl.DEPTH_TEST); + depthBuffer.setFunc(LessEqualDepth); + setFlipSided(false); + setCullFace(CullFaceBack); + enable(gl.CULL_FACE); + setBlending(NoBlending); // + + function enable(id) { + if (enabledCapabilities[id] !== true) { + gl.enable(id); + enabledCapabilities[id] = true; + } + } + + function disable(id) { + if (enabledCapabilities[id] !== false) { + gl.disable(id); + enabledCapabilities[id] = false; + } + } + + function bindXRFramebuffer(framebuffer) { + if (framebuffer !== xrFramebuffer) { + gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer); + xrFramebuffer = framebuffer; + } + } + + function bindFramebuffer(target, framebuffer) { + if (framebuffer === null && xrFramebuffer !== null) framebuffer = xrFramebuffer; // use active XR framebuffer if available + + if (currentBoundFramebuffers[target] !== framebuffer) { + gl.bindFramebuffer(target, framebuffer); + currentBoundFramebuffers[target] = framebuffer; + + if (isWebGL2) { + // gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER + if (target === gl.DRAW_FRAMEBUFFER) { + currentBoundFramebuffers[gl.FRAMEBUFFER] = framebuffer; + } + + if (target === gl.FRAMEBUFFER) { + currentBoundFramebuffers[gl.DRAW_FRAMEBUFFER] = framebuffer; + } + } + + return true; + } + + return false; + } + + function useProgram(program) { + if (currentProgram !== program) { + gl.useProgram(program); + currentProgram = program; + return true; + } + + return false; + } + + const equationToGL = { + [AddEquation]: gl.FUNC_ADD, + [SubtractEquation]: gl.FUNC_SUBTRACT, + [ReverseSubtractEquation]: gl.FUNC_REVERSE_SUBTRACT + }; + + if (isWebGL2) { + equationToGL[MinEquation] = gl.MIN; + equationToGL[MaxEquation] = gl.MAX; + } else { + const extension = extensions.get('EXT_blend_minmax'); + + if (extension !== null) { + equationToGL[MinEquation] = extension.MIN_EXT; + equationToGL[MaxEquation] = extension.MAX_EXT; + } + } + + const factorToGL = { + [ZeroFactor]: gl.ZERO, + [OneFactor]: gl.ONE, + [SrcColorFactor]: gl.SRC_COLOR, + [SrcAlphaFactor]: gl.SRC_ALPHA, + [SrcAlphaSaturateFactor]: gl.SRC_ALPHA_SATURATE, + [DstColorFactor]: gl.DST_COLOR, + [DstAlphaFactor]: gl.DST_ALPHA, + [OneMinusSrcColorFactor]: gl.ONE_MINUS_SRC_COLOR, + [OneMinusSrcAlphaFactor]: gl.ONE_MINUS_SRC_ALPHA, + [OneMinusDstColorFactor]: gl.ONE_MINUS_DST_COLOR, + [OneMinusDstAlphaFactor]: gl.ONE_MINUS_DST_ALPHA + }; + + function setBlending(blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha) { + if (blending === NoBlending) { + if (currentBlendingEnabled === true) { + disable(gl.BLEND); + currentBlendingEnabled = false; + } + + return; + } + + if (currentBlendingEnabled === false) { + enable(gl.BLEND); + currentBlendingEnabled = true; + } + + if (blending !== CustomBlending) { + if (blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha) { + if (currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation) { + gl.blendEquation(gl.FUNC_ADD); + currentBlendEquation = AddEquation; + currentBlendEquationAlpha = AddEquation; + } + + if (premultipliedAlpha) { + switch (blending) { + case NormalBlending: + gl.blendFuncSeparate(gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA); + break; + + case AdditiveBlending: + gl.blendFunc(gl.ONE, gl.ONE); + break; + + case SubtractiveBlending: + gl.blendFuncSeparate(gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA); + break; + + case MultiplyBlending: + gl.blendFuncSeparate(gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA); + break; + + default: + console.error('THREE.WebGLState: Invalid blending: ', blending); + break; + } + } else { + switch (blending) { + case NormalBlending: + gl.blendFuncSeparate(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA); + break; + + case AdditiveBlending: + gl.blendFunc(gl.SRC_ALPHA, gl.ONE); + break; + + case SubtractiveBlending: + gl.blendFunc(gl.ZERO, gl.ONE_MINUS_SRC_COLOR); + break; + + case MultiplyBlending: + gl.blendFunc(gl.ZERO, gl.SRC_COLOR); + break; + + default: + console.error('THREE.WebGLState: Invalid blending: ', blending); + break; + } + } + + currentBlendSrc = null; + currentBlendDst = null; + currentBlendSrcAlpha = null; + currentBlendDstAlpha = null; + currentBlending = blending; + currentPremultipledAlpha = premultipliedAlpha; + } + + return; + } // custom blending + + + blendEquationAlpha = blendEquationAlpha || blendEquation; + blendSrcAlpha = blendSrcAlpha || blendSrc; + blendDstAlpha = blendDstAlpha || blendDst; + + if (blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha) { + gl.blendEquationSeparate(equationToGL[blendEquation], equationToGL[blendEquationAlpha]); + currentBlendEquation = blendEquation; + currentBlendEquationAlpha = blendEquationAlpha; + } + + if (blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha) { + gl.blendFuncSeparate(factorToGL[blendSrc], factorToGL[blendDst], factorToGL[blendSrcAlpha], factorToGL[blendDstAlpha]); + currentBlendSrc = blendSrc; + currentBlendDst = blendDst; + currentBlendSrcAlpha = blendSrcAlpha; + currentBlendDstAlpha = blendDstAlpha; + } + + currentBlending = blending; + currentPremultipledAlpha = null; + } + + function setMaterial(material, frontFaceCW) { + material.side === DoubleSide ? disable(gl.CULL_FACE) : enable(gl.CULL_FACE); + let flipSided = material.side === BackSide; + if (frontFaceCW) flipSided = !flipSided; + setFlipSided(flipSided); + material.blending === NormalBlending && material.transparent === false ? setBlending(NoBlending) : setBlending(material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha); + depthBuffer.setFunc(material.depthFunc); + depthBuffer.setTest(material.depthTest); + depthBuffer.setMask(material.depthWrite); + colorBuffer.setMask(material.colorWrite); + const stencilWrite = material.stencilWrite; + stencilBuffer.setTest(stencilWrite); + + if (stencilWrite) { + stencilBuffer.setMask(material.stencilWriteMask); + stencilBuffer.setFunc(material.stencilFunc, material.stencilRef, material.stencilFuncMask); + stencilBuffer.setOp(material.stencilFail, material.stencilZFail, material.stencilZPass); + } + + setPolygonOffset(material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits); + material.alphaToCoverage === true ? enable(gl.SAMPLE_ALPHA_TO_COVERAGE) : disable(gl.SAMPLE_ALPHA_TO_COVERAGE); + } // + + + function setFlipSided(flipSided) { + if (currentFlipSided !== flipSided) { + if (flipSided) { + gl.frontFace(gl.CW); + } else { + gl.frontFace(gl.CCW); + } + + currentFlipSided = flipSided; + } + } + + function setCullFace(cullFace) { + if (cullFace !== CullFaceNone) { + enable(gl.CULL_FACE); + + if (cullFace !== currentCullFace) { + if (cullFace === CullFaceBack) { + gl.cullFace(gl.BACK); + } else if (cullFace === CullFaceFront) { + gl.cullFace(gl.FRONT); + } else { + gl.cullFace(gl.FRONT_AND_BACK); + } + } + } else { + disable(gl.CULL_FACE); + } + + currentCullFace = cullFace; + } + + function setLineWidth(width) { + if (width !== currentLineWidth) { + if (lineWidthAvailable) gl.lineWidth(width); + currentLineWidth = width; + } + } + + function setPolygonOffset(polygonOffset, factor, units) { + if (polygonOffset) { + enable(gl.POLYGON_OFFSET_FILL); + + if (currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units) { + gl.polygonOffset(factor, units); + currentPolygonOffsetFactor = factor; + currentPolygonOffsetUnits = units; + } + } else { + disable(gl.POLYGON_OFFSET_FILL); + } + } + + function setScissorTest(scissorTest) { + if (scissorTest) { + enable(gl.SCISSOR_TEST); + } else { + disable(gl.SCISSOR_TEST); + } + } // texture + + + function activeTexture(webglSlot) { + if (webglSlot === undefined) webglSlot = gl.TEXTURE0 + maxTextures - 1; + + if (currentTextureSlot !== webglSlot) { + gl.activeTexture(webglSlot); + currentTextureSlot = webglSlot; + } + } + + function bindTexture(webglType, webglTexture) { + if (currentTextureSlot === null) { + activeTexture(); + } + + let boundTexture = currentBoundTextures[currentTextureSlot]; + + if (boundTexture === undefined) { + boundTexture = { + type: undefined, + texture: undefined + }; + currentBoundTextures[currentTextureSlot] = boundTexture; + } + + if (boundTexture.type !== webglType || boundTexture.texture !== webglTexture) { + gl.bindTexture(webglType, webglTexture || emptyTextures[webglType]); + boundTexture.type = webglType; + boundTexture.texture = webglTexture; + } + } + + function unbindTexture() { + const boundTexture = currentBoundTextures[currentTextureSlot]; + + if (boundTexture !== undefined && boundTexture.type !== undefined) { + gl.bindTexture(boundTexture.type, null); + boundTexture.type = undefined; + boundTexture.texture = undefined; + } + } + + function compressedTexImage2D() { + try { + gl.compressedTexImage2D.apply(gl, arguments); + } catch (error) { + console.error('THREE.WebGLState:', error); + } + } + + function texImage2D() { + try { + gl.texImage2D.apply(gl, arguments); + } catch (error) { + console.error('THREE.WebGLState:', error); + } + } + + function texImage3D() { + try { + gl.texImage3D.apply(gl, arguments); + } catch (error) { + console.error('THREE.WebGLState:', error); + } + } // + + + function scissor(scissor) { + if (currentScissor.equals(scissor) === false) { + gl.scissor(scissor.x, scissor.y, scissor.z, scissor.w); + currentScissor.copy(scissor); + } + } + + function viewport(viewport) { + if (currentViewport.equals(viewport) === false) { + gl.viewport(viewport.x, viewport.y, viewport.z, viewport.w); + currentViewport.copy(viewport); + } + } // + + + function reset() { + // reset state + gl.disable(gl.BLEND); + gl.disable(gl.CULL_FACE); + gl.disable(gl.DEPTH_TEST); + gl.disable(gl.POLYGON_OFFSET_FILL); + gl.disable(gl.SCISSOR_TEST); + gl.disable(gl.STENCIL_TEST); + gl.disable(gl.SAMPLE_ALPHA_TO_COVERAGE); + gl.blendEquation(gl.FUNC_ADD); + gl.blendFunc(gl.ONE, gl.ZERO); + gl.blendFuncSeparate(gl.ONE, gl.ZERO, gl.ONE, gl.ZERO); + gl.colorMask(true, true, true, true); + gl.clearColor(0, 0, 0, 0); + gl.depthMask(true); + gl.depthFunc(gl.LESS); + gl.clearDepth(1); + gl.stencilMask(0xffffffff); + gl.stencilFunc(gl.ALWAYS, 0, 0xffffffff); + gl.stencilOp(gl.KEEP, gl.KEEP, gl.KEEP); + gl.clearStencil(0); + gl.cullFace(gl.BACK); + gl.frontFace(gl.CCW); + gl.polygonOffset(0, 0); + gl.activeTexture(gl.TEXTURE0); + gl.bindFramebuffer(gl.FRAMEBUFFER, null); + + if (isWebGL2 === true) { + gl.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null); + gl.bindFramebuffer(gl.READ_FRAMEBUFFER, null); + } + + gl.useProgram(null); + gl.lineWidth(1); + gl.scissor(0, 0, gl.canvas.width, gl.canvas.height); + gl.viewport(0, 0, gl.canvas.width, gl.canvas.height); // reset internals + + enabledCapabilities = {}; + currentTextureSlot = null; + currentBoundTextures = {}; + xrFramebuffer = null; + currentBoundFramebuffers = {}; + currentProgram = null; + currentBlendingEnabled = false; + currentBlending = null; + currentBlendEquation = null; + currentBlendSrc = null; + currentBlendDst = null; + currentBlendEquationAlpha = null; + currentBlendSrcAlpha = null; + currentBlendDstAlpha = null; + currentPremultipledAlpha = false; + currentFlipSided = null; + currentCullFace = null; + currentLineWidth = null; + currentPolygonOffsetFactor = null; + currentPolygonOffsetUnits = null; + currentScissor.set(0, 0, gl.canvas.width, gl.canvas.height); + currentViewport.set(0, 0, gl.canvas.width, gl.canvas.height); + colorBuffer.reset(); + depthBuffer.reset(); + stencilBuffer.reset(); + } + + return { + buffers: { + color: colorBuffer, + depth: depthBuffer, + stencil: stencilBuffer + }, + enable: enable, + disable: disable, + bindFramebuffer: bindFramebuffer, + bindXRFramebuffer: bindXRFramebuffer, + useProgram: useProgram, + setBlending: setBlending, + setMaterial: setMaterial, + setFlipSided: setFlipSided, + setCullFace: setCullFace, + setLineWidth: setLineWidth, + setPolygonOffset: setPolygonOffset, + setScissorTest: setScissorTest, + activeTexture: activeTexture, + bindTexture: bindTexture, + unbindTexture: unbindTexture, + compressedTexImage2D: compressedTexImage2D, + texImage2D: texImage2D, + texImage3D: texImage3D, + scissor: scissor, + viewport: viewport, + reset: reset + }; + } + + function WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info) { + const isWebGL2 = capabilities.isWebGL2; + const maxTextures = capabilities.maxTextures; + const maxCubemapSize = capabilities.maxCubemapSize; + const maxTextureSize = capabilities.maxTextureSize; + const maxSamples = capabilities.maxSamples; + + const _videoTextures = new WeakMap(); + + let _canvas; // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas, + // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")! + // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d). + + + let useOffscreenCanvas = false; + + try { + useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' && new OffscreenCanvas(1, 1).getContext('2d') !== null; + } catch (err) {// Ignore any errors + } + + function createCanvas(width, height) { + // Use OffscreenCanvas when available. Specially needed in web workers + return useOffscreenCanvas ? new OffscreenCanvas(width, height) : createElementNS('canvas'); + } + + function resizeImage(image, needsPowerOfTwo, needsNewCanvas, maxSize) { + let scale = 1; // handle case if texture exceeds max size + + if (image.width > maxSize || image.height > maxSize) { + scale = maxSize / Math.max(image.width, image.height); + } // only perform resize if necessary + + + if (scale < 1 || needsPowerOfTwo === true) { + // only perform resize for certain image types + if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) { + const floor = needsPowerOfTwo ? floorPowerOfTwo : Math.floor; + const width = floor(scale * image.width); + const height = floor(scale * image.height); + if (_canvas === undefined) _canvas = createCanvas(width, height); // cube textures can't reuse the same canvas + + const canvas = needsNewCanvas ? createCanvas(width, height) : _canvas; + canvas.width = width; + canvas.height = height; + const context = canvas.getContext('2d'); + context.drawImage(image, 0, 0, width, height); + console.warn('THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').'); + return canvas; + } else { + if ('data' in image) { + console.warn('THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').'); + } + + return image; + } + } + + return image; + } + + function isPowerOfTwo$1(image) { + return isPowerOfTwo(image.width) && isPowerOfTwo(image.height); + } + + function textureNeedsPowerOfTwo(texture) { + if (isWebGL2) return false; + return texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping || texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; + } + + function textureNeedsGenerateMipmaps(texture, supportsMips) { + return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; + } + + function generateMipmap(target, texture, width, height, depth = 1) { + _gl.generateMipmap(target); + + const textureProperties = properties.get(texture); + textureProperties.__maxMipLevel = Math.log2(Math.max(width, height, depth)); + } + + function getInternalFormat(internalFormatName, glFormat, glType, encoding) { + if (isWebGL2 === false) return glFormat; + + if (internalFormatName !== null) { + if (_gl[internalFormatName] !== undefined) return _gl[internalFormatName]; + console.warn('THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\''); + } + + let internalFormat = glFormat; + + if (glFormat === _gl.RED) { + if (glType === _gl.FLOAT) internalFormat = _gl.R32F; + if (glType === _gl.HALF_FLOAT) internalFormat = _gl.R16F; + if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.R8; + } + + if (glFormat === _gl.RGB) { + if (glType === _gl.FLOAT) internalFormat = _gl.RGB32F; + if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGB16F; + if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGB8; + } + + if (glFormat === _gl.RGBA) { + if (glType === _gl.FLOAT) internalFormat = _gl.RGBA32F; + if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGBA16F; + if (glType === _gl.UNSIGNED_BYTE) internalFormat = encoding === sRGBEncoding ? _gl.SRGB8_ALPHA8 : _gl.RGBA8; + } + + if (internalFormat === _gl.R16F || internalFormat === _gl.R32F || internalFormat === _gl.RGBA16F || internalFormat === _gl.RGBA32F) { + extensions.get('EXT_color_buffer_float'); + } + + return internalFormat; + } // Fallback filters for non-power-of-2 textures + + + function filterFallback(f) { + if (f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter) { + return _gl.NEAREST; + } + + return _gl.LINEAR; + } // + + + function onTextureDispose(event) { + const texture = event.target; + texture.removeEventListener('dispose', onTextureDispose); + deallocateTexture(texture); + + if (texture.isVideoTexture) { + _videoTextures.delete(texture); + } + + info.memory.textures--; + } + + function onRenderTargetDispose(event) { + const renderTarget = event.target; + renderTarget.removeEventListener('dispose', onRenderTargetDispose); + deallocateRenderTarget(renderTarget); + } // + + + function deallocateTexture(texture) { + const textureProperties = properties.get(texture); + if (textureProperties.__webglInit === undefined) return; + + _gl.deleteTexture(textureProperties.__webglTexture); + + properties.remove(texture); + } + + function deallocateRenderTarget(renderTarget) { + const texture = renderTarget.texture; + const renderTargetProperties = properties.get(renderTarget); + const textureProperties = properties.get(texture); + if (!renderTarget) return; + + if (textureProperties.__webglTexture !== undefined) { + _gl.deleteTexture(textureProperties.__webglTexture); + + info.memory.textures--; + } + + if (renderTarget.depthTexture) { + renderTarget.depthTexture.dispose(); + } + + if (renderTarget.isWebGLCubeRenderTarget) { + for (let i = 0; i < 6; i++) { + _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[i]); + + if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer[i]); + } + } else { + _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer); + + if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer); + if (renderTargetProperties.__webglMultisampledFramebuffer) _gl.deleteFramebuffer(renderTargetProperties.__webglMultisampledFramebuffer); + if (renderTargetProperties.__webglColorRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglColorRenderbuffer); + if (renderTargetProperties.__webglDepthRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthRenderbuffer); + } + + if (renderTarget.isWebGLMultipleRenderTargets) { + for (let i = 0, il = texture.length; i < il; i++) { + const attachmentProperties = properties.get(texture[i]); + + if (attachmentProperties.__webglTexture) { + _gl.deleteTexture(attachmentProperties.__webglTexture); + + info.memory.textures--; + } + + properties.remove(texture[i]); + } + } + + properties.remove(texture); + properties.remove(renderTarget); + } // + + + let textureUnits = 0; + + function resetTextureUnits() { + textureUnits = 0; + } + + function allocateTextureUnit() { + const textureUnit = textureUnits; + + if (textureUnit >= maxTextures) { + console.warn('THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures); + } + + textureUnits += 1; + return textureUnit; + } // + + + function setTexture2D(texture, slot) { + const textureProperties = properties.get(texture); + if (texture.isVideoTexture) updateVideoTexture(texture); + + if (texture.version > 0 && textureProperties.__version !== texture.version) { + const image = texture.image; + + if (image === undefined) { + console.warn('THREE.WebGLRenderer: Texture marked for update but image is undefined'); + } else if (image.complete === false) { + console.warn('THREE.WebGLRenderer: Texture marked for update but image is incomplete'); + } else { + uploadTexture(textureProperties, texture, slot); + return; + } + } + + state.activeTexture(_gl.TEXTURE0 + slot); + state.bindTexture(_gl.TEXTURE_2D, textureProperties.__webglTexture); + } + + function setTexture2DArray(texture, slot) { + const textureProperties = properties.get(texture); + + if (texture.version > 0 && textureProperties.__version !== texture.version) { + uploadTexture(textureProperties, texture, slot); + return; + } + + state.activeTexture(_gl.TEXTURE0 + slot); + state.bindTexture(_gl.TEXTURE_2D_ARRAY, textureProperties.__webglTexture); + } + + function setTexture3D(texture, slot) { + const textureProperties = properties.get(texture); + + if (texture.version > 0 && textureProperties.__version !== texture.version) { + uploadTexture(textureProperties, texture, slot); + return; + } + + state.activeTexture(_gl.TEXTURE0 + slot); + state.bindTexture(_gl.TEXTURE_3D, textureProperties.__webglTexture); + } + + function setTextureCube(texture, slot) { + const textureProperties = properties.get(texture); + + if (texture.version > 0 && textureProperties.__version !== texture.version) { + uploadCubeTexture(textureProperties, texture, slot); + return; + } + + state.activeTexture(_gl.TEXTURE0 + slot); + state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture); + } + + const wrappingToGL = { + [RepeatWrapping]: _gl.REPEAT, + [ClampToEdgeWrapping]: _gl.CLAMP_TO_EDGE, + [MirroredRepeatWrapping]: _gl.MIRRORED_REPEAT + }; + const filterToGL = { + [NearestFilter]: _gl.NEAREST, + [NearestMipmapNearestFilter]: _gl.NEAREST_MIPMAP_NEAREST, + [NearestMipmapLinearFilter]: _gl.NEAREST_MIPMAP_LINEAR, + [LinearFilter]: _gl.LINEAR, + [LinearMipmapNearestFilter]: _gl.LINEAR_MIPMAP_NEAREST, + [LinearMipmapLinearFilter]: _gl.LINEAR_MIPMAP_LINEAR + }; + + function setTextureParameters(textureType, texture, supportsMips) { + if (supportsMips) { + _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, wrappingToGL[texture.wrapS]); + + _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, wrappingToGL[texture.wrapT]); + + if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) { + _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, wrappingToGL[texture.wrapR]); + } + + _gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterToGL[texture.magFilter]); + + _gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterToGL[texture.minFilter]); + } else { + _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE); + + _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE); + + if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) { + _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, _gl.CLAMP_TO_EDGE); + } + + if (texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping) { + console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.'); + } + + _gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterFallback(texture.magFilter)); + + _gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterFallback(texture.minFilter)); + + if (texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) { + console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.'); + } + } + + if (extensions.has('EXT_texture_filter_anisotropic') === true) { + const extension = extensions.get('EXT_texture_filter_anisotropic'); + if (texture.type === FloatType && extensions.has('OES_texture_float_linear') === false) return; // verify extension for WebGL 1 and WebGL 2 + + if (isWebGL2 === false && texture.type === HalfFloatType && extensions.has('OES_texture_half_float_linear') === false) return; // verify extension for WebGL 1 only + + if (texture.anisotropy > 1 || properties.get(texture).__currentAnisotropy) { + _gl.texParameterf(textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min(texture.anisotropy, capabilities.getMaxAnisotropy())); + + properties.get(texture).__currentAnisotropy = texture.anisotropy; + } + } + } + + function initTexture(textureProperties, texture) { + if (textureProperties.__webglInit === undefined) { + textureProperties.__webglInit = true; + texture.addEventListener('dispose', onTextureDispose); + textureProperties.__webglTexture = _gl.createTexture(); + info.memory.textures++; + } + } + + function uploadTexture(textureProperties, texture, slot) { + let textureType = _gl.TEXTURE_2D; + if (texture.isDataTexture2DArray) textureType = _gl.TEXTURE_2D_ARRAY; + if (texture.isDataTexture3D) textureType = _gl.TEXTURE_3D; + initTexture(textureProperties, texture); + state.activeTexture(_gl.TEXTURE0 + slot); + state.bindTexture(textureType, textureProperties.__webglTexture); + + _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY); + + _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha); + + _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment); + + _gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE); + + const needsPowerOfTwo = textureNeedsPowerOfTwo(texture) && isPowerOfTwo$1(texture.image) === false; + const image = resizeImage(texture.image, needsPowerOfTwo, false, maxTextureSize); + const supportsMips = isPowerOfTwo$1(image) || isWebGL2, + glFormat = utils.convert(texture.format); + let glType = utils.convert(texture.type), + glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding); + setTextureParameters(textureType, texture, supportsMips); + let mipmap; + const mipmaps = texture.mipmaps; + + if (texture.isDepthTexture) { + // populate depth texture with dummy data + glInternalFormat = _gl.DEPTH_COMPONENT; + + if (isWebGL2) { + if (texture.type === FloatType) { + glInternalFormat = _gl.DEPTH_COMPONENT32F; + } else if (texture.type === UnsignedIntType) { + glInternalFormat = _gl.DEPTH_COMPONENT24; + } else if (texture.type === UnsignedInt248Type) { + glInternalFormat = _gl.DEPTH24_STENCIL8; + } else { + glInternalFormat = _gl.DEPTH_COMPONENT16; // WebGL2 requires sized internalformat for glTexImage2D + } + } else { + if (texture.type === FloatType) { + console.error('WebGLRenderer: Floating point depth texture requires WebGL2.'); + } + } // validation checks for WebGL 1 + + + if (texture.format === DepthFormat && glInternalFormat === _gl.DEPTH_COMPONENT) { + // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are + // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT + // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) + if (texture.type !== UnsignedShortType && texture.type !== UnsignedIntType) { + console.warn('THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.'); + texture.type = UnsignedShortType; + glType = utils.convert(texture.type); + } + } + + if (texture.format === DepthStencilFormat && glInternalFormat === _gl.DEPTH_COMPONENT) { + // Depth stencil textures need the DEPTH_STENCIL internal format + // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) + glInternalFormat = _gl.DEPTH_STENCIL; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are + // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL. + // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) + + if (texture.type !== UnsignedInt248Type) { + console.warn('THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.'); + texture.type = UnsignedInt248Type; + glType = utils.convert(texture.type); + } + } // + + + state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null); + } else if (texture.isDataTexture) { + // use manually created mipmaps if available + // if there are no manual mipmaps + // set 0 level mipmap and then use GL to generate other mipmap levels + if (mipmaps.length > 0 && supportsMips) { + for (let i = 0, il = mipmaps.length; i < il; i++) { + mipmap = mipmaps[i]; + state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data); + } + + texture.generateMipmaps = false; + textureProperties.__maxMipLevel = mipmaps.length - 1; + } else { + state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data); + textureProperties.__maxMipLevel = 0; + } + } else if (texture.isCompressedTexture) { + for (let i = 0, il = mipmaps.length; i < il; i++) { + mipmap = mipmaps[i]; + + if (texture.format !== RGBAFormat && texture.format !== RGBFormat) { + if (glFormat !== null) { + state.compressedTexImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data); + } else { + console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()'); + } + } else { + state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data); + } + } + + textureProperties.__maxMipLevel = mipmaps.length - 1; + } else if (texture.isDataTexture2DArray) { + state.texImage3D(_gl.TEXTURE_2D_ARRAY, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data); + textureProperties.__maxMipLevel = 0; + } else if (texture.isDataTexture3D) { + state.texImage3D(_gl.TEXTURE_3D, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data); + textureProperties.__maxMipLevel = 0; + } else { + // regular Texture (image, video, canvas) + // use manually created mipmaps if available + // if there are no manual mipmaps + // set 0 level mipmap and then use GL to generate other mipmap levels + if (mipmaps.length > 0 && supportsMips) { + for (let i = 0, il = mipmaps.length; i < il; i++) { + mipmap = mipmaps[i]; + state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, glFormat, glType, mipmap); + } + + texture.generateMipmaps = false; + textureProperties.__maxMipLevel = mipmaps.length - 1; + } else { + state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, glFormat, glType, image); + textureProperties.__maxMipLevel = 0; + } + } + + if (textureNeedsGenerateMipmaps(texture, supportsMips)) { + generateMipmap(textureType, texture, image.width, image.height); + } + + textureProperties.__version = texture.version; + if (texture.onUpdate) texture.onUpdate(texture); + } + + function uploadCubeTexture(textureProperties, texture, slot) { + if (texture.image.length !== 6) return; + initTexture(textureProperties, texture); + state.activeTexture(_gl.TEXTURE0 + slot); + state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture); + + _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY); + + _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha); + + _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment); + + _gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE); + + const isCompressed = texture && (texture.isCompressedTexture || texture.image[0].isCompressedTexture); + const isDataTexture = texture.image[0] && texture.image[0].isDataTexture; + const cubeImage = []; + + for (let i = 0; i < 6; i++) { + if (!isCompressed && !isDataTexture) { + cubeImage[i] = resizeImage(texture.image[i], false, true, maxCubemapSize); + } else { + cubeImage[i] = isDataTexture ? texture.image[i].image : texture.image[i]; + } + } + + const image = cubeImage[0], + supportsMips = isPowerOfTwo$1(image) || isWebGL2, + glFormat = utils.convert(texture.format), + glType = utils.convert(texture.type), + glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding); + setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips); + let mipmaps; + + if (isCompressed) { + for (let i = 0; i < 6; i++) { + mipmaps = cubeImage[i].mipmaps; + + for (let j = 0; j < mipmaps.length; j++) { + const mipmap = mipmaps[j]; + + if (texture.format !== RGBAFormat && texture.format !== RGBFormat) { + if (glFormat !== null) { + state.compressedTexImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data); + } else { + console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()'); + } + } else { + state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data); + } + } + } + + textureProperties.__maxMipLevel = mipmaps.length - 1; + } else { + mipmaps = texture.mipmaps; + + for (let i = 0; i < 6; i++) { + if (isDataTexture) { + state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, cubeImage[i].width, cubeImage[i].height, 0, glFormat, glType, cubeImage[i].data); + + for (let j = 0; j < mipmaps.length; j++) { + const mipmap = mipmaps[j]; + const mipmapImage = mipmap.image[i].image; + state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data); + } + } else { + state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, glFormat, glType, cubeImage[i]); + + for (let j = 0; j < mipmaps.length; j++) { + const mipmap = mipmaps[j]; + state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[i]); + } + } + } + + textureProperties.__maxMipLevel = mipmaps.length; + } + + if (textureNeedsGenerateMipmaps(texture, supportsMips)) { + // We assume images for cube map have the same size. + generateMipmap(_gl.TEXTURE_CUBE_MAP, texture, image.width, image.height); + } + + textureProperties.__version = texture.version; + if (texture.onUpdate) texture.onUpdate(texture); + } // Render targets + // Setup storage for target texture and bind it to correct framebuffer + + + function setupFrameBufferTexture(framebuffer, renderTarget, texture, attachment, textureTarget) { + const glFormat = utils.convert(texture.format); + const glType = utils.convert(texture.type); + const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding); + + if (textureTarget === _gl.TEXTURE_3D || textureTarget === _gl.TEXTURE_2D_ARRAY) { + state.texImage3D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, renderTarget.depth, 0, glFormat, glType, null); + } else { + state.texImage2D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null); + } + + state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); + + _gl.framebufferTexture2D(_gl.FRAMEBUFFER, attachment, textureTarget, properties.get(texture).__webglTexture, 0); + + state.bindFramebuffer(_gl.FRAMEBUFFER, null); + } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer + + + function setupRenderBufferStorage(renderbuffer, renderTarget, isMultisample) { + _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderbuffer); + + if (renderTarget.depthBuffer && !renderTarget.stencilBuffer) { + let glInternalFormat = _gl.DEPTH_COMPONENT16; + + if (isMultisample) { + const depthTexture = renderTarget.depthTexture; + + if (depthTexture && depthTexture.isDepthTexture) { + if (depthTexture.type === FloatType) { + glInternalFormat = _gl.DEPTH_COMPONENT32F; + } else if (depthTexture.type === UnsignedIntType) { + glInternalFormat = _gl.DEPTH_COMPONENT24; + } + } + + const samples = getRenderTargetSamples(renderTarget); + + _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); + } else { + _gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height); + } + + _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer); + } else if (renderTarget.depthBuffer && renderTarget.stencilBuffer) { + if (isMultisample) { + const samples = getRenderTargetSamples(renderTarget); + + _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, _gl.DEPTH24_STENCIL8, renderTarget.width, renderTarget.height); + } else { + _gl.renderbufferStorage(_gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height); + } + + _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer); + } else { + // Use the first texture for MRT so far + const texture = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture[0] : renderTarget.texture; + const glFormat = utils.convert(texture.format); + const glType = utils.convert(texture.type); + const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding); + + if (isMultisample) { + const samples = getRenderTargetSamples(renderTarget); + + _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); + } else { + _gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height); + } + } + + _gl.bindRenderbuffer(_gl.RENDERBUFFER, null); + } // Setup resources for a Depth Texture for a FBO (needs an extension) + + + function setupDepthTexture(framebuffer, renderTarget) { + const isCube = renderTarget && renderTarget.isWebGLCubeRenderTarget; + if (isCube) throw new Error('Depth Texture with cube render targets is not supported'); + state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); + + if (!(renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture)) { + throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture'); + } // upload an empty depth texture with framebuffer size + + + if (!properties.get(renderTarget.depthTexture).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height) { + renderTarget.depthTexture.image.width = renderTarget.width; + renderTarget.depthTexture.image.height = renderTarget.height; + renderTarget.depthTexture.needsUpdate = true; + } + + setTexture2D(renderTarget.depthTexture, 0); + + const webglDepthTexture = properties.get(renderTarget.depthTexture).__webglTexture; + + if (renderTarget.depthTexture.format === DepthFormat) { + _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0); + } else if (renderTarget.depthTexture.format === DepthStencilFormat) { + _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0); + } else { + throw new Error('Unknown depthTexture format'); + } + } // Setup GL resources for a non-texture depth buffer + + + function setupDepthRenderbuffer(renderTarget) { + const renderTargetProperties = properties.get(renderTarget); + const isCube = renderTarget.isWebGLCubeRenderTarget === true; + + if (renderTarget.depthTexture) { + if (isCube) throw new Error('target.depthTexture not supported in Cube render targets'); + setupDepthTexture(renderTargetProperties.__webglFramebuffer, renderTarget); + } else { + if (isCube) { + renderTargetProperties.__webglDepthbuffer = []; + + for (let i = 0; i < 6; i++) { + state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[i]); + renderTargetProperties.__webglDepthbuffer[i] = _gl.createRenderbuffer(); + setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer[i], renderTarget, false); + } + } else { + state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer); + renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); + setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer, renderTarget, false); + } + } + + state.bindFramebuffer(_gl.FRAMEBUFFER, null); + } // Set up GL resources for the render target + + + function setupRenderTarget(renderTarget) { + const texture = renderTarget.texture; + const renderTargetProperties = properties.get(renderTarget); + const textureProperties = properties.get(texture); + renderTarget.addEventListener('dispose', onRenderTargetDispose); + + if (renderTarget.isWebGLMultipleRenderTargets !== true) { + textureProperties.__webglTexture = _gl.createTexture(); + textureProperties.__version = texture.version; + info.memory.textures++; + } + + const isCube = renderTarget.isWebGLCubeRenderTarget === true; + const isMultipleRenderTargets = renderTarget.isWebGLMultipleRenderTargets === true; + const isMultisample = renderTarget.isWebGLMultisampleRenderTarget === true; + const isRenderTarget3D = texture.isDataTexture3D || texture.isDataTexture2DArray; + const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2; // Handles WebGL2 RGBFormat fallback - #18858 + + if (isWebGL2 && texture.format === RGBFormat && (texture.type === FloatType || texture.type === HalfFloatType)) { + texture.format = RGBAFormat; + console.warn('THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.'); + } // Setup framebuffer + + + if (isCube) { + renderTargetProperties.__webglFramebuffer = []; + + for (let i = 0; i < 6; i++) { + renderTargetProperties.__webglFramebuffer[i] = _gl.createFramebuffer(); + } + } else { + renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); + + if (isMultipleRenderTargets) { + if (capabilities.drawBuffers) { + const textures = renderTarget.texture; + + for (let i = 0, il = textures.length; i < il; i++) { + const attachmentProperties = properties.get(textures[i]); + + if (attachmentProperties.__webglTexture === undefined) { + attachmentProperties.__webglTexture = _gl.createTexture(); + info.memory.textures++; + } + } + } else { + console.warn('THREE.WebGLRenderer: WebGLMultipleRenderTargets can only be used with WebGL2 or WEBGL_draw_buffers extension.'); + } + } else if (isMultisample) { + if (isWebGL2) { + renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer(); + renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer(); + + _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer); + + const glFormat = utils.convert(texture.format); + const glType = utils.convert(texture.type); + const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding); + const samples = getRenderTargetSamples(renderTarget); + + _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); + + state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer); + + _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer); + + _gl.bindRenderbuffer(_gl.RENDERBUFFER, null); + + if (renderTarget.depthBuffer) { + renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer(); + setupRenderBufferStorage(renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true); + } + + state.bindFramebuffer(_gl.FRAMEBUFFER, null); + } else { + console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.'); + } + } + } // Setup color buffer + + + if (isCube) { + state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture); + setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips); + + for (let i = 0; i < 6; i++) { + setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer[i], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i); + } + + if (textureNeedsGenerateMipmaps(texture, supportsMips)) { + generateMipmap(_gl.TEXTURE_CUBE_MAP, texture, renderTarget.width, renderTarget.height); + } + + state.unbindTexture(); + } else if (isMultipleRenderTargets) { + const textures = renderTarget.texture; + + for (let i = 0, il = textures.length; i < il; i++) { + const attachment = textures[i]; + const attachmentProperties = properties.get(attachment); + state.bindTexture(_gl.TEXTURE_2D, attachmentProperties.__webglTexture); + setTextureParameters(_gl.TEXTURE_2D, attachment, supportsMips); + setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, attachment, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D); + + if (textureNeedsGenerateMipmaps(attachment, supportsMips)) { + generateMipmap(_gl.TEXTURE_2D, attachment, renderTarget.width, renderTarget.height); + } + } + + state.unbindTexture(); + } else { + let glTextureType = _gl.TEXTURE_2D; + + if (isRenderTarget3D) { + // Render targets containing layers, i.e: Texture 3D and 2d arrays + if (isWebGL2) { + const isTexture3D = texture.isDataTexture3D; + glTextureType = isTexture3D ? _gl.TEXTURE_3D : _gl.TEXTURE_2D_ARRAY; + } else { + console.warn('THREE.DataTexture3D and THREE.DataTexture2DArray only supported with WebGL2.'); + } + } + + state.bindTexture(glTextureType, textureProperties.__webglTexture); + setTextureParameters(glTextureType, texture, supportsMips); + setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType); + + if (textureNeedsGenerateMipmaps(texture, supportsMips)) { + generateMipmap(glTextureType, texture, renderTarget.width, renderTarget.height, renderTarget.depth); + } + + state.unbindTexture(); + } // Setup depth and stencil buffers + + + if (renderTarget.depthBuffer) { + setupDepthRenderbuffer(renderTarget); + } + } + + function updateRenderTargetMipmap(renderTarget) { + const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2; + const textures = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture : [renderTarget.texture]; + + for (let i = 0, il = textures.length; i < il; i++) { + const texture = textures[i]; + + if (textureNeedsGenerateMipmaps(texture, supportsMips)) { + const target = renderTarget.isWebGLCubeRenderTarget ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D; + + const webglTexture = properties.get(texture).__webglTexture; + + state.bindTexture(target, webglTexture); + generateMipmap(target, texture, renderTarget.width, renderTarget.height); + state.unbindTexture(); + } + } + } + + function updateMultisampleRenderTarget(renderTarget) { + if (renderTarget.isWebGLMultisampleRenderTarget) { + if (isWebGL2) { + const width = renderTarget.width; + const height = renderTarget.height; + let mask = _gl.COLOR_BUFFER_BIT; + if (renderTarget.depthBuffer) mask |= _gl.DEPTH_BUFFER_BIT; + if (renderTarget.stencilBuffer) mask |= _gl.STENCIL_BUFFER_BIT; + const renderTargetProperties = properties.get(renderTarget); + state.bindFramebuffer(_gl.READ_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer); + state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglFramebuffer); + + _gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, mask, _gl.NEAREST); + + state.bindFramebuffer(_gl.READ_FRAMEBUFFER, null); + state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer); + } else { + console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.'); + } + } + } + + function getRenderTargetSamples(renderTarget) { + return isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ? Math.min(maxSamples, renderTarget.samples) : 0; + } + + function updateVideoTexture(texture) { + const frame = info.render.frame; // Check the last frame we updated the VideoTexture + + if (_videoTextures.get(texture) !== frame) { + _videoTextures.set(texture, frame); + + texture.update(); + } + } // backwards compatibility + + + let warnedTexture2D = false; + let warnedTextureCube = false; + + function safeSetTexture2D(texture, slot) { + if (texture && texture.isWebGLRenderTarget) { + if (warnedTexture2D === false) { + console.warn('THREE.WebGLTextures.safeSetTexture2D: don\'t use render targets as textures. Use their .texture property instead.'); + warnedTexture2D = true; + } + + texture = texture.texture; + } + + setTexture2D(texture, slot); + } + + function safeSetTextureCube(texture, slot) { + if (texture && texture.isWebGLCubeRenderTarget) { + if (warnedTextureCube === false) { + console.warn('THREE.WebGLTextures.safeSetTextureCube: don\'t use cube render targets as textures. Use their .texture property instead.'); + warnedTextureCube = true; + } + + texture = texture.texture; + } + + setTextureCube(texture, slot); + } // + + + this.allocateTextureUnit = allocateTextureUnit; + this.resetTextureUnits = resetTextureUnits; + this.setTexture2D = setTexture2D; + this.setTexture2DArray = setTexture2DArray; + this.setTexture3D = setTexture3D; + this.setTextureCube = setTextureCube; + this.setupRenderTarget = setupRenderTarget; + this.updateRenderTargetMipmap = updateRenderTargetMipmap; + this.updateMultisampleRenderTarget = updateMultisampleRenderTarget; + this.safeSetTexture2D = safeSetTexture2D; + this.safeSetTextureCube = safeSetTextureCube; + } + + function WebGLUtils(gl, extensions, capabilities) { + const isWebGL2 = capabilities.isWebGL2; + + function convert(p) { + let extension; + if (p === UnsignedByteType) return gl.UNSIGNED_BYTE; + if (p === UnsignedShort4444Type) return gl.UNSIGNED_SHORT_4_4_4_4; + if (p === UnsignedShort5551Type) return gl.UNSIGNED_SHORT_5_5_5_1; + if (p === UnsignedShort565Type) return gl.UNSIGNED_SHORT_5_6_5; + if (p === ByteType) return gl.BYTE; + if (p === ShortType) return gl.SHORT; + if (p === UnsignedShortType) return gl.UNSIGNED_SHORT; + if (p === IntType) return gl.INT; + if (p === UnsignedIntType) return gl.UNSIGNED_INT; + if (p === FloatType) return gl.FLOAT; + + if (p === HalfFloatType) { + if (isWebGL2) return gl.HALF_FLOAT; + extension = extensions.get('OES_texture_half_float'); + + if (extension !== null) { + return extension.HALF_FLOAT_OES; + } else { + return null; + } + } + + if (p === AlphaFormat) return gl.ALPHA; + if (p === RGBFormat) return gl.RGB; + if (p === RGBAFormat) return gl.RGBA; + if (p === LuminanceFormat) return gl.LUMINANCE; + if (p === LuminanceAlphaFormat) return gl.LUMINANCE_ALPHA; + if (p === DepthFormat) return gl.DEPTH_COMPONENT; + if (p === DepthStencilFormat) return gl.DEPTH_STENCIL; + if (p === RedFormat) return gl.RED; // WebGL2 formats. + + if (p === RedIntegerFormat) return gl.RED_INTEGER; + if (p === RGFormat) return gl.RG; + if (p === RGIntegerFormat) return gl.RG_INTEGER; + if (p === RGBIntegerFormat) return gl.RGB_INTEGER; + if (p === RGBAIntegerFormat) return gl.RGBA_INTEGER; + + if (p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format) { + extension = extensions.get('WEBGL_compressed_texture_s3tc'); + + if (extension !== null) { + if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; + if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; + if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; + if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; + } else { + return null; + } + } + + if (p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format) { + extension = extensions.get('WEBGL_compressed_texture_pvrtc'); + + if (extension !== null) { + if (p === RGB_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; + if (p === RGB_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; + if (p === RGBA_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; + if (p === RGBA_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; + } else { + return null; + } + } + + if (p === RGB_ETC1_Format) { + extension = extensions.get('WEBGL_compressed_texture_etc1'); + + if (extension !== null) { + return extension.COMPRESSED_RGB_ETC1_WEBGL; + } else { + return null; + } + } + + if (p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format) { + extension = extensions.get('WEBGL_compressed_texture_etc'); + + if (extension !== null) { + if (p === RGB_ETC2_Format) return extension.COMPRESSED_RGB8_ETC2; + if (p === RGBA_ETC2_EAC_Format) return extension.COMPRESSED_RGBA8_ETC2_EAC; + } + } + + if (p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format || p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format || p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format || p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format || p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format || p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format) { + extension = extensions.get('WEBGL_compressed_texture_astc'); + + if (extension !== null) { + // TODO Complete? + return p; + } else { + return null; + } + } + + if (p === RGBA_BPTC_Format) { + extension = extensions.get('EXT_texture_compression_bptc'); + + if (extension !== null) { + // TODO Complete? + return p; + } else { + return null; + } + } + + if (p === UnsignedInt248Type) { + if (isWebGL2) return gl.UNSIGNED_INT_24_8; + extension = extensions.get('WEBGL_depth_texture'); + + if (extension !== null) { + return extension.UNSIGNED_INT_24_8_WEBGL; + } else { + return null; + } + } + } + + return { + convert: convert + }; + } + + class ArrayCamera extends PerspectiveCamera { + constructor(array = []) { + super(); + this.cameras = array; + } + + } + + ArrayCamera.prototype.isArrayCamera = true; + + class Group extends Object3D { + constructor() { + super(); + this.type = 'Group'; + } + + } + + Group.prototype.isGroup = true; + + const _moveEvent = { + type: 'move' + }; + + class WebXRController { + constructor() { + this._targetRay = null; + this._grip = null; + this._hand = null; + } + + getHandSpace() { + if (this._hand === null) { + this._hand = new Group(); + this._hand.matrixAutoUpdate = false; + this._hand.visible = false; + this._hand.joints = {}; + this._hand.inputState = { + pinching: false + }; + } + + return this._hand; + } + + getTargetRaySpace() { + if (this._targetRay === null) { + this._targetRay = new Group(); + this._targetRay.matrixAutoUpdate = false; + this._targetRay.visible = false; + this._targetRay.hasLinearVelocity = false; + this._targetRay.linearVelocity = new Vector3(); + this._targetRay.hasAngularVelocity = false; + this._targetRay.angularVelocity = new Vector3(); + } + + return this._targetRay; + } + + getGripSpace() { + if (this._grip === null) { + this._grip = new Group(); + this._grip.matrixAutoUpdate = false; + this._grip.visible = false; + this._grip.hasLinearVelocity = false; + this._grip.linearVelocity = new Vector3(); + this._grip.hasAngularVelocity = false; + this._grip.angularVelocity = new Vector3(); + } + + return this._grip; + } + + dispatchEvent(event) { + if (this._targetRay !== null) { + this._targetRay.dispatchEvent(event); + } + + if (this._grip !== null) { + this._grip.dispatchEvent(event); + } + + if (this._hand !== null) { + this._hand.dispatchEvent(event); + } + + return this; + } + + disconnect(inputSource) { + this.dispatchEvent({ + type: 'disconnected', + data: inputSource + }); + + if (this._targetRay !== null) { + this._targetRay.visible = false; + } + + if (this._grip !== null) { + this._grip.visible = false; + } + + if (this._hand !== null) { + this._hand.visible = false; + } + + return this; + } + + update(inputSource, frame, referenceSpace) { + let inputPose = null; + let gripPose = null; + let handPose = null; + const targetRay = this._targetRay; + const grip = this._grip; + const hand = this._hand; + + if (inputSource && frame.session.visibilityState !== 'visible-blurred') { + if (targetRay !== null) { + inputPose = frame.getPose(inputSource.targetRaySpace, referenceSpace); + + if (inputPose !== null) { + targetRay.matrix.fromArray(inputPose.transform.matrix); + targetRay.matrix.decompose(targetRay.position, targetRay.rotation, targetRay.scale); + + if (inputPose.linearVelocity) { + targetRay.hasLinearVelocity = true; + targetRay.linearVelocity.copy(inputPose.linearVelocity); + } else { + targetRay.hasLinearVelocity = false; + } + + if (inputPose.angularVelocity) { + targetRay.hasAngularVelocity = true; + targetRay.angularVelocity.copy(inputPose.angularVelocity); + } else { + targetRay.hasAngularVelocity = false; + } + + this.dispatchEvent(_moveEvent); + } + } + + if (hand && inputSource.hand) { + handPose = true; + + for (const inputjoint of inputSource.hand.values()) { + // Update the joints groups with the XRJoint poses + const jointPose = frame.getJointPose(inputjoint, referenceSpace); + + if (hand.joints[inputjoint.jointName] === undefined) { + // The transform of this joint will be updated with the joint pose on each frame + const joint = new Group(); + joint.matrixAutoUpdate = false; + joint.visible = false; + hand.joints[inputjoint.jointName] = joint; // ?? + + hand.add(joint); + } + + const joint = hand.joints[inputjoint.jointName]; + + if (jointPose !== null) { + joint.matrix.fromArray(jointPose.transform.matrix); + joint.matrix.decompose(joint.position, joint.rotation, joint.scale); + joint.jointRadius = jointPose.radius; + } + + joint.visible = jointPose !== null; + } // Custom events + // Check pinchz + + + const indexTip = hand.joints['index-finger-tip']; + const thumbTip = hand.joints['thumb-tip']; + const distance = indexTip.position.distanceTo(thumbTip.position); + const distanceToPinch = 0.02; + const threshold = 0.005; + + if (hand.inputState.pinching && distance > distanceToPinch + threshold) { + hand.inputState.pinching = false; + this.dispatchEvent({ + type: 'pinchend', + handedness: inputSource.handedness, + target: this + }); + } else if (!hand.inputState.pinching && distance <= distanceToPinch - threshold) { + hand.inputState.pinching = true; + this.dispatchEvent({ + type: 'pinchstart', + handedness: inputSource.handedness, + target: this + }); + } + } else { + if (grip !== null && inputSource.gripSpace) { + gripPose = frame.getPose(inputSource.gripSpace, referenceSpace); + + if (gripPose !== null) { + grip.matrix.fromArray(gripPose.transform.matrix); + grip.matrix.decompose(grip.position, grip.rotation, grip.scale); + + if (gripPose.linearVelocity) { + grip.hasLinearVelocity = true; + grip.linearVelocity.copy(gripPose.linearVelocity); + } else { + grip.hasLinearVelocity = false; + } + + if (gripPose.angularVelocity) { + grip.hasAngularVelocity = true; + grip.angularVelocity.copy(gripPose.angularVelocity); + } else { + grip.hasAngularVelocity = false; + } + } + } + } + } + + if (targetRay !== null) { + targetRay.visible = inputPose !== null; + } + + if (grip !== null) { + grip.visible = gripPose !== null; + } + + if (hand !== null) { + hand.visible = handPose !== null; + } + + return this; + } + + } + + class WebXRManager extends EventDispatcher { + constructor(renderer, gl) { + super(); + const scope = this; + const state = renderer.state; + let session = null; + let framebufferScaleFactor = 1.0; + let referenceSpace = null; + let referenceSpaceType = 'local-floor'; + let pose = null; + let glBinding = null; + let glFramebuffer = null; + let glProjLayer = null; + let glBaseLayer = null; + let isMultisample = false; + let glMultisampledFramebuffer = null; + let glColorRenderbuffer = null; + let glDepthRenderbuffer = null; + let xrFrame = null; + let depthStyle = null; + let clearStyle = null; + const msaartcSupported = renderer.extensions.has('EXT_multisampled_render_to_texture'); + let msaaExt = null; + const controllers = []; + const inputSourcesMap = new Map(); // + + const cameraL = new PerspectiveCamera(); + cameraL.layers.enable(1); + cameraL.viewport = new Vector4(); + const cameraR = new PerspectiveCamera(); + cameraR.layers.enable(2); + cameraR.viewport = new Vector4(); + const cameras = [cameraL, cameraR]; + const cameraVR = new ArrayCamera(); + cameraVR.layers.enable(1); + cameraVR.layers.enable(2); + let _currentDepthNear = null; + let _currentDepthFar = null; // + + this.cameraAutoUpdate = true; + this.enabled = false; + this.isPresenting = false; + + this.getController = function (index) { + let controller = controllers[index]; + + if (controller === undefined) { + controller = new WebXRController(); + controllers[index] = controller; + } + + return controller.getTargetRaySpace(); + }; + + this.getControllerGrip = function (index) { + let controller = controllers[index]; + + if (controller === undefined) { + controller = new WebXRController(); + controllers[index] = controller; + } + + return controller.getGripSpace(); + }; + + this.getHand = function (index) { + let controller = controllers[index]; + + if (controller === undefined) { + controller = new WebXRController(); + controllers[index] = controller; + } + + return controller.getHandSpace(); + }; // + + + function onSessionEvent(event) { + const controller = inputSourcesMap.get(event.inputSource); + + if (controller) { + controller.dispatchEvent({ + type: event.type, + data: event.inputSource + }); + } + } + + function onSessionEnd() { + inputSourcesMap.forEach(function (controller, inputSource) { + controller.disconnect(inputSource); + }); + inputSourcesMap.clear(); + _currentDepthNear = null; + _currentDepthFar = null; // restore framebuffer/rendering state + + state.bindXRFramebuffer(null); + renderer.setRenderTarget(renderer.getRenderTarget()); + if (glFramebuffer) gl.deleteFramebuffer(glFramebuffer); + if (glMultisampledFramebuffer) gl.deleteFramebuffer(glMultisampledFramebuffer); + if (glColorRenderbuffer) gl.deleteRenderbuffer(glColorRenderbuffer); + if (glDepthRenderbuffer) gl.deleteRenderbuffer(glDepthRenderbuffer); + glFramebuffer = null; + glMultisampledFramebuffer = null; + glColorRenderbuffer = null; + glDepthRenderbuffer = null; + glBaseLayer = null; + glProjLayer = null; + glBinding = null; + session = null; // + + animation.stop(); + scope.isPresenting = false; + scope.dispatchEvent({ + type: 'sessionend' + }); + } + + this.setFramebufferScaleFactor = function (value) { + framebufferScaleFactor = value; + + if (scope.isPresenting === true) { + console.warn('THREE.WebXRManager: Cannot change framebuffer scale while presenting.'); + } + }; + + this.setReferenceSpaceType = function (value) { + referenceSpaceType = value; + + if (scope.isPresenting === true) { + console.warn('THREE.WebXRManager: Cannot change reference space type while presenting.'); + } + }; + + this.getReferenceSpace = function () { + return referenceSpace; + }; + + this.getBaseLayer = function () { + return glProjLayer !== null ? glProjLayer : glBaseLayer; + }; + + this.getBinding = function () { + return glBinding; + }; + + this.getFrame = function () { + return xrFrame; + }; + + this.getSession = function () { + return session; + }; + + this.setSession = async function (value) { + session = value; + + if (session !== null) { + session.addEventListener('select', onSessionEvent); + session.addEventListener('selectstart', onSessionEvent); + session.addEventListener('selectend', onSessionEvent); + session.addEventListener('squeeze', onSessionEvent); + session.addEventListener('squeezestart', onSessionEvent); + session.addEventListener('squeezeend', onSessionEvent); + session.addEventListener('end', onSessionEnd); + session.addEventListener('inputsourceschange', onInputSourcesChange); + const attributes = gl.getContextAttributes(); + + if (attributes.xrCompatible !== true) { + await gl.makeXRCompatible(); + } + + if (session.renderState.layers === undefined) { + const layerInit = { + antialias: attributes.antialias, + alpha: attributes.alpha, + depth: attributes.depth, + stencil: attributes.stencil, + framebufferScaleFactor: framebufferScaleFactor + }; + glBaseLayer = new XRWebGLLayer(session, gl, layerInit); + session.updateRenderState({ + baseLayer: glBaseLayer + }); + } else if (gl instanceof WebGLRenderingContext) { + // Use old style webgl layer because we can't use MSAA + // WebGL2 support. + const layerInit = { + antialias: true, + alpha: attributes.alpha, + depth: attributes.depth, + stencil: attributes.stencil, + framebufferScaleFactor: framebufferScaleFactor + }; + glBaseLayer = new XRWebGLLayer(session, gl, layerInit); + session.updateRenderState({ + layers: [glBaseLayer] + }); + } else { + isMultisample = attributes.antialias; + let depthFormat = null; + + if (attributes.depth) { + clearStyle = gl.DEPTH_BUFFER_BIT; + if (attributes.stencil) clearStyle |= gl.STENCIL_BUFFER_BIT; + depthStyle = attributes.stencil ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT; + depthFormat = attributes.stencil ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT24; + } + + const projectionlayerInit = { + colorFormat: attributes.alpha ? gl.RGBA8 : gl.RGB8, + depthFormat: depthFormat, + scaleFactor: framebufferScaleFactor + }; + glBinding = new XRWebGLBinding(session, gl); + glProjLayer = glBinding.createProjectionLayer(projectionlayerInit); + glFramebuffer = gl.createFramebuffer(); + session.updateRenderState({ + layers: [glProjLayer] + }); + + if (isMultisample && msaartcSupported) { + msaaExt = renderer.extensions.get('EXT_multisampled_render_to_texture'); + } else if (isMultisample) { + glMultisampledFramebuffer = gl.createFramebuffer(); + glColorRenderbuffer = gl.createRenderbuffer(); + gl.bindRenderbuffer(gl.RENDERBUFFER, glColorRenderbuffer); + gl.renderbufferStorageMultisample(gl.RENDERBUFFER, 4, gl.RGBA8, glProjLayer.textureWidth, glProjLayer.textureHeight); + state.bindFramebuffer(gl.FRAMEBUFFER, glMultisampledFramebuffer); + gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.RENDERBUFFER, glColorRenderbuffer); + gl.bindRenderbuffer(gl.RENDERBUFFER, null); + + if (depthFormat !== null) { + glDepthRenderbuffer = gl.createRenderbuffer(); + gl.bindRenderbuffer(gl.RENDERBUFFER, glDepthRenderbuffer); + gl.renderbufferStorageMultisample(gl.RENDERBUFFER, 4, depthFormat, glProjLayer.textureWidth, glProjLayer.textureHeight); + gl.framebufferRenderbuffer(gl.FRAMEBUFFER, depthStyle, gl.RENDERBUFFER, glDepthRenderbuffer); + gl.bindRenderbuffer(gl.RENDERBUFFER, null); + } + + state.bindFramebuffer(gl.FRAMEBUFFER, null); + } + } + + referenceSpace = await session.requestReferenceSpace(referenceSpaceType); + animation.setContext(session); + animation.start(); + scope.isPresenting = true; + scope.dispatchEvent({ + type: 'sessionstart' + }); + } + }; + + function onInputSourcesChange(event) { + const inputSources = session.inputSources; // Assign inputSources to available controllers + + for (let i = 0; i < controllers.length; i++) { + inputSourcesMap.set(inputSources[i], controllers[i]); + } // Notify disconnected + + + for (let i = 0; i < event.removed.length; i++) { + const inputSource = event.removed[i]; + const controller = inputSourcesMap.get(inputSource); + + if (controller) { + controller.dispatchEvent({ + type: 'disconnected', + data: inputSource + }); + inputSourcesMap.delete(inputSource); + } + } // Notify connected + + + for (let i = 0; i < event.added.length; i++) { + const inputSource = event.added[i]; + const controller = inputSourcesMap.get(inputSource); + + if (controller) { + controller.dispatchEvent({ + type: 'connected', + data: inputSource + }); + } + } + } // + + + const cameraLPos = new Vector3(); + const cameraRPos = new Vector3(); + /** + * Assumes 2 cameras that are parallel and share an X-axis, and that + * the cameras' projection and world matrices have already been set. + * And that near and far planes are identical for both cameras. + * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765 + */ + + function setProjectionFromUnion(camera, cameraL, cameraR) { + cameraLPos.setFromMatrixPosition(cameraL.matrixWorld); + cameraRPos.setFromMatrixPosition(cameraR.matrixWorld); + const ipd = cameraLPos.distanceTo(cameraRPos); + const projL = cameraL.projectionMatrix.elements; + const projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and + // most likely identical top and bottom frustum extents. + // Use the left camera for these values. + + const near = projL[14] / (projL[10] - 1); + const far = projL[14] / (projL[10] + 1); + const topFov = (projL[9] + 1) / projL[5]; + const bottomFov = (projL[9] - 1) / projL[5]; + const leftFov = (projL[8] - 1) / projL[0]; + const rightFov = (projR[8] + 1) / projR[0]; + const left = near * leftFov; + const right = near * rightFov; // Calculate the new camera's position offset from the + // left camera. xOffset should be roughly half `ipd`. + + const zOffset = ipd / (-leftFov + rightFov); + const xOffset = zOffset * -leftFov; // TODO: Better way to apply this offset? + + cameraL.matrixWorld.decompose(camera.position, camera.quaternion, camera.scale); + camera.translateX(xOffset); + camera.translateZ(zOffset); + camera.matrixWorld.compose(camera.position, camera.quaternion, camera.scale); + camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); // Find the union of the frustum values of the cameras and scale + // the values so that the near plane's position does not change in world space, + // although must now be relative to the new union camera. + + const near2 = near + zOffset; + const far2 = far + zOffset; + const left2 = left - xOffset; + const right2 = right + (ipd - xOffset); + const top2 = topFov * far / far2 * near2; + const bottom2 = bottomFov * far / far2 * near2; + camera.projectionMatrix.makePerspective(left2, right2, top2, bottom2, near2, far2); + } + + function updateCamera(camera, parent) { + if (parent === null) { + camera.matrixWorld.copy(camera.matrix); + } else { + camera.matrixWorld.multiplyMatrices(parent.matrixWorld, camera.matrix); + } + + camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); + } + + this.updateCamera = function (camera) { + if (session === null) return; + cameraVR.near = cameraR.near = cameraL.near = camera.near; + cameraVR.far = cameraR.far = cameraL.far = camera.far; + + if (_currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far) { + // Note that the new renderState won't apply until the next frame. See #18320 + session.updateRenderState({ + depthNear: cameraVR.near, + depthFar: cameraVR.far + }); + _currentDepthNear = cameraVR.near; + _currentDepthFar = cameraVR.far; + } + + const parent = camera.parent; + const cameras = cameraVR.cameras; + updateCamera(cameraVR, parent); + + for (let i = 0; i < cameras.length; i++) { + updateCamera(cameras[i], parent); + } + + cameraVR.matrixWorld.decompose(cameraVR.position, cameraVR.quaternion, cameraVR.scale); // update user camera and its children + + camera.position.copy(cameraVR.position); + camera.quaternion.copy(cameraVR.quaternion); + camera.scale.copy(cameraVR.scale); + camera.matrix.copy(cameraVR.matrix); + camera.matrixWorld.copy(cameraVR.matrixWorld); + const children = camera.children; + + for (let i = 0, l = children.length; i < l; i++) { + children[i].updateMatrixWorld(true); + } // update projection matrix for proper view frustum culling + + + if (cameras.length === 2) { + setProjectionFromUnion(cameraVR, cameraL, cameraR); + } else { + // assume single camera setup (AR) + cameraVR.projectionMatrix.copy(cameraL.projectionMatrix); + } + }; + + this.getCamera = function () { + return cameraVR; + }; + + this.getFoveation = function () { + if (glProjLayer !== null) { + return glProjLayer.fixedFoveation; + } + + if (glBaseLayer !== null) { + return glBaseLayer.fixedFoveation; + } + + return undefined; + }; + + this.setFoveation = function (foveation) { + // 0 = no foveation = full resolution + // 1 = maximum foveation = the edges render at lower resolution + if (glProjLayer !== null) { + glProjLayer.fixedFoveation = foveation; + } + + if (glBaseLayer !== null && glBaseLayer.fixedFoveation !== undefined) { + glBaseLayer.fixedFoveation = foveation; + } + }; // Animation Loop + + + let onAnimationFrameCallback = null; + + function onAnimationFrame(time, frame) { + pose = frame.getViewerPose(referenceSpace); + xrFrame = frame; + + if (pose !== null) { + const views = pose.views; + + if (glBaseLayer !== null) { + state.bindXRFramebuffer(glBaseLayer.framebuffer); + } + + let cameraVRNeedsUpdate = false; // check if it's necessary to rebuild cameraVR's camera list + + if (views.length !== cameraVR.cameras.length) { + cameraVR.cameras.length = 0; + cameraVRNeedsUpdate = true; + } + + for (let i = 0; i < views.length; i++) { + const view = views[i]; + let viewport = null; + + if (glBaseLayer !== null) { + viewport = glBaseLayer.getViewport(view); + } else { + const glSubImage = glBinding.getViewSubImage(glProjLayer, view); + state.bindXRFramebuffer(glFramebuffer); + + if (isMultisample && msaartcSupported) { + if (glSubImage.depthStencilTexture !== undefined) { + msaaExt.framebufferTexture2DMultisampleEXT(gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, glSubImage.depthStencilTexture, 0, 4); + } + + msaaExt.framebufferTexture2DMultisampleEXT(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, glSubImage.colorTexture, 0, 4); + } else { + if (glSubImage.depthStencilTexture !== undefined) { + gl.framebufferTexture2D(gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, glSubImage.depthStencilTexture, 0); + } + + gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, glSubImage.colorTexture, 0); + } + + viewport = glSubImage.viewport; + } + + const camera = cameras[i]; + camera.matrix.fromArray(view.transform.matrix); + camera.projectionMatrix.fromArray(view.projectionMatrix); + camera.viewport.set(viewport.x, viewport.y, viewport.width, viewport.height); + + if (i === 0) { + cameraVR.matrix.copy(camera.matrix); + } + + if (cameraVRNeedsUpdate === true) { + cameraVR.cameras.push(camera); + } + } + + if (isMultisample && !msaartcSupported) { + state.bindXRFramebuffer(glMultisampledFramebuffer); + if (clearStyle !== null) gl.clear(clearStyle); + } + } // + + + const inputSources = session.inputSources; + + for (let i = 0; i < controllers.length; i++) { + const controller = controllers[i]; + const inputSource = inputSources[i]; + controller.update(inputSource, frame, referenceSpace); + } + + if (onAnimationFrameCallback) onAnimationFrameCallback(time, frame); + + if (isMultisample && !msaartcSupported) { + const width = glProjLayer.textureWidth; + const height = glProjLayer.textureHeight; + state.bindFramebuffer(gl.READ_FRAMEBUFFER, glMultisampledFramebuffer); + state.bindFramebuffer(gl.DRAW_FRAMEBUFFER, glFramebuffer); // Invalidate the depth here to avoid flush of the depth data to main memory. + + gl.invalidateFramebuffer(gl.READ_FRAMEBUFFER, [depthStyle]); + gl.invalidateFramebuffer(gl.DRAW_FRAMEBUFFER, [depthStyle]); + gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, gl.COLOR_BUFFER_BIT, gl.NEAREST); // Invalidate the MSAA buffer because it's not needed anymore. + + gl.invalidateFramebuffer(gl.READ_FRAMEBUFFER, [gl.COLOR_ATTACHMENT0]); + state.bindFramebuffer(gl.READ_FRAMEBUFFER, null); + state.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null); + state.bindFramebuffer(gl.FRAMEBUFFER, glMultisampledFramebuffer); + } + + xrFrame = null; + } + + const animation = new WebGLAnimation(); + animation.setAnimationLoop(onAnimationFrame); + + this.setAnimationLoop = function (callback) { + onAnimationFrameCallback = callback; + }; + + this.dispose = function () {}; + } + + } + + function WebGLMaterials(properties) { + function refreshFogUniforms(uniforms, fog) { + uniforms.fogColor.value.copy(fog.color); + + if (fog.isFog) { + uniforms.fogNear.value = fog.near; + uniforms.fogFar.value = fog.far; + } else if (fog.isFogExp2) { + uniforms.fogDensity.value = fog.density; + } + } + + function refreshMaterialUniforms(uniforms, material, pixelRatio, height, transmissionRenderTarget) { + if (material.isMeshBasicMaterial) { + refreshUniformsCommon(uniforms, material); + } else if (material.isMeshLambertMaterial) { + refreshUniformsCommon(uniforms, material); + refreshUniformsLambert(uniforms, material); + } else if (material.isMeshToonMaterial) { + refreshUniformsCommon(uniforms, material); + refreshUniformsToon(uniforms, material); + } else if (material.isMeshPhongMaterial) { + refreshUniformsCommon(uniforms, material); + refreshUniformsPhong(uniforms, material); + } else if (material.isMeshStandardMaterial) { + refreshUniformsCommon(uniforms, material); + + if (material.isMeshPhysicalMaterial) { + refreshUniformsPhysical(uniforms, material, transmissionRenderTarget); + } else { + refreshUniformsStandard(uniforms, material); + } + } else if (material.isMeshMatcapMaterial) { + refreshUniformsCommon(uniforms, material); + refreshUniformsMatcap(uniforms, material); + } else if (material.isMeshDepthMaterial) { + refreshUniformsCommon(uniforms, material); + refreshUniformsDepth(uniforms, material); + } else if (material.isMeshDistanceMaterial) { + refreshUniformsCommon(uniforms, material); + refreshUniformsDistance(uniforms, material); + } else if (material.isMeshNormalMaterial) { + refreshUniformsCommon(uniforms, material); + refreshUniformsNormal(uniforms, material); + } else if (material.isLineBasicMaterial) { + refreshUniformsLine(uniforms, material); + + if (material.isLineDashedMaterial) { + refreshUniformsDash(uniforms, material); + } + } else if (material.isPointsMaterial) { + refreshUniformsPoints(uniforms, material, pixelRatio, height); + } else if (material.isSpriteMaterial) { + refreshUniformsSprites(uniforms, material); + } else if (material.isShadowMaterial) { + uniforms.color.value.copy(material.color); + uniforms.opacity.value = material.opacity; + } else if (material.isShaderMaterial) { + material.uniformsNeedUpdate = false; // #15581 + } + } + + function refreshUniformsCommon(uniforms, material) { + uniforms.opacity.value = material.opacity; + + if (material.color) { + uniforms.diffuse.value.copy(material.color); + } + + if (material.emissive) { + uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity); + } + + if (material.map) { + uniforms.map.value = material.map; + } + + if (material.alphaMap) { + uniforms.alphaMap.value = material.alphaMap; + } + + if (material.specularMap) { + uniforms.specularMap.value = material.specularMap; + } + + if (material.alphaTest > 0) { + uniforms.alphaTest.value = material.alphaTest; + } + + const envMap = properties.get(material).envMap; + + if (envMap) { + uniforms.envMap.value = envMap; + uniforms.flipEnvMap.value = envMap.isCubeTexture && envMap.isRenderTargetTexture === false ? -1 : 1; + uniforms.reflectivity.value = material.reflectivity; + uniforms.ior.value = material.ior; + uniforms.refractionRatio.value = material.refractionRatio; + + const maxMipLevel = properties.get(envMap).__maxMipLevel; + + if (maxMipLevel !== undefined) { + uniforms.maxMipLevel.value = maxMipLevel; + } + } + + if (material.lightMap) { + uniforms.lightMap.value = material.lightMap; + uniforms.lightMapIntensity.value = material.lightMapIntensity; + } + + if (material.aoMap) { + uniforms.aoMap.value = material.aoMap; + uniforms.aoMapIntensity.value = material.aoMapIntensity; + } // uv repeat and offset setting priorities + // 1. color map + // 2. specular map + // 3. displacementMap map + // 4. normal map + // 5. bump map + // 6. roughnessMap map + // 7. metalnessMap map + // 8. alphaMap map + // 9. emissiveMap map + // 10. clearcoat map + // 11. clearcoat normal map + // 12. clearcoat roughnessMap map + // 13. specular intensity map + // 14. specular tint map + // 15. transmission map + // 16. thickness map + + + let uvScaleMap; + + if (material.map) { + uvScaleMap = material.map; + } else if (material.specularMap) { + uvScaleMap = material.specularMap; + } else if (material.displacementMap) { + uvScaleMap = material.displacementMap; + } else if (material.normalMap) { + uvScaleMap = material.normalMap; + } else if (material.bumpMap) { + uvScaleMap = material.bumpMap; + } else if (material.roughnessMap) { + uvScaleMap = material.roughnessMap; + } else if (material.metalnessMap) { + uvScaleMap = material.metalnessMap; + } else if (material.alphaMap) { + uvScaleMap = material.alphaMap; + } else if (material.emissiveMap) { + uvScaleMap = material.emissiveMap; + } else if (material.clearcoatMap) { + uvScaleMap = material.clearcoatMap; + } else if (material.clearcoatNormalMap) { + uvScaleMap = material.clearcoatNormalMap; + } else if (material.clearcoatRoughnessMap) { + uvScaleMap = material.clearcoatRoughnessMap; + } else if (material.specularIntensityMap) { + uvScaleMap = material.specularIntensityMap; + } else if (material.specularTintMap) { + uvScaleMap = material.specularTintMap; + } else if (material.transmissionMap) { + uvScaleMap = material.transmissionMap; + } else if (material.thicknessMap) { + uvScaleMap = material.thicknessMap; + } + + if (uvScaleMap !== undefined) { + // backwards compatibility + if (uvScaleMap.isWebGLRenderTarget) { + uvScaleMap = uvScaleMap.texture; + } + + if (uvScaleMap.matrixAutoUpdate === true) { + uvScaleMap.updateMatrix(); + } + + uniforms.uvTransform.value.copy(uvScaleMap.matrix); + } // uv repeat and offset setting priorities for uv2 + // 1. ao map + // 2. light map + + + let uv2ScaleMap; + + if (material.aoMap) { + uv2ScaleMap = material.aoMap; + } else if (material.lightMap) { + uv2ScaleMap = material.lightMap; + } + + if (uv2ScaleMap !== undefined) { + // backwards compatibility + if (uv2ScaleMap.isWebGLRenderTarget) { + uv2ScaleMap = uv2ScaleMap.texture; + } + + if (uv2ScaleMap.matrixAutoUpdate === true) { + uv2ScaleMap.updateMatrix(); + } + + uniforms.uv2Transform.value.copy(uv2ScaleMap.matrix); + } + } + + function refreshUniformsLine(uniforms, material) { + uniforms.diffuse.value.copy(material.color); + uniforms.opacity.value = material.opacity; + } + + function refreshUniformsDash(uniforms, material) { + uniforms.dashSize.value = material.dashSize; + uniforms.totalSize.value = material.dashSize + material.gapSize; + uniforms.scale.value = material.scale; + } + + function refreshUniformsPoints(uniforms, material, pixelRatio, height) { + uniforms.diffuse.value.copy(material.color); + uniforms.opacity.value = material.opacity; + uniforms.size.value = material.size * pixelRatio; + uniforms.scale.value = height * 0.5; + + if (material.map) { + uniforms.map.value = material.map; + } + + if (material.alphaMap) { + uniforms.alphaMap.value = material.alphaMap; + } + + if (material.alphaTest > 0) { + uniforms.alphaTest.value = material.alphaTest; + } // uv repeat and offset setting priorities + // 1. color map + // 2. alpha map + + + let uvScaleMap; + + if (material.map) { + uvScaleMap = material.map; + } else if (material.alphaMap) { + uvScaleMap = material.alphaMap; + } + + if (uvScaleMap !== undefined) { + if (uvScaleMap.matrixAutoUpdate === true) { + uvScaleMap.updateMatrix(); + } + + uniforms.uvTransform.value.copy(uvScaleMap.matrix); + } + } + + function refreshUniformsSprites(uniforms, material) { + uniforms.diffuse.value.copy(material.color); + uniforms.opacity.value = material.opacity; + uniforms.rotation.value = material.rotation; + + if (material.map) { + uniforms.map.value = material.map; + } + + if (material.alphaMap) { + uniforms.alphaMap.value = material.alphaMap; + } + + if (material.alphaTest > 0) { + uniforms.alphaTest.value = material.alphaTest; + } // uv repeat and offset setting priorities + // 1. color map + // 2. alpha map + + + let uvScaleMap; + + if (material.map) { + uvScaleMap = material.map; + } else if (material.alphaMap) { + uvScaleMap = material.alphaMap; + } + + if (uvScaleMap !== undefined) { + if (uvScaleMap.matrixAutoUpdate === true) { + uvScaleMap.updateMatrix(); + } + + uniforms.uvTransform.value.copy(uvScaleMap.matrix); + } + } + + function refreshUniformsLambert(uniforms, material) { + if (material.emissiveMap) { + uniforms.emissiveMap.value = material.emissiveMap; + } + } + + function refreshUniformsPhong(uniforms, material) { + uniforms.specular.value.copy(material.specular); + uniforms.shininess.value = Math.max(material.shininess, 1e-4); // to prevent pow( 0.0, 0.0 ) + + if (material.emissiveMap) { + uniforms.emissiveMap.value = material.emissiveMap; + } + + if (material.bumpMap) { + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if (material.side === BackSide) uniforms.bumpScale.value *= -1; + } + + if (material.normalMap) { + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy(material.normalScale); + if (material.side === BackSide) uniforms.normalScale.value.negate(); + } + + if (material.displacementMap) { + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + } + } + + function refreshUniformsToon(uniforms, material) { + if (material.gradientMap) { + uniforms.gradientMap.value = material.gradientMap; + } + + if (material.emissiveMap) { + uniforms.emissiveMap.value = material.emissiveMap; + } + + if (material.bumpMap) { + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if (material.side === BackSide) uniforms.bumpScale.value *= -1; + } + + if (material.normalMap) { + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy(material.normalScale); + if (material.side === BackSide) uniforms.normalScale.value.negate(); + } + + if (material.displacementMap) { + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + } + } + + function refreshUniformsStandard(uniforms, material) { + uniforms.roughness.value = material.roughness; + uniforms.metalness.value = material.metalness; + + if (material.roughnessMap) { + uniforms.roughnessMap.value = material.roughnessMap; + } + + if (material.metalnessMap) { + uniforms.metalnessMap.value = material.metalnessMap; + } + + if (material.emissiveMap) { + uniforms.emissiveMap.value = material.emissiveMap; + } + + if (material.bumpMap) { + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if (material.side === BackSide) uniforms.bumpScale.value *= -1; + } + + if (material.normalMap) { + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy(material.normalScale); + if (material.side === BackSide) uniforms.normalScale.value.negate(); + } + + if (material.displacementMap) { + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + } + + const envMap = properties.get(material).envMap; + + if (envMap) { + //uniforms.envMap.value = material.envMap; // part of uniforms common + uniforms.envMapIntensity.value = material.envMapIntensity; + } + } + + function refreshUniformsPhysical(uniforms, material, transmissionRenderTarget) { + refreshUniformsStandard(uniforms, material); + uniforms.ior.value = material.ior; // also part of uniforms common + + if (material.sheen > 0) { + uniforms.sheenTint.value.copy(material.sheenTint).multiplyScalar(material.sheen); + uniforms.sheenRoughness.value = material.sheenRoughness; + } + + if (material.clearcoat > 0) { + uniforms.clearcoat.value = material.clearcoat; + uniforms.clearcoatRoughness.value = material.clearcoatRoughness; + + if (material.clearcoatMap) { + uniforms.clearcoatMap.value = material.clearcoatMap; + } + + if (material.clearcoatRoughnessMap) { + uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap; + } + + if (material.clearcoatNormalMap) { + uniforms.clearcoatNormalScale.value.copy(material.clearcoatNormalScale); + uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap; + + if (material.side === BackSide) { + uniforms.clearcoatNormalScale.value.negate(); + } + } + } + + if (material.transmission > 0) { + uniforms.transmission.value = material.transmission; + uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture; + uniforms.transmissionSamplerSize.value.set(transmissionRenderTarget.width, transmissionRenderTarget.height); + + if (material.transmissionMap) { + uniforms.transmissionMap.value = material.transmissionMap; + } + + uniforms.thickness.value = material.thickness; + + if (material.thicknessMap) { + uniforms.thicknessMap.value = material.thicknessMap; + } + + uniforms.attenuationDistance.value = material.attenuationDistance; + uniforms.attenuationTint.value.copy(material.attenuationTint); + } + + uniforms.specularIntensity.value = material.specularIntensity; + uniforms.specularTint.value.copy(material.specularTint); + + if (material.specularIntensityMap) { + uniforms.specularIntensityMap.value = material.specularIntensityMap; + } + + if (material.specularTintMap) { + uniforms.specularTintMap.value = material.specularTintMap; + } + } + + function refreshUniformsMatcap(uniforms, material) { + if (material.matcap) { + uniforms.matcap.value = material.matcap; + } + + if (material.bumpMap) { + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if (material.side === BackSide) uniforms.bumpScale.value *= -1; + } + + if (material.normalMap) { + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy(material.normalScale); + if (material.side === BackSide) uniforms.normalScale.value.negate(); + } + + if (material.displacementMap) { + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + } + } + + function refreshUniformsDepth(uniforms, material) { + if (material.displacementMap) { + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + } + } + + function refreshUniformsDistance(uniforms, material) { + if (material.displacementMap) { + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + } + + uniforms.referencePosition.value.copy(material.referencePosition); + uniforms.nearDistance.value = material.nearDistance; + uniforms.farDistance.value = material.farDistance; + } + + function refreshUniformsNormal(uniforms, material) { + if (material.bumpMap) { + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if (material.side === BackSide) uniforms.bumpScale.value *= -1; + } + + if (material.normalMap) { + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy(material.normalScale); + if (material.side === BackSide) uniforms.normalScale.value.negate(); + } + + if (material.displacementMap) { + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + } + } + + return { + refreshFogUniforms: refreshFogUniforms, + refreshMaterialUniforms: refreshMaterialUniforms + }; + } + + function createCanvasElement() { + const canvas = createElementNS('canvas'); + canvas.style.display = 'block'; + return canvas; + } + + function WebGLRenderer(parameters = {}) { + const _canvas = parameters.canvas !== undefined ? parameters.canvas : createCanvasElement(), + _context = parameters.context !== undefined ? parameters.context : null, + _alpha = parameters.alpha !== undefined ? parameters.alpha : false, + _depth = parameters.depth !== undefined ? parameters.depth : true, + _stencil = parameters.stencil !== undefined ? parameters.stencil : true, + _antialias = parameters.antialias !== undefined ? parameters.antialias : false, + _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, + _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false, + _powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default', + _failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false; + + let currentRenderList = null; + let currentRenderState = null; // render() can be called from within a callback triggered by another render. + // We track this so that the nested render call gets its list and state isolated from the parent render call. + + const renderListStack = []; + const renderStateStack = []; // public properties + + this.domElement = _canvas; // Debug configuration container + + this.debug = { + /** + * Enables error checking and reporting when shader programs are being compiled + * @type {boolean} + */ + checkShaderErrors: true + }; // clearing + + this.autoClear = true; + this.autoClearColor = true; + this.autoClearDepth = true; + this.autoClearStencil = true; // scene graph + + this.sortObjects = true; // user-defined clipping + + this.clippingPlanes = []; + this.localClippingEnabled = false; // physically based shading + + this.gammaFactor = 2.0; // for backwards compatibility + + this.outputEncoding = LinearEncoding; // physical lights + + this.physicallyCorrectLights = false; // tone mapping + + this.toneMapping = NoToneMapping; + this.toneMappingExposure = 1.0; // internal properties + + const _this = this; + + let _isContextLost = false; // internal state cache + + let _currentActiveCubeFace = 0; + let _currentActiveMipmapLevel = 0; + let _currentRenderTarget = null; + + let _currentMaterialId = -1; + + let _currentCamera = null; + + const _currentViewport = new Vector4(); + + const _currentScissor = new Vector4(); + + let _currentScissorTest = null; // + + let _width = _canvas.width; + let _height = _canvas.height; + let _pixelRatio = 1; + let _opaqueSort = null; + let _transparentSort = null; + + const _viewport = new Vector4(0, 0, _width, _height); + + const _scissor = new Vector4(0, 0, _width, _height); + + let _scissorTest = false; // + + const _currentDrawBuffers = []; // frustum + + const _frustum = new Frustum(); // clipping + + + let _clippingEnabled = false; + let _localClippingEnabled = false; // transmission + + let _transmissionRenderTarget = null; // camera matrices cache + + const _projScreenMatrix = new Matrix4(); + + const _vector3 = new Vector3(); + + const _emptyScene = { + background: null, + fog: null, + environment: null, + overrideMaterial: null, + isScene: true + }; + + function getTargetPixelRatio() { + return _currentRenderTarget === null ? _pixelRatio : 1; + } // initialize + + + let _gl = _context; + + function getContext(contextNames, contextAttributes) { + for (let i = 0; i < contextNames.length; i++) { + const contextName = contextNames[i]; + + const context = _canvas.getContext(contextName, contextAttributes); + + if (context !== null) return context; + } + + return null; + } + + try { + const contextAttributes = { + alpha: _alpha, + depth: _depth, + stencil: _stencil, + antialias: _antialias, + premultipliedAlpha: _premultipliedAlpha, + preserveDrawingBuffer: _preserveDrawingBuffer, + powerPreference: _powerPreference, + failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat + }; // event listeners must be registered before WebGL context is created, see #12753 + + _canvas.addEventListener('webglcontextlost', onContextLost, false); + + _canvas.addEventListener('webglcontextrestored', onContextRestore, false); + + if (_gl === null) { + const contextNames = ['webgl2', 'webgl', 'experimental-webgl']; + + if (_this.isWebGL1Renderer === true) { + contextNames.shift(); + } + + _gl = getContext(contextNames, contextAttributes); + + if (_gl === null) { + if (getContext(contextNames)) { + throw new Error('Error creating WebGL context with your selected attributes.'); + } else { + throw new Error('Error creating WebGL context.'); + } + } + } // Some experimental-webgl implementations do not have getShaderPrecisionFormat + + + if (_gl.getShaderPrecisionFormat === undefined) { + _gl.getShaderPrecisionFormat = function () { + return { + 'rangeMin': 1, + 'rangeMax': 1, + 'precision': 1 + }; + }; + } + } catch (error) { + console.error('THREE.WebGLRenderer: ' + error.message); + throw error; + } + + let extensions, capabilities, state, info; + let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects; + let programCache, materials, renderLists, renderStates, clipping, shadowMap; + let background, morphtargets, bufferRenderer, indexedBufferRenderer; + let utils, bindingStates; + + function initGLContext() { + extensions = new WebGLExtensions(_gl); + capabilities = new WebGLCapabilities(_gl, extensions, parameters); + extensions.init(capabilities); + utils = new WebGLUtils(_gl, extensions, capabilities); + state = new WebGLState(_gl, extensions, capabilities); + _currentDrawBuffers[0] = _gl.BACK; + info = new WebGLInfo(_gl); + properties = new WebGLProperties(); + textures = new WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info); + cubemaps = new WebGLCubeMaps(_this); + cubeuvmaps = new WebGLCubeUVMaps(_this); + attributes = new WebGLAttributes(_gl, capabilities); + bindingStates = new WebGLBindingStates(_gl, extensions, attributes, capabilities); + geometries = new WebGLGeometries(_gl, attributes, info, bindingStates); + objects = new WebGLObjects(_gl, geometries, attributes, info); + morphtargets = new WebGLMorphtargets(_gl, capabilities, textures); + clipping = new WebGLClipping(properties); + programCache = new WebGLPrograms(_this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping); + materials = new WebGLMaterials(properties); + renderLists = new WebGLRenderLists(properties); + renderStates = new WebGLRenderStates(extensions, capabilities); + background = new WebGLBackground(_this, cubemaps, state, objects, _premultipliedAlpha); + shadowMap = new WebGLShadowMap(_this, objects, capabilities); + bufferRenderer = new WebGLBufferRenderer(_gl, extensions, info, capabilities); + indexedBufferRenderer = new WebGLIndexedBufferRenderer(_gl, extensions, info, capabilities); + info.programs = programCache.programs; + _this.capabilities = capabilities; + _this.extensions = extensions; + _this.properties = properties; + _this.renderLists = renderLists; + _this.shadowMap = shadowMap; + _this.state = state; + _this.info = info; + } + + initGLContext(); // xr + + const xr = new WebXRManager(_this, _gl); + this.xr = xr; // API + + this.getContext = function () { + return _gl; + }; + + this.getContextAttributes = function () { + return _gl.getContextAttributes(); + }; + + this.forceContextLoss = function () { + const extension = extensions.get('WEBGL_lose_context'); + if (extension) extension.loseContext(); + }; + + this.forceContextRestore = function () { + const extension = extensions.get('WEBGL_lose_context'); + if (extension) extension.restoreContext(); + }; + + this.getPixelRatio = function () { + return _pixelRatio; + }; + + this.setPixelRatio = function (value) { + if (value === undefined) return; + _pixelRatio = value; + this.setSize(_width, _height, false); + }; + + this.getSize = function (target) { + return target.set(_width, _height); + }; + + this.setSize = function (width, height, updateStyle) { + if (xr.isPresenting) { + console.warn('THREE.WebGLRenderer: Can\'t change size while VR device is presenting.'); + return; + } + + _width = width; + _height = height; + _canvas.width = Math.floor(width * _pixelRatio); + _canvas.height = Math.floor(height * _pixelRatio); + + if (updateStyle !== false) { + _canvas.style.width = width + 'px'; + _canvas.style.height = height + 'px'; + } + + this.setViewport(0, 0, width, height); + }; + + this.getDrawingBufferSize = function (target) { + return target.set(_width * _pixelRatio, _height * _pixelRatio).floor(); + }; + + this.setDrawingBufferSize = function (width, height, pixelRatio) { + _width = width; + _height = height; + _pixelRatio = pixelRatio; + _canvas.width = Math.floor(width * pixelRatio); + _canvas.height = Math.floor(height * pixelRatio); + this.setViewport(0, 0, width, height); + }; + + this.getCurrentViewport = function (target) { + return target.copy(_currentViewport); + }; + + this.getViewport = function (target) { + return target.copy(_viewport); + }; + + this.setViewport = function (x, y, width, height) { + if (x.isVector4) { + _viewport.set(x.x, x.y, x.z, x.w); + } else { + _viewport.set(x, y, width, height); + } + + state.viewport(_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor()); + }; + + this.getScissor = function (target) { + return target.copy(_scissor); + }; + + this.setScissor = function (x, y, width, height) { + if (x.isVector4) { + _scissor.set(x.x, x.y, x.z, x.w); + } else { + _scissor.set(x, y, width, height); + } + + state.scissor(_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor()); + }; + + this.getScissorTest = function () { + return _scissorTest; + }; + + this.setScissorTest = function (boolean) { + state.setScissorTest(_scissorTest = boolean); + }; + + this.setOpaqueSort = function (method) { + _opaqueSort = method; + }; + + this.setTransparentSort = function (method) { + _transparentSort = method; + }; // Clearing + + + this.getClearColor = function (target) { + return target.copy(background.getClearColor()); + }; + + this.setClearColor = function () { + background.setClearColor.apply(background, arguments); + }; + + this.getClearAlpha = function () { + return background.getClearAlpha(); + }; + + this.setClearAlpha = function () { + background.setClearAlpha.apply(background, arguments); + }; + + this.clear = function (color, depth, stencil) { + let bits = 0; + if (color === undefined || color) bits |= _gl.COLOR_BUFFER_BIT; + if (depth === undefined || depth) bits |= _gl.DEPTH_BUFFER_BIT; + if (stencil === undefined || stencil) bits |= _gl.STENCIL_BUFFER_BIT; + + _gl.clear(bits); + }; + + this.clearColor = function () { + this.clear(true, false, false); + }; + + this.clearDepth = function () { + this.clear(false, true, false); + }; + + this.clearStencil = function () { + this.clear(false, false, true); + }; // + + + this.dispose = function () { + _canvas.removeEventListener('webglcontextlost', onContextLost, false); + + _canvas.removeEventListener('webglcontextrestored', onContextRestore, false); + + renderLists.dispose(); + renderStates.dispose(); + properties.dispose(); + cubemaps.dispose(); + cubeuvmaps.dispose(); + objects.dispose(); + bindingStates.dispose(); + xr.dispose(); + xr.removeEventListener('sessionstart', onXRSessionStart); + xr.removeEventListener('sessionend', onXRSessionEnd); + + if (_transmissionRenderTarget) { + _transmissionRenderTarget.dispose(); + + _transmissionRenderTarget = null; + } + + animation.stop(); + }; // Events + + + function onContextLost(event) { + event.preventDefault(); + console.log('THREE.WebGLRenderer: Context Lost.'); + _isContextLost = true; + } + + function onContextRestore() { + console.log('THREE.WebGLRenderer: Context Restored.'); + _isContextLost = false; + const infoAutoReset = info.autoReset; + const shadowMapEnabled = shadowMap.enabled; + const shadowMapAutoUpdate = shadowMap.autoUpdate; + const shadowMapNeedsUpdate = shadowMap.needsUpdate; + const shadowMapType = shadowMap.type; + initGLContext(); + info.autoReset = infoAutoReset; + shadowMap.enabled = shadowMapEnabled; + shadowMap.autoUpdate = shadowMapAutoUpdate; + shadowMap.needsUpdate = shadowMapNeedsUpdate; + shadowMap.type = shadowMapType; + } + + function onMaterialDispose(event) { + const material = event.target; + material.removeEventListener('dispose', onMaterialDispose); + deallocateMaterial(material); + } // Buffer deallocation + + + function deallocateMaterial(material) { + releaseMaterialProgramReferences(material); + properties.remove(material); + } + + function releaseMaterialProgramReferences(material) { + const programs = properties.get(material).programs; + + if (programs !== undefined) { + programs.forEach(function (program) { + programCache.releaseProgram(program); + }); + } + } // Buffer rendering + + + function renderObjectImmediate(object, program) { + object.render(function (object) { + _this.renderBufferImmediate(object, program); + }); + } + + this.renderBufferImmediate = function (object, program) { + bindingStates.initAttributes(); + const buffers = properties.get(object); + if (object.hasPositions && !buffers.position) buffers.position = _gl.createBuffer(); + if (object.hasNormals && !buffers.normal) buffers.normal = _gl.createBuffer(); + if (object.hasUvs && !buffers.uv) buffers.uv = _gl.createBuffer(); + if (object.hasColors && !buffers.color) buffers.color = _gl.createBuffer(); + const programAttributes = program.getAttributes(); + + if (object.hasPositions) { + _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.position); + + _gl.bufferData(_gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW); + + bindingStates.enableAttribute(programAttributes.position.location); + + _gl.vertexAttribPointer(programAttributes.position.location, 3, _gl.FLOAT, false, 0, 0); + } + + if (object.hasNormals) { + _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.normal); + + _gl.bufferData(_gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW); + + bindingStates.enableAttribute(programAttributes.normal.location); + + _gl.vertexAttribPointer(programAttributes.normal.location, 3, _gl.FLOAT, false, 0, 0); + } + + if (object.hasUvs) { + _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.uv); + + _gl.bufferData(_gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW); + + bindingStates.enableAttribute(programAttributes.uv.location); + + _gl.vertexAttribPointer(programAttributes.uv.location, 2, _gl.FLOAT, false, 0, 0); + } + + if (object.hasColors) { + _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.color); + + _gl.bufferData(_gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW); + + bindingStates.enableAttribute(programAttributes.color.location); + + _gl.vertexAttribPointer(programAttributes.color.location, 3, _gl.FLOAT, false, 0, 0); + } + + bindingStates.disableUnusedAttributes(); + + _gl.drawArrays(_gl.TRIANGLES, 0, object.count); + + object.count = 0; + }; + + this.renderBufferDirect = function (camera, scene, geometry, material, object, group) { + if (scene === null) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null) + + const frontFaceCW = object.isMesh && object.matrixWorld.determinant() < 0; + const program = setProgram(camera, scene, material, object); + state.setMaterial(material, frontFaceCW); // + + let index = geometry.index; + const position = geometry.attributes.position; // + + if (index === null) { + if (position === undefined || position.count === 0) return; + } else if (index.count === 0) { + return; + } // + + + let rangeFactor = 1; + + if (material.wireframe === true) { + index = geometries.getWireframeAttribute(geometry); + rangeFactor = 2; + } + + if (geometry.morphAttributes.position !== undefined || geometry.morphAttributes.normal !== undefined) { + morphtargets.update(object, geometry, material, program); + } + + bindingStates.setup(object, material, program, geometry, index); + let attribute; + let renderer = bufferRenderer; + + if (index !== null) { + attribute = attributes.get(index); + renderer = indexedBufferRenderer; + renderer.setIndex(attribute); + } // + + + const dataCount = index !== null ? index.count : position.count; + const rangeStart = geometry.drawRange.start * rangeFactor; + const rangeCount = geometry.drawRange.count * rangeFactor; + const groupStart = group !== null ? group.start * rangeFactor : 0; + const groupCount = group !== null ? group.count * rangeFactor : Infinity; + const drawStart = Math.max(rangeStart, groupStart); + const drawEnd = Math.min(dataCount, rangeStart + rangeCount, groupStart + groupCount) - 1; + const drawCount = Math.max(0, drawEnd - drawStart + 1); + if (drawCount === 0) return; // + + if (object.isMesh) { + if (material.wireframe === true) { + state.setLineWidth(material.wireframeLinewidth * getTargetPixelRatio()); + renderer.setMode(_gl.LINES); + } else { + renderer.setMode(_gl.TRIANGLES); + } + } else if (object.isLine) { + let lineWidth = material.linewidth; + if (lineWidth === undefined) lineWidth = 1; // Not using Line*Material + + state.setLineWidth(lineWidth * getTargetPixelRatio()); + + if (object.isLineSegments) { + renderer.setMode(_gl.LINES); + } else if (object.isLineLoop) { + renderer.setMode(_gl.LINE_LOOP); + } else { + renderer.setMode(_gl.LINE_STRIP); + } + } else if (object.isPoints) { + renderer.setMode(_gl.POINTS); + } else if (object.isSprite) { + renderer.setMode(_gl.TRIANGLES); + } + + if (object.isInstancedMesh) { + renderer.renderInstances(drawStart, drawCount, object.count); + } else if (geometry.isInstancedBufferGeometry) { + const instanceCount = Math.min(geometry.instanceCount, geometry._maxInstanceCount); + renderer.renderInstances(drawStart, drawCount, instanceCount); + } else { + renderer.render(drawStart, drawCount); + } + }; // Compile + + + this.compile = function (scene, camera) { + currentRenderState = renderStates.get(scene); + currentRenderState.init(); + renderStateStack.push(currentRenderState); + scene.traverseVisible(function (object) { + if (object.isLight && object.layers.test(camera.layers)) { + currentRenderState.pushLight(object); + + if (object.castShadow) { + currentRenderState.pushShadow(object); + } + } + }); + currentRenderState.setupLights(_this.physicallyCorrectLights); + scene.traverse(function (object) { + const material = object.material; + + if (material) { + if (Array.isArray(material)) { + for (let i = 0; i < material.length; i++) { + const material2 = material[i]; + getProgram(material2, scene, object); + } + } else { + getProgram(material, scene, object); + } + } + }); + renderStateStack.pop(); + currentRenderState = null; + }; // Animation Loop + + + let onAnimationFrameCallback = null; + + function onAnimationFrame(time) { + if (onAnimationFrameCallback) onAnimationFrameCallback(time); + } + + function onXRSessionStart() { + animation.stop(); + } + + function onXRSessionEnd() { + animation.start(); + } + + const animation = new WebGLAnimation(); + animation.setAnimationLoop(onAnimationFrame); + if (typeof window !== 'undefined') animation.setContext(window); + + this.setAnimationLoop = function (callback) { + onAnimationFrameCallback = callback; + xr.setAnimationLoop(callback); + callback === null ? animation.stop() : animation.start(); + }; + + xr.addEventListener('sessionstart', onXRSessionStart); + xr.addEventListener('sessionend', onXRSessionEnd); // Rendering + + this.render = function (scene, camera) { + if (camera !== undefined && camera.isCamera !== true) { + console.error('THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.'); + return; + } + + if (_isContextLost === true) return; // update scene graph + + if (scene.autoUpdate === true) scene.updateMatrixWorld(); // update camera matrices and frustum + + if (camera.parent === null) camera.updateMatrixWorld(); + + if (xr.enabled === true && xr.isPresenting === true) { + if (xr.cameraAutoUpdate === true) xr.updateCamera(camera); + camera = xr.getCamera(); // use XR camera for rendering + } // + + + if (scene.isScene === true) scene.onBeforeRender(_this, scene, camera, _currentRenderTarget); + currentRenderState = renderStates.get(scene, renderStateStack.length); + currentRenderState.init(); + renderStateStack.push(currentRenderState); + + _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse); + + _frustum.setFromProjectionMatrix(_projScreenMatrix); + + _localClippingEnabled = this.localClippingEnabled; + _clippingEnabled = clipping.init(this.clippingPlanes, _localClippingEnabled, camera); + currentRenderList = renderLists.get(scene, renderListStack.length); + currentRenderList.init(); + renderListStack.push(currentRenderList); + projectObject(scene, camera, 0, _this.sortObjects); + currentRenderList.finish(); + + if (_this.sortObjects === true) { + currentRenderList.sort(_opaqueSort, _transparentSort); + } // + + + if (_clippingEnabled === true) clipping.beginShadows(); + const shadowsArray = currentRenderState.state.shadowsArray; + shadowMap.render(shadowsArray, scene, camera); + if (_clippingEnabled === true) clipping.endShadows(); // + + if (this.info.autoReset === true) this.info.reset(); // + + background.render(currentRenderList, scene); // render scene + + currentRenderState.setupLights(_this.physicallyCorrectLights); + + if (camera.isArrayCamera) { + const cameras = camera.cameras; + + for (let i = 0, l = cameras.length; i < l; i++) { + const camera2 = cameras[i]; + renderScene(currentRenderList, scene, camera2, camera2.viewport); + } + } else { + renderScene(currentRenderList, scene, camera); + } // + + + if (_currentRenderTarget !== null) { + // resolve multisample renderbuffers to a single-sample texture if necessary + textures.updateMultisampleRenderTarget(_currentRenderTarget); // Generate mipmap if we're using any kind of mipmap filtering + + textures.updateRenderTargetMipmap(_currentRenderTarget); + } // + + + if (scene.isScene === true) scene.onAfterRender(_this, scene, camera); // Ensure depth buffer writing is enabled so it can be cleared on next render + + state.buffers.depth.setTest(true); + state.buffers.depth.setMask(true); + state.buffers.color.setMask(true); + state.setPolygonOffset(false); // _gl.finish(); + + bindingStates.resetDefaultState(); + _currentMaterialId = -1; + _currentCamera = null; + renderStateStack.pop(); + + if (renderStateStack.length > 0) { + currentRenderState = renderStateStack[renderStateStack.length - 1]; + } else { + currentRenderState = null; + } + + renderListStack.pop(); + + if (renderListStack.length > 0) { + currentRenderList = renderListStack[renderListStack.length - 1]; + } else { + currentRenderList = null; + } + }; + + function projectObject(object, camera, groupOrder, sortObjects) { + if (object.visible === false) return; + const visible = object.layers.test(camera.layers); + + if (visible) { + if (object.isGroup) { + groupOrder = object.renderOrder; + } else if (object.isLOD) { + if (object.autoUpdate === true) object.update(camera); + } else if (object.isLight) { + currentRenderState.pushLight(object); + + if (object.castShadow) { + currentRenderState.pushShadow(object); + } + } else if (object.isSprite) { + if (!object.frustumCulled || _frustum.intersectsSprite(object)) { + if (sortObjects) { + _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix); + } + + const geometry = objects.update(object); + const material = object.material; + + if (material.visible) { + currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null); + } + } + } else if (object.isImmediateRenderObject) { + if (sortObjects) { + _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix); + } + + currentRenderList.push(object, null, object.material, groupOrder, _vector3.z, null); + } else if (object.isMesh || object.isLine || object.isPoints) { + if (object.isSkinnedMesh) { + // update skeleton only once in a frame + if (object.skeleton.frame !== info.render.frame) { + object.skeleton.update(); + object.skeleton.frame = info.render.frame; + } + } + + if (!object.frustumCulled || _frustum.intersectsObject(object)) { + if (sortObjects) { + _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix); + } + + const geometry = objects.update(object); + const material = object.material; + + if (Array.isArray(material)) { + const groups = geometry.groups; + + for (let i = 0, l = groups.length; i < l; i++) { + const group = groups[i]; + const groupMaterial = material[group.materialIndex]; + + if (groupMaterial && groupMaterial.visible) { + currentRenderList.push(object, geometry, groupMaterial, groupOrder, _vector3.z, group); + } + } + } else if (material.visible) { + currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null); + } + } + } + } + + const children = object.children; + + for (let i = 0, l = children.length; i < l; i++) { + projectObject(children[i], camera, groupOrder, sortObjects); + } + } + + function renderScene(currentRenderList, scene, camera, viewport) { + const opaqueObjects = currentRenderList.opaque; + const transmissiveObjects = currentRenderList.transmissive; + const transparentObjects = currentRenderList.transparent; + currentRenderState.setupLightsView(camera); + if (transmissiveObjects.length > 0) renderTransmissionPass(opaqueObjects, scene, camera); + if (viewport) state.viewport(_currentViewport.copy(viewport)); + if (opaqueObjects.length > 0) renderObjects(opaqueObjects, scene, camera); + if (transmissiveObjects.length > 0) renderObjects(transmissiveObjects, scene, camera); + if (transparentObjects.length > 0) renderObjects(transparentObjects, scene, camera); + } + + function renderTransmissionPass(opaqueObjects, scene, camera) { + if (_transmissionRenderTarget === null) { + const needsAntialias = _antialias === true && capabilities.isWebGL2 === true; + const renderTargetType = needsAntialias ? WebGLMultisampleRenderTarget : WebGLRenderTarget; + _transmissionRenderTarget = new renderTargetType(1024, 1024, { + generateMipmaps: true, + type: utils.convert(HalfFloatType) !== null ? HalfFloatType : UnsignedByteType, + minFilter: LinearMipmapLinearFilter, + magFilter: NearestFilter, + wrapS: ClampToEdgeWrapping, + wrapT: ClampToEdgeWrapping + }); + } + + const currentRenderTarget = _this.getRenderTarget(); + + _this.setRenderTarget(_transmissionRenderTarget); + + _this.clear(); // Turn off the features which can affect the frag color for opaque objects pass. + // Otherwise they are applied twice in opaque objects pass and transmission objects pass. + + + const currentToneMapping = _this.toneMapping; + _this.toneMapping = NoToneMapping; + renderObjects(opaqueObjects, scene, camera); + _this.toneMapping = currentToneMapping; + textures.updateMultisampleRenderTarget(_transmissionRenderTarget); + textures.updateRenderTargetMipmap(_transmissionRenderTarget); + + _this.setRenderTarget(currentRenderTarget); + } + + function renderObjects(renderList, scene, camera) { + const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; + + for (let i = 0, l = renderList.length; i < l; i++) { + const renderItem = renderList[i]; + const object = renderItem.object; + const geometry = renderItem.geometry; + const material = overrideMaterial === null ? renderItem.material : overrideMaterial; + const group = renderItem.group; + + if (object.layers.test(camera.layers)) { + renderObject(object, scene, camera, geometry, material, group); + } + } + } + + function renderObject(object, scene, camera, geometry, material, group) { + object.onBeforeRender(_this, scene, camera, geometry, material, group); + object.modelViewMatrix.multiplyMatrices(camera.matrixWorldInverse, object.matrixWorld); + object.normalMatrix.getNormalMatrix(object.modelViewMatrix); + material.onBeforeRender(_this, scene, camera, geometry, object, group); + + if (object.isImmediateRenderObject) { + const program = setProgram(camera, scene, material, object); + state.setMaterial(material); + bindingStates.reset(); + renderObjectImmediate(object, program); + } else { + if (material.transparent === true && material.side === DoubleSide) { + material.side = BackSide; + material.needsUpdate = true; + + _this.renderBufferDirect(camera, scene, geometry, material, object, group); + + material.side = FrontSide; + material.needsUpdate = true; + + _this.renderBufferDirect(camera, scene, geometry, material, object, group); + + material.side = DoubleSide; + } else { + _this.renderBufferDirect(camera, scene, geometry, material, object, group); + } + } + + object.onAfterRender(_this, scene, camera, geometry, material, group); + } + + function getProgram(material, scene, object) { + if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... + + const materialProperties = properties.get(material); + const lights = currentRenderState.state.lights; + const shadowsArray = currentRenderState.state.shadowsArray; + const lightsStateVersion = lights.state.version; + const parameters = programCache.getParameters(material, lights.state, shadowsArray, scene, object); + const programCacheKey = programCache.getProgramCacheKey(parameters); + let programs = materialProperties.programs; // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change + + materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null; + materialProperties.fog = scene.fog; + materialProperties.envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || materialProperties.environment); + + if (programs === undefined) { + // new material + material.addEventListener('dispose', onMaterialDispose); + programs = new Map(); + materialProperties.programs = programs; + } + + let program = programs.get(programCacheKey); + + if (program !== undefined) { + // early out if program and light state is identical + if (materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion) { + updateCommonMaterialProperties(material, parameters); + return program; + } + } else { + parameters.uniforms = programCache.getUniforms(material); + material.onBuild(parameters, _this); + material.onBeforeCompile(parameters, _this); + program = programCache.acquireProgram(parameters, programCacheKey); + programs.set(programCacheKey, program); + materialProperties.uniforms = parameters.uniforms; + } + + const uniforms = materialProperties.uniforms; + + if (!material.isShaderMaterial && !material.isRawShaderMaterial || material.clipping === true) { + uniforms.clippingPlanes = clipping.uniform; + } + + updateCommonMaterialProperties(material, parameters); // store the light setup it was created for + + materialProperties.needsLights = materialNeedsLights(material); + materialProperties.lightsStateVersion = lightsStateVersion; + + if (materialProperties.needsLights) { + // wire up the material to this renderer's lighting state + uniforms.ambientLightColor.value = lights.state.ambient; + uniforms.lightProbe.value = lights.state.probe; + uniforms.directionalLights.value = lights.state.directional; + uniforms.directionalLightShadows.value = lights.state.directionalShadow; + uniforms.spotLights.value = lights.state.spot; + uniforms.spotLightShadows.value = lights.state.spotShadow; + uniforms.rectAreaLights.value = lights.state.rectArea; + uniforms.ltc_1.value = lights.state.rectAreaLTC1; + uniforms.ltc_2.value = lights.state.rectAreaLTC2; + uniforms.pointLights.value = lights.state.point; + uniforms.pointLightShadows.value = lights.state.pointShadow; + uniforms.hemisphereLights.value = lights.state.hemi; + uniforms.directionalShadowMap.value = lights.state.directionalShadowMap; + uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix; + uniforms.spotShadowMap.value = lights.state.spotShadowMap; + uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix; + uniforms.pointShadowMap.value = lights.state.pointShadowMap; + uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms + } + + const progUniforms = program.getUniforms(); + const uniformsList = WebGLUniforms.seqWithValue(progUniforms.seq, uniforms); + materialProperties.currentProgram = program; + materialProperties.uniformsList = uniformsList; + return program; + } + + function updateCommonMaterialProperties(material, parameters) { + const materialProperties = properties.get(material); + materialProperties.outputEncoding = parameters.outputEncoding; + materialProperties.instancing = parameters.instancing; + materialProperties.skinning = parameters.skinning; + materialProperties.morphTargets = parameters.morphTargets; + materialProperties.morphNormals = parameters.morphNormals; + materialProperties.morphTargetsCount = parameters.morphTargetsCount; + materialProperties.numClippingPlanes = parameters.numClippingPlanes; + materialProperties.numIntersection = parameters.numClipIntersection; + materialProperties.vertexAlphas = parameters.vertexAlphas; + materialProperties.vertexTangents = parameters.vertexTangents; + } + + function setProgram(camera, scene, material, object) { + if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... + + textures.resetTextureUnits(); + const fog = scene.fog; + const environment = material.isMeshStandardMaterial ? scene.environment : null; + const encoding = _currentRenderTarget === null ? _this.outputEncoding : _currentRenderTarget.texture.encoding; + const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment); + const vertexAlphas = material.vertexColors === true && !!object.geometry && !!object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4; + const vertexTangents = !!material.normalMap && !!object.geometry && !!object.geometry.attributes.tangent; + const morphTargets = !!object.geometry && !!object.geometry.morphAttributes.position; + const morphNormals = !!object.geometry && !!object.geometry.morphAttributes.normal; + const morphTargetsCount = !!object.geometry && !!object.geometry.morphAttributes.position ? object.geometry.morphAttributes.position.length : 0; + const materialProperties = properties.get(material); + const lights = currentRenderState.state.lights; + + if (_clippingEnabled === true) { + if (_localClippingEnabled === true || camera !== _currentCamera) { + const useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup + // object instead of the material, once it becomes feasible + // (#8465, #8379) + + clipping.setState(material, camera, useCache); + } + } // + + + let needsProgramChange = false; + + if (material.version === materialProperties.__version) { + if (materialProperties.needsLights && materialProperties.lightsStateVersion !== lights.state.version) { + needsProgramChange = true; + } else if (materialProperties.outputEncoding !== encoding) { + needsProgramChange = true; + } else if (object.isInstancedMesh && materialProperties.instancing === false) { + needsProgramChange = true; + } else if (!object.isInstancedMesh && materialProperties.instancing === true) { + needsProgramChange = true; + } else if (object.isSkinnedMesh && materialProperties.skinning === false) { + needsProgramChange = true; + } else if (!object.isSkinnedMesh && materialProperties.skinning === true) { + needsProgramChange = true; + } else if (materialProperties.envMap !== envMap) { + needsProgramChange = true; + } else if (material.fog && materialProperties.fog !== fog) { + needsProgramChange = true; + } else if (materialProperties.numClippingPlanes !== undefined && (materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection)) { + needsProgramChange = true; + } else if (materialProperties.vertexAlphas !== vertexAlphas) { + needsProgramChange = true; + } else if (materialProperties.vertexTangents !== vertexTangents) { + needsProgramChange = true; + } else if (materialProperties.morphTargets !== morphTargets) { + needsProgramChange = true; + } else if (materialProperties.morphNormals !== morphNormals) { + needsProgramChange = true; + } else if (capabilities.isWebGL2 === true && materialProperties.morphTargetsCount !== morphTargetsCount) { + needsProgramChange = true; + } + } else { + needsProgramChange = true; + materialProperties.__version = material.version; + } // + + + let program = materialProperties.currentProgram; + + if (needsProgramChange === true) { + program = getProgram(material, scene, object); + } + + let refreshProgram = false; + let refreshMaterial = false; + let refreshLights = false; + const p_uniforms = program.getUniforms(), + m_uniforms = materialProperties.uniforms; + + if (state.useProgram(program.program)) { + refreshProgram = true; + refreshMaterial = true; + refreshLights = true; + } + + if (material.id !== _currentMaterialId) { + _currentMaterialId = material.id; + refreshMaterial = true; + } + + if (refreshProgram || _currentCamera !== camera) { + p_uniforms.setValue(_gl, 'projectionMatrix', camera.projectionMatrix); + + if (capabilities.logarithmicDepthBuffer) { + p_uniforms.setValue(_gl, 'logDepthBufFC', 2.0 / (Math.log(camera.far + 1.0) / Math.LN2)); + } + + if (_currentCamera !== camera) { + _currentCamera = camera; // lighting uniforms depend on the camera so enforce an update + // now, in case this material supports lights - or later, when + // the next material that does gets activated: + + refreshMaterial = true; // set to true on material change + + refreshLights = true; // remains set until update done + } // load material specific uniforms + // (shader material also gets them for the sake of genericity) + + + if (material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshStandardMaterial || material.envMap) { + const uCamPos = p_uniforms.map.cameraPosition; + + if (uCamPos !== undefined) { + uCamPos.setValue(_gl, _vector3.setFromMatrixPosition(camera.matrixWorld)); + } + } + + if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial) { + p_uniforms.setValue(_gl, 'isOrthographic', camera.isOrthographicCamera === true); + } + + if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.isShadowMaterial || object.isSkinnedMesh) { + p_uniforms.setValue(_gl, 'viewMatrix', camera.matrixWorldInverse); + } + } // skinning uniforms must be set even if material didn't change + // auto-setting of texture unit for bone texture must go before other textures + // otherwise textures used for skinning can take over texture units reserved for other material textures + + + if (object.isSkinnedMesh) { + p_uniforms.setOptional(_gl, object, 'bindMatrix'); + p_uniforms.setOptional(_gl, object, 'bindMatrixInverse'); + const skeleton = object.skeleton; + + if (skeleton) { + if (capabilities.floatVertexTextures) { + if (skeleton.boneTexture === null) skeleton.computeBoneTexture(); + p_uniforms.setValue(_gl, 'boneTexture', skeleton.boneTexture, textures); + p_uniforms.setValue(_gl, 'boneTextureSize', skeleton.boneTextureSize); + } else { + p_uniforms.setOptional(_gl, skeleton, 'boneMatrices'); + } + } + } + + if (refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow) { + materialProperties.receiveShadow = object.receiveShadow; + p_uniforms.setValue(_gl, 'receiveShadow', object.receiveShadow); + } + + if (refreshMaterial) { + p_uniforms.setValue(_gl, 'toneMappingExposure', _this.toneMappingExposure); + + if (materialProperties.needsLights) { + // the current material requires lighting info + // note: all lighting uniforms are always set correctly + // they simply reference the renderer's state for their + // values + // + // use the current material's .needsUpdate flags to set + // the GL state when required + markUniformsLightsNeedsUpdate(m_uniforms, refreshLights); + } // refresh uniforms common to several materials + + + if (fog && material.fog) { + materials.refreshFogUniforms(m_uniforms, fog); + } + + materials.refreshMaterialUniforms(m_uniforms, material, _pixelRatio, _height, _transmissionRenderTarget); + WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures); + } + + if (material.isShaderMaterial && material.uniformsNeedUpdate === true) { + WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures); + material.uniformsNeedUpdate = false; + } + + if (material.isSpriteMaterial) { + p_uniforms.setValue(_gl, 'center', object.center); + } // common matrices + + + p_uniforms.setValue(_gl, 'modelViewMatrix', object.modelViewMatrix); + p_uniforms.setValue(_gl, 'normalMatrix', object.normalMatrix); + p_uniforms.setValue(_gl, 'modelMatrix', object.matrixWorld); + return program; + } // If uniforms are marked as clean, they don't need to be loaded to the GPU. + + + function markUniformsLightsNeedsUpdate(uniforms, value) { + uniforms.ambientLightColor.needsUpdate = value; + uniforms.lightProbe.needsUpdate = value; + uniforms.directionalLights.needsUpdate = value; + uniforms.directionalLightShadows.needsUpdate = value; + uniforms.pointLights.needsUpdate = value; + uniforms.pointLightShadows.needsUpdate = value; + uniforms.spotLights.needsUpdate = value; + uniforms.spotLightShadows.needsUpdate = value; + uniforms.rectAreaLights.needsUpdate = value; + uniforms.hemisphereLights.needsUpdate = value; + } + + function materialNeedsLights(material) { + return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || material.isShaderMaterial && material.lights === true; + } + + this.getActiveCubeFace = function () { + return _currentActiveCubeFace; + }; + + this.getActiveMipmapLevel = function () { + return _currentActiveMipmapLevel; + }; + + this.getRenderTarget = function () { + return _currentRenderTarget; + }; + + this.setRenderTarget = function (renderTarget, activeCubeFace = 0, activeMipmapLevel = 0) { + _currentRenderTarget = renderTarget; + _currentActiveCubeFace = activeCubeFace; + _currentActiveMipmapLevel = activeMipmapLevel; + + if (renderTarget && properties.get(renderTarget).__webglFramebuffer === undefined) { + textures.setupRenderTarget(renderTarget); + } + + let framebuffer = null; + let isCube = false; + let isRenderTarget3D = false; + + if (renderTarget) { + const texture = renderTarget.texture; + + if (texture.isDataTexture3D || texture.isDataTexture2DArray) { + isRenderTarget3D = true; + } + + const __webglFramebuffer = properties.get(renderTarget).__webglFramebuffer; + + if (renderTarget.isWebGLCubeRenderTarget) { + framebuffer = __webglFramebuffer[activeCubeFace]; + isCube = true; + } else if (renderTarget.isWebGLMultisampleRenderTarget) { + framebuffer = properties.get(renderTarget).__webglMultisampledFramebuffer; + } else { + framebuffer = __webglFramebuffer; + } + + _currentViewport.copy(renderTarget.viewport); + + _currentScissor.copy(renderTarget.scissor); + + _currentScissorTest = renderTarget.scissorTest; + } else { + _currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor(); + + _currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor(); + + _currentScissorTest = _scissorTest; + } + + const framebufferBound = state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); + + if (framebufferBound && capabilities.drawBuffers) { + let needsUpdate = false; + + if (renderTarget) { + if (renderTarget.isWebGLMultipleRenderTargets) { + const textures = renderTarget.texture; + + if (_currentDrawBuffers.length !== textures.length || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) { + for (let i = 0, il = textures.length; i < il; i++) { + _currentDrawBuffers[i] = _gl.COLOR_ATTACHMENT0 + i; + } + + _currentDrawBuffers.length = textures.length; + needsUpdate = true; + } + } else { + if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) { + _currentDrawBuffers[0] = _gl.COLOR_ATTACHMENT0; + _currentDrawBuffers.length = 1; + needsUpdate = true; + } + } + } else { + if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.BACK) { + _currentDrawBuffers[0] = _gl.BACK; + _currentDrawBuffers.length = 1; + needsUpdate = true; + } + } + + if (needsUpdate) { + if (capabilities.isWebGL2) { + _gl.drawBuffers(_currentDrawBuffers); + } else { + extensions.get('WEBGL_draw_buffers').drawBuffersWEBGL(_currentDrawBuffers); + } + } + } + + state.viewport(_currentViewport); + state.scissor(_currentScissor); + state.setScissorTest(_currentScissorTest); + + if (isCube) { + const textureProperties = properties.get(renderTarget.texture); + + _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel); + } else if (isRenderTarget3D) { + const textureProperties = properties.get(renderTarget.texture); + const layer = activeCubeFace || 0; + + _gl.framebufferTextureLayer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureProperties.__webglTexture, activeMipmapLevel || 0, layer); + } + + _currentMaterialId = -1; // reset current material to ensure correct uniform bindings + }; + + this.readRenderTargetPixels = function (renderTarget, x, y, width, height, buffer, activeCubeFaceIndex) { + if (!(renderTarget && renderTarget.isWebGLRenderTarget)) { + console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.'); + return; + } + + let framebuffer = properties.get(renderTarget).__webglFramebuffer; + + if (renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined) { + framebuffer = framebuffer[activeCubeFaceIndex]; + } + + if (framebuffer) { + state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); + + try { + const texture = renderTarget.texture; + const textureFormat = texture.format; + const textureType = texture.type; + + if (textureFormat !== RGBAFormat && utils.convert(textureFormat) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_FORMAT)) { + console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.'); + return; + } + + const halfFloatSupportedByExt = textureType === HalfFloatType && (extensions.has('EXT_color_buffer_half_float') || capabilities.isWebGL2 && extensions.has('EXT_color_buffer_float')); + + if (textureType !== UnsignedByteType && utils.convert(textureType) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_TYPE) && // Edge and Chrome Mac < 52 (#9513) + !(textureType === FloatType && (capabilities.isWebGL2 || extensions.has('OES_texture_float') || extensions.has('WEBGL_color_buffer_float'))) && // Chrome Mac >= 52 and Firefox + !halfFloatSupportedByExt) { + console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.'); + return; + } + + if (_gl.checkFramebufferStatus(_gl.FRAMEBUFFER) === _gl.FRAMEBUFFER_COMPLETE) { + // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) + if (x >= 0 && x <= renderTarget.width - width && y >= 0 && y <= renderTarget.height - height) { + _gl.readPixels(x, y, width, height, utils.convert(textureFormat), utils.convert(textureType), buffer); + } + } else { + console.error('THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.'); + } + } finally { + // restore framebuffer of current render target if necessary + const framebuffer = _currentRenderTarget !== null ? properties.get(_currentRenderTarget).__webglFramebuffer : null; + state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); + } + } + }; + + this.copyFramebufferToTexture = function (position, texture, level = 0) { + const levelScale = Math.pow(2, -level); + const width = Math.floor(texture.image.width * levelScale); + const height = Math.floor(texture.image.height * levelScale); + let glFormat = utils.convert(texture.format); + + if (capabilities.isWebGL2) { + // Workaround for https://bugs.chromium.org/p/chromium/issues/detail?id=1120100 + // Not needed in Chrome 93+ + if (glFormat === _gl.RGB) glFormat = _gl.RGB8; + if (glFormat === _gl.RGBA) glFormat = _gl.RGBA8; + } + + textures.setTexture2D(texture, 0); + + _gl.copyTexImage2D(_gl.TEXTURE_2D, level, glFormat, position.x, position.y, width, height, 0); + + state.unbindTexture(); + }; + + this.copyTextureToTexture = function (position, srcTexture, dstTexture, level = 0) { + const width = srcTexture.image.width; + const height = srcTexture.image.height; + const glFormat = utils.convert(dstTexture.format); + const glType = utils.convert(dstTexture.type); + textures.setTexture2D(dstTexture, 0); // As another texture upload may have changed pixelStorei + // parameters, make sure they are correct for the dstTexture + + _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY); + + _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha); + + _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment); + + if (srcTexture.isDataTexture) { + _gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data); + } else { + if (srcTexture.isCompressedTexture) { + _gl.compressedTexSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, srcTexture.mipmaps[0].width, srcTexture.mipmaps[0].height, glFormat, srcTexture.mipmaps[0].data); + } else { + _gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, glFormat, glType, srcTexture.image); + } + } // Generate mipmaps only when copying level 0 + + + if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(_gl.TEXTURE_2D); + state.unbindTexture(); + }; + + this.copyTextureToTexture3D = function (sourceBox, position, srcTexture, dstTexture, level = 0) { + if (_this.isWebGL1Renderer) { + console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.'); + return; + } + + const width = sourceBox.max.x - sourceBox.min.x + 1; + const height = sourceBox.max.y - sourceBox.min.y + 1; + const depth = sourceBox.max.z - sourceBox.min.z + 1; + const glFormat = utils.convert(dstTexture.format); + const glType = utils.convert(dstTexture.type); + let glTarget; + + if (dstTexture.isDataTexture3D) { + textures.setTexture3D(dstTexture, 0); + glTarget = _gl.TEXTURE_3D; + } else if (dstTexture.isDataTexture2DArray) { + textures.setTexture2DArray(dstTexture, 0); + glTarget = _gl.TEXTURE_2D_ARRAY; + } else { + console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.'); + return; + } + + _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY); + + _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha); + + _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment); + + const unpackRowLen = _gl.getParameter(_gl.UNPACK_ROW_LENGTH); + + const unpackImageHeight = _gl.getParameter(_gl.UNPACK_IMAGE_HEIGHT); + + const unpackSkipPixels = _gl.getParameter(_gl.UNPACK_SKIP_PIXELS); + + const unpackSkipRows = _gl.getParameter(_gl.UNPACK_SKIP_ROWS); + + const unpackSkipImages = _gl.getParameter(_gl.UNPACK_SKIP_IMAGES); + + const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[0] : srcTexture.image; + + _gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, image.width); + + _gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, image.height); + + _gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, sourceBox.min.x); + + _gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, sourceBox.min.y); + + _gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, sourceBox.min.z); + + if (srcTexture.isDataTexture || srcTexture.isDataTexture3D) { + _gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image.data); + } else { + if (srcTexture.isCompressedTexture) { + console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: untested support for compressed srcTexture.'); + + _gl.compressedTexSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, image.data); + } else { + _gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image); + } + } + + _gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, unpackRowLen); + + _gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, unpackImageHeight); + + _gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, unpackSkipPixels); + + _gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, unpackSkipRows); + + _gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, unpackSkipImages); // Generate mipmaps only when copying level 0 + + + if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(glTarget); + state.unbindTexture(); + }; + + this.initTexture = function (texture) { + textures.setTexture2D(texture, 0); + state.unbindTexture(); + }; + + this.resetState = function () { + _currentActiveCubeFace = 0; + _currentActiveMipmapLevel = 0; + _currentRenderTarget = null; + state.reset(); + bindingStates.reset(); + }; + + if (typeof __THREE_DEVTOOLS__ !== 'undefined') { + __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', { + detail: this + })); // eslint-disable-line no-undef + + } + } + + class WebGL1Renderer extends WebGLRenderer {} + + WebGL1Renderer.prototype.isWebGL1Renderer = true; + + class FogExp2 { + constructor(color, density = 0.00025) { + this.name = ''; + this.color = new Color(color); + this.density = density; + } + + clone() { + return new FogExp2(this.color, this.density); + } + + toJSON() { + return { + type: 'FogExp2', + color: this.color.getHex(), + density: this.density + }; + } + + } + + FogExp2.prototype.isFogExp2 = true; + + class Fog { + constructor(color, near = 1, far = 1000) { + this.name = ''; + this.color = new Color(color); + this.near = near; + this.far = far; + } + + clone() { + return new Fog(this.color, this.near, this.far); + } + + toJSON() { + return { + type: 'Fog', + color: this.color.getHex(), + near: this.near, + far: this.far + }; + } + + } + + Fog.prototype.isFog = true; + + class Scene extends Object3D { + constructor() { + super(); + this.type = 'Scene'; + this.background = null; + this.environment = null; + this.fog = null; + this.overrideMaterial = null; + this.autoUpdate = true; // checked by the renderer + + if (typeof __THREE_DEVTOOLS__ !== 'undefined') { + __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', { + detail: this + })); // eslint-disable-line no-undef + + } + } + + copy(source, recursive) { + super.copy(source, recursive); + if (source.background !== null) this.background = source.background.clone(); + if (source.environment !== null) this.environment = source.environment.clone(); + if (source.fog !== null) this.fog = source.fog.clone(); + if (source.overrideMaterial !== null) this.overrideMaterial = source.overrideMaterial.clone(); + this.autoUpdate = source.autoUpdate; + this.matrixAutoUpdate = source.matrixAutoUpdate; + return this; + } + + toJSON(meta) { + const data = super.toJSON(meta); + if (this.fog !== null) data.object.fog = this.fog.toJSON(); + return data; + } + + } + + Scene.prototype.isScene = true; + + class InterleavedBuffer { + constructor(array, stride) { + this.array = array; + this.stride = stride; + this.count = array !== undefined ? array.length / stride : 0; + this.usage = StaticDrawUsage; + this.updateRange = { + offset: 0, + count: -1 + }; + this.version = 0; + this.uuid = generateUUID(); + } + + onUploadCallback() {} + + set needsUpdate(value) { + if (value === true) this.version++; + } + + setUsage(value) { + this.usage = value; + return this; + } + + copy(source) { + this.array = new source.array.constructor(source.array); + this.count = source.count; + this.stride = source.stride; + this.usage = source.usage; + return this; + } + + copyAt(index1, attribute, index2) { + index1 *= this.stride; + index2 *= attribute.stride; + + for (let i = 0, l = this.stride; i < l; i++) { + this.array[index1 + i] = attribute.array[index2 + i]; + } + + return this; + } + + set(value, offset = 0) { + this.array.set(value, offset); + return this; + } + + clone(data) { + if (data.arrayBuffers === undefined) { + data.arrayBuffers = {}; + } + + if (this.array.buffer._uuid === undefined) { + this.array.buffer._uuid = generateUUID(); + } + + if (data.arrayBuffers[this.array.buffer._uuid] === undefined) { + data.arrayBuffers[this.array.buffer._uuid] = this.array.slice(0).buffer; + } + + const array = new this.array.constructor(data.arrayBuffers[this.array.buffer._uuid]); + const ib = new this.constructor(array, this.stride); + ib.setUsage(this.usage); + return ib; + } + + onUpload(callback) { + this.onUploadCallback = callback; + return this; + } + + toJSON(data) { + if (data.arrayBuffers === undefined) { + data.arrayBuffers = {}; + } // generate UUID for array buffer if necessary + + + if (this.array.buffer._uuid === undefined) { + this.array.buffer._uuid = generateUUID(); + } + + if (data.arrayBuffers[this.array.buffer._uuid] === undefined) { + data.arrayBuffers[this.array.buffer._uuid] = Array.prototype.slice.call(new Uint32Array(this.array.buffer)); + } // + + + return { + uuid: this.uuid, + buffer: this.array.buffer._uuid, + type: this.array.constructor.name, + stride: this.stride + }; + } + + } + + InterleavedBuffer.prototype.isInterleavedBuffer = true; + + const _vector$6 = /*@__PURE__*/new Vector3(); + + class InterleavedBufferAttribute { + constructor(interleavedBuffer, itemSize, offset, normalized = false) { + this.name = ''; + this.data = interleavedBuffer; + this.itemSize = itemSize; + this.offset = offset; + this.normalized = normalized === true; + } + + get count() { + return this.data.count; + } + + get array() { + return this.data.array; + } + + set needsUpdate(value) { + this.data.needsUpdate = value; + } + + applyMatrix4(m) { + for (let i = 0, l = this.data.count; i < l; i++) { + _vector$6.x = this.getX(i); + _vector$6.y = this.getY(i); + _vector$6.z = this.getZ(i); + + _vector$6.applyMatrix4(m); + + this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z); + } + + return this; + } + + applyNormalMatrix(m) { + for (let i = 0, l = this.count; i < l; i++) { + _vector$6.x = this.getX(i); + _vector$6.y = this.getY(i); + _vector$6.z = this.getZ(i); + + _vector$6.applyNormalMatrix(m); + + this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z); + } + + return this; + } + + transformDirection(m) { + for (let i = 0, l = this.count; i < l; i++) { + _vector$6.x = this.getX(i); + _vector$6.y = this.getY(i); + _vector$6.z = this.getZ(i); + + _vector$6.transformDirection(m); + + this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z); + } + + return this; + } + + setX(index, x) { + this.data.array[index * this.data.stride + this.offset] = x; + return this; + } + + setY(index, y) { + this.data.array[index * this.data.stride + this.offset + 1] = y; + return this; + } + + setZ(index, z) { + this.data.array[index * this.data.stride + this.offset + 2] = z; + return this; + } + + setW(index, w) { + this.data.array[index * this.data.stride + this.offset + 3] = w; + return this; + } + + getX(index) { + return this.data.array[index * this.data.stride + this.offset]; + } + + getY(index) { + return this.data.array[index * this.data.stride + this.offset + 1]; + } + + getZ(index) { + return this.data.array[index * this.data.stride + this.offset + 2]; + } + + getW(index) { + return this.data.array[index * this.data.stride + this.offset + 3]; + } + + setXY(index, x, y) { + index = index * this.data.stride + this.offset; + this.data.array[index + 0] = x; + this.data.array[index + 1] = y; + return this; + } + + setXYZ(index, x, y, z) { + index = index * this.data.stride + this.offset; + this.data.array[index + 0] = x; + this.data.array[index + 1] = y; + this.data.array[index + 2] = z; + return this; + } + + setXYZW(index, x, y, z, w) { + index = index * this.data.stride + this.offset; + this.data.array[index + 0] = x; + this.data.array[index + 1] = y; + this.data.array[index + 2] = z; + this.data.array[index + 3] = w; + return this; + } + + clone(data) { + if (data === undefined) { + console.log('THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.'); + const array = []; + + for (let i = 0; i < this.count; i++) { + const index = i * this.data.stride + this.offset; + + for (let j = 0; j < this.itemSize; j++) { + array.push(this.data.array[index + j]); + } + } + + return new BufferAttribute(new this.array.constructor(array), this.itemSize, this.normalized); + } else { + if (data.interleavedBuffers === undefined) { + data.interleavedBuffers = {}; + } + + if (data.interleavedBuffers[this.data.uuid] === undefined) { + data.interleavedBuffers[this.data.uuid] = this.data.clone(data); + } + + return new InterleavedBufferAttribute(data.interleavedBuffers[this.data.uuid], this.itemSize, this.offset, this.normalized); + } + } + + toJSON(data) { + if (data === undefined) { + console.log('THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.'); + const array = []; + + for (let i = 0; i < this.count; i++) { + const index = i * this.data.stride + this.offset; + + for (let j = 0; j < this.itemSize; j++) { + array.push(this.data.array[index + j]); + } + } // deinterleave data and save it as an ordinary buffer attribute for now + + + return { + itemSize: this.itemSize, + type: this.array.constructor.name, + array: array, + normalized: this.normalized + }; + } else { + // save as true interlaved attribtue + if (data.interleavedBuffers === undefined) { + data.interleavedBuffers = {}; + } + + if (data.interleavedBuffers[this.data.uuid] === undefined) { + data.interleavedBuffers[this.data.uuid] = this.data.toJSON(data); + } + + return { + isInterleavedBufferAttribute: true, + itemSize: this.itemSize, + data: this.data.uuid, + offset: this.offset, + normalized: this.normalized + }; + } + } + + } + + InterleavedBufferAttribute.prototype.isInterleavedBufferAttribute = true; + + /** + * parameters = { + * color: , + * map: new THREE.Texture( ), + * alphaMap: new THREE.Texture( ), + * rotation: , + * sizeAttenuation: + * } + */ + + class SpriteMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'SpriteMaterial'; + this.color = new Color(0xffffff); + this.map = null; + this.alphaMap = null; + this.rotation = 0; + this.sizeAttenuation = true; + this.transparent = true; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.map = source.map; + this.alphaMap = source.alphaMap; + this.rotation = source.rotation; + this.sizeAttenuation = source.sizeAttenuation; + return this; + } + + } + + SpriteMaterial.prototype.isSpriteMaterial = true; + + let _geometry; + + const _intersectPoint = /*@__PURE__*/new Vector3(); + + const _worldScale = /*@__PURE__*/new Vector3(); + + const _mvPosition = /*@__PURE__*/new Vector3(); + + const _alignedPosition = /*@__PURE__*/new Vector2(); + + const _rotatedPosition = /*@__PURE__*/new Vector2(); + + const _viewWorldMatrix = /*@__PURE__*/new Matrix4(); + + const _vA = /*@__PURE__*/new Vector3(); + + const _vB = /*@__PURE__*/new Vector3(); + + const _vC = /*@__PURE__*/new Vector3(); + + const _uvA = /*@__PURE__*/new Vector2(); + + const _uvB = /*@__PURE__*/new Vector2(); + + const _uvC = /*@__PURE__*/new Vector2(); + + class Sprite extends Object3D { + constructor(material) { + super(); + this.type = 'Sprite'; + + if (_geometry === undefined) { + _geometry = new BufferGeometry(); + const float32Array = new Float32Array([-0.5, -0.5, 0, 0, 0, 0.5, -0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, -0.5, 0.5, 0, 0, 1]); + const interleavedBuffer = new InterleavedBuffer(float32Array, 5); + + _geometry.setIndex([0, 1, 2, 0, 2, 3]); + + _geometry.setAttribute('position', new InterleavedBufferAttribute(interleavedBuffer, 3, 0, false)); + + _geometry.setAttribute('uv', new InterleavedBufferAttribute(interleavedBuffer, 2, 3, false)); + } + + this.geometry = _geometry; + this.material = material !== undefined ? material : new SpriteMaterial(); + this.center = new Vector2(0.5, 0.5); + } + + raycast(raycaster, intersects) { + if (raycaster.camera === null) { + console.error('THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.'); + } + + _worldScale.setFromMatrixScale(this.matrixWorld); + + _viewWorldMatrix.copy(raycaster.camera.matrixWorld); + + this.modelViewMatrix.multiplyMatrices(raycaster.camera.matrixWorldInverse, this.matrixWorld); + + _mvPosition.setFromMatrixPosition(this.modelViewMatrix); + + if (raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false) { + _worldScale.multiplyScalar(-_mvPosition.z); + } + + const rotation = this.material.rotation; + let sin, cos; + + if (rotation !== 0) { + cos = Math.cos(rotation); + sin = Math.sin(rotation); + } + + const center = this.center; + transformVertex(_vA.set(-0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos); + transformVertex(_vB.set(0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos); + transformVertex(_vC.set(0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos); + + _uvA.set(0, 0); + + _uvB.set(1, 0); + + _uvC.set(1, 1); // check first triangle + + + let intersect = raycaster.ray.intersectTriangle(_vA, _vB, _vC, false, _intersectPoint); + + if (intersect === null) { + // check second triangle + transformVertex(_vB.set(-0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos); + + _uvB.set(0, 1); + + intersect = raycaster.ray.intersectTriangle(_vA, _vC, _vB, false, _intersectPoint); + + if (intersect === null) { + return; + } + } + + const distance = raycaster.ray.origin.distanceTo(_intersectPoint); + if (distance < raycaster.near || distance > raycaster.far) return; + intersects.push({ + distance: distance, + point: _intersectPoint.clone(), + uv: Triangle.getUV(_intersectPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2()), + face: null, + object: this + }); + } + + copy(source) { + super.copy(source); + if (source.center !== undefined) this.center.copy(source.center); + this.material = source.material; + return this; + } + + } + + Sprite.prototype.isSprite = true; + + function transformVertex(vertexPosition, mvPosition, center, scale, sin, cos) { + // compute position in camera space + _alignedPosition.subVectors(vertexPosition, center).addScalar(0.5).multiply(scale); // to check if rotation is not zero + + + if (sin !== undefined) { + _rotatedPosition.x = cos * _alignedPosition.x - sin * _alignedPosition.y; + _rotatedPosition.y = sin * _alignedPosition.x + cos * _alignedPosition.y; + } else { + _rotatedPosition.copy(_alignedPosition); + } + + vertexPosition.copy(mvPosition); + vertexPosition.x += _rotatedPosition.x; + vertexPosition.y += _rotatedPosition.y; // transform to world space + + vertexPosition.applyMatrix4(_viewWorldMatrix); + } + + const _v1$2 = /*@__PURE__*/new Vector3(); + + const _v2$1 = /*@__PURE__*/new Vector3(); + + class LOD extends Object3D { + constructor() { + super(); + this._currentLevel = 0; + this.type = 'LOD'; + Object.defineProperties(this, { + levels: { + enumerable: true, + value: [] + }, + isLOD: { + value: true + } + }); + this.autoUpdate = true; + } + + copy(source) { + super.copy(source, false); + const levels = source.levels; + + for (let i = 0, l = levels.length; i < l; i++) { + const level = levels[i]; + this.addLevel(level.object.clone(), level.distance); + } + + this.autoUpdate = source.autoUpdate; + return this; + } + + addLevel(object, distance = 0) { + distance = Math.abs(distance); + const levels = this.levels; + let l; + + for (l = 0; l < levels.length; l++) { + if (distance < levels[l].distance) { + break; + } + } + + levels.splice(l, 0, { + distance: distance, + object: object + }); + this.add(object); + return this; + } + + getCurrentLevel() { + return this._currentLevel; + } + + getObjectForDistance(distance) { + const levels = this.levels; + + if (levels.length > 0) { + let i, l; + + for (i = 1, l = levels.length; i < l; i++) { + if (distance < levels[i].distance) { + break; + } + } + + return levels[i - 1].object; + } + + return null; + } + + raycast(raycaster, intersects) { + const levels = this.levels; + + if (levels.length > 0) { + _v1$2.setFromMatrixPosition(this.matrixWorld); + + const distance = raycaster.ray.origin.distanceTo(_v1$2); + this.getObjectForDistance(distance).raycast(raycaster, intersects); + } + } + + update(camera) { + const levels = this.levels; + + if (levels.length > 1) { + _v1$2.setFromMatrixPosition(camera.matrixWorld); + + _v2$1.setFromMatrixPosition(this.matrixWorld); + + const distance = _v1$2.distanceTo(_v2$1) / camera.zoom; + levels[0].object.visible = true; + let i, l; + + for (i = 1, l = levels.length; i < l; i++) { + if (distance >= levels[i].distance) { + levels[i - 1].object.visible = false; + levels[i].object.visible = true; + } else { + break; + } + } + + this._currentLevel = i - 1; + + for (; i < l; i++) { + levels[i].object.visible = false; + } + } + } + + toJSON(meta) { + const data = super.toJSON(meta); + if (this.autoUpdate === false) data.object.autoUpdate = false; + data.object.levels = []; + const levels = this.levels; + + for (let i = 0, l = levels.length; i < l; i++) { + const level = levels[i]; + data.object.levels.push({ + object: level.object.uuid, + distance: level.distance + }); + } + + return data; + } + + } + + const _basePosition = /*@__PURE__*/new Vector3(); + + const _skinIndex = /*@__PURE__*/new Vector4(); + + const _skinWeight = /*@__PURE__*/new Vector4(); + + const _vector$5 = /*@__PURE__*/new Vector3(); + + const _matrix = /*@__PURE__*/new Matrix4(); + + class SkinnedMesh extends Mesh { + constructor(geometry, material) { + super(geometry, material); + this.type = 'SkinnedMesh'; + this.bindMode = 'attached'; + this.bindMatrix = new Matrix4(); + this.bindMatrixInverse = new Matrix4(); + } + + copy(source) { + super.copy(source); + this.bindMode = source.bindMode; + this.bindMatrix.copy(source.bindMatrix); + this.bindMatrixInverse.copy(source.bindMatrixInverse); + this.skeleton = source.skeleton; + return this; + } + + bind(skeleton, bindMatrix) { + this.skeleton = skeleton; + + if (bindMatrix === undefined) { + this.updateMatrixWorld(true); + this.skeleton.calculateInverses(); + bindMatrix = this.matrixWorld; + } + + this.bindMatrix.copy(bindMatrix); + this.bindMatrixInverse.copy(bindMatrix).invert(); + } + + pose() { + this.skeleton.pose(); + } + + normalizeSkinWeights() { + const vector = new Vector4(); + const skinWeight = this.geometry.attributes.skinWeight; + + for (let i = 0, l = skinWeight.count; i < l; i++) { + vector.x = skinWeight.getX(i); + vector.y = skinWeight.getY(i); + vector.z = skinWeight.getZ(i); + vector.w = skinWeight.getW(i); + const scale = 1.0 / vector.manhattanLength(); + + if (scale !== Infinity) { + vector.multiplyScalar(scale); + } else { + vector.set(1, 0, 0, 0); // do something reasonable + } + + skinWeight.setXYZW(i, vector.x, vector.y, vector.z, vector.w); + } + } + + updateMatrixWorld(force) { + super.updateMatrixWorld(force); + + if (this.bindMode === 'attached') { + this.bindMatrixInverse.copy(this.matrixWorld).invert(); + } else if (this.bindMode === 'detached') { + this.bindMatrixInverse.copy(this.bindMatrix).invert(); + } else { + console.warn('THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode); + } + } + + boneTransform(index, target) { + const skeleton = this.skeleton; + const geometry = this.geometry; + + _skinIndex.fromBufferAttribute(geometry.attributes.skinIndex, index); + + _skinWeight.fromBufferAttribute(geometry.attributes.skinWeight, index); + + _basePosition.copy(target).applyMatrix4(this.bindMatrix); + + target.set(0, 0, 0); + + for (let i = 0; i < 4; i++) { + const weight = _skinWeight.getComponent(i); + + if (weight !== 0) { + const boneIndex = _skinIndex.getComponent(i); + + _matrix.multiplyMatrices(skeleton.bones[boneIndex].matrixWorld, skeleton.boneInverses[boneIndex]); + + target.addScaledVector(_vector$5.copy(_basePosition).applyMatrix4(_matrix), weight); + } + } + + return target.applyMatrix4(this.bindMatrixInverse); + } + + } + + SkinnedMesh.prototype.isSkinnedMesh = true; + + class Bone extends Object3D { + constructor() { + super(); + this.type = 'Bone'; + } + + } + + Bone.prototype.isBone = true; + + class DataTexture extends Texture { + constructor(data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, encoding) { + super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding); + this.image = { + data: data, + width: width, + height: height + }; + this.magFilter = magFilter; + this.minFilter = minFilter; + this.generateMipmaps = false; + this.flipY = false; + this.unpackAlignment = 1; + this.needsUpdate = true; + } + + } + + DataTexture.prototype.isDataTexture = true; + + const _offsetMatrix = /*@__PURE__*/new Matrix4(); + + const _identityMatrix = /*@__PURE__*/new Matrix4(); + + class Skeleton { + constructor(bones = [], boneInverses = []) { + this.uuid = generateUUID(); + this.bones = bones.slice(0); + this.boneInverses = boneInverses; + this.boneMatrices = null; + this.boneTexture = null; + this.boneTextureSize = 0; + this.frame = -1; + this.init(); + } + + init() { + const bones = this.bones; + const boneInverses = this.boneInverses; + this.boneMatrices = new Float32Array(bones.length * 16); // calculate inverse bone matrices if necessary + + if (boneInverses.length === 0) { + this.calculateInverses(); + } else { + // handle special case + if (bones.length !== boneInverses.length) { + console.warn('THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.'); + this.boneInverses = []; + + for (let i = 0, il = this.bones.length; i < il; i++) { + this.boneInverses.push(new Matrix4()); + } + } + } + } + + calculateInverses() { + this.boneInverses.length = 0; + + for (let i = 0, il = this.bones.length; i < il; i++) { + const inverse = new Matrix4(); + + if (this.bones[i]) { + inverse.copy(this.bones[i].matrixWorld).invert(); + } + + this.boneInverses.push(inverse); + } + } + + pose() { + // recover the bind-time world matrices + for (let i = 0, il = this.bones.length; i < il; i++) { + const bone = this.bones[i]; + + if (bone) { + bone.matrixWorld.copy(this.boneInverses[i]).invert(); + } + } // compute the local matrices, positions, rotations and scales + + + for (let i = 0, il = this.bones.length; i < il; i++) { + const bone = this.bones[i]; + + if (bone) { + if (bone.parent && bone.parent.isBone) { + bone.matrix.copy(bone.parent.matrixWorld).invert(); + bone.matrix.multiply(bone.matrixWorld); + } else { + bone.matrix.copy(bone.matrixWorld); + } + + bone.matrix.decompose(bone.position, bone.quaternion, bone.scale); + } + } + } + + update() { + const bones = this.bones; + const boneInverses = this.boneInverses; + const boneMatrices = this.boneMatrices; + const boneTexture = this.boneTexture; // flatten bone matrices to array + + for (let i = 0, il = bones.length; i < il; i++) { + // compute the offset between the current and the original transform + const matrix = bones[i] ? bones[i].matrixWorld : _identityMatrix; + + _offsetMatrix.multiplyMatrices(matrix, boneInverses[i]); + + _offsetMatrix.toArray(boneMatrices, i * 16); + } + + if (boneTexture !== null) { + boneTexture.needsUpdate = true; + } + } + + clone() { + return new Skeleton(this.bones, this.boneInverses); + } + + computeBoneTexture() { + // layout (1 matrix = 4 pixels) + // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) + // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) + // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) + // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) + // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) + let size = Math.sqrt(this.bones.length * 4); // 4 pixels needed for 1 matrix + + size = ceilPowerOfTwo(size); + size = Math.max(size, 4); + const boneMatrices = new Float32Array(size * size * 4); // 4 floats per RGBA pixel + + boneMatrices.set(this.boneMatrices); // copy current values + + const boneTexture = new DataTexture(boneMatrices, size, size, RGBAFormat, FloatType); + this.boneMatrices = boneMatrices; + this.boneTexture = boneTexture; + this.boneTextureSize = size; + return this; + } + + getBoneByName(name) { + for (let i = 0, il = this.bones.length; i < il; i++) { + const bone = this.bones[i]; + + if (bone.name === name) { + return bone; + } + } + + return undefined; + } + + dispose() { + if (this.boneTexture !== null) { + this.boneTexture.dispose(); + this.boneTexture = null; + } + } + + fromJSON(json, bones) { + this.uuid = json.uuid; + + for (let i = 0, l = json.bones.length; i < l; i++) { + const uuid = json.bones[i]; + let bone = bones[uuid]; + + if (bone === undefined) { + console.warn('THREE.Skeleton: No bone found with UUID:', uuid); + bone = new Bone(); + } + + this.bones.push(bone); + this.boneInverses.push(new Matrix4().fromArray(json.boneInverses[i])); + } + + this.init(); + return this; + } + + toJSON() { + const data = { + metadata: { + version: 4.5, + type: 'Skeleton', + generator: 'Skeleton.toJSON' + }, + bones: [], + boneInverses: [] + }; + data.uuid = this.uuid; + const bones = this.bones; + const boneInverses = this.boneInverses; + + for (let i = 0, l = bones.length; i < l; i++) { + const bone = bones[i]; + data.bones.push(bone.uuid); + const boneInverse = boneInverses[i]; + data.boneInverses.push(boneInverse.toArray()); + } + + return data; + } + + } + + class InstancedBufferAttribute extends BufferAttribute { + constructor(array, itemSize, normalized, meshPerAttribute = 1) { + if (typeof normalized === 'number') { + meshPerAttribute = normalized; + normalized = false; + console.error('THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.'); + } + + super(array, itemSize, normalized); + this.meshPerAttribute = meshPerAttribute; + } + + copy(source) { + super.copy(source); + this.meshPerAttribute = source.meshPerAttribute; + return this; + } + + toJSON() { + const data = super.toJSON(); + data.meshPerAttribute = this.meshPerAttribute; + data.isInstancedBufferAttribute = true; + return data; + } + + } + + InstancedBufferAttribute.prototype.isInstancedBufferAttribute = true; + + const _instanceLocalMatrix = /*@__PURE__*/new Matrix4(); + + const _instanceWorldMatrix = /*@__PURE__*/new Matrix4(); + + const _instanceIntersects = []; + + const _mesh = /*@__PURE__*/new Mesh(); + + class InstancedMesh extends Mesh { + constructor(geometry, material, count) { + super(geometry, material); + this.instanceMatrix = new InstancedBufferAttribute(new Float32Array(count * 16), 16); + this.instanceColor = null; + this.count = count; + this.frustumCulled = false; + } + + copy(source) { + super.copy(source); + this.instanceMatrix.copy(source.instanceMatrix); + if (source.instanceColor !== null) this.instanceColor = source.instanceColor.clone(); + this.count = source.count; + return this; + } + + getColorAt(index, color) { + color.fromArray(this.instanceColor.array, index * 3); + } + + getMatrixAt(index, matrix) { + matrix.fromArray(this.instanceMatrix.array, index * 16); + } + + raycast(raycaster, intersects) { + const matrixWorld = this.matrixWorld; + const raycastTimes = this.count; + _mesh.geometry = this.geometry; + _mesh.material = this.material; + if (_mesh.material === undefined) return; + + for (let instanceId = 0; instanceId < raycastTimes; instanceId++) { + // calculate the world matrix for each instance + this.getMatrixAt(instanceId, _instanceLocalMatrix); + + _instanceWorldMatrix.multiplyMatrices(matrixWorld, _instanceLocalMatrix); // the mesh represents this single instance + + + _mesh.matrixWorld = _instanceWorldMatrix; + + _mesh.raycast(raycaster, _instanceIntersects); // process the result of raycast + + + for (let i = 0, l = _instanceIntersects.length; i < l; i++) { + const intersect = _instanceIntersects[i]; + intersect.instanceId = instanceId; + intersect.object = this; + intersects.push(intersect); + } + + _instanceIntersects.length = 0; + } + } + + setColorAt(index, color) { + if (this.instanceColor === null) { + this.instanceColor = new InstancedBufferAttribute(new Float32Array(this.instanceMatrix.count * 3), 3); + } + + color.toArray(this.instanceColor.array, index * 3); + } + + setMatrixAt(index, matrix) { + matrix.toArray(this.instanceMatrix.array, index * 16); + } + + updateMorphTargets() {} + + dispose() { + this.dispatchEvent({ + type: 'dispose' + }); + } + + } + + InstancedMesh.prototype.isInstancedMesh = true; + + /** + * parameters = { + * color: , + * opacity: , + * + * linewidth: , + * linecap: "round", + * linejoin: "round" + * } + */ + + class LineBasicMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'LineBasicMaterial'; + this.color = new Color(0xffffff); + this.linewidth = 1; + this.linecap = 'round'; + this.linejoin = 'round'; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.linewidth = source.linewidth; + this.linecap = source.linecap; + this.linejoin = source.linejoin; + return this; + } + + } + + LineBasicMaterial.prototype.isLineBasicMaterial = true; + + const _start$1 = /*@__PURE__*/new Vector3(); + + const _end$1 = /*@__PURE__*/new Vector3(); + + const _inverseMatrix$1 = /*@__PURE__*/new Matrix4(); + + const _ray$1 = /*@__PURE__*/new Ray(); + + const _sphere$1 = /*@__PURE__*/new Sphere(); + + class Line extends Object3D { + constructor(geometry = new BufferGeometry(), material = new LineBasicMaterial()) { + super(); + this.type = 'Line'; + this.geometry = geometry; + this.material = material; + this.updateMorphTargets(); + } + + copy(source) { + super.copy(source); + this.material = source.material; + this.geometry = source.geometry; + return this; + } + + computeLineDistances() { + const geometry = this.geometry; + + if (geometry.isBufferGeometry) { + // we assume non-indexed geometry + if (geometry.index === null) { + const positionAttribute = geometry.attributes.position; + const lineDistances = [0]; + + for (let i = 1, l = positionAttribute.count; i < l; i++) { + _start$1.fromBufferAttribute(positionAttribute, i - 1); + + _end$1.fromBufferAttribute(positionAttribute, i); + + lineDistances[i] = lineDistances[i - 1]; + lineDistances[i] += _start$1.distanceTo(_end$1); + } + + geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1)); + } else { + console.warn('THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.'); + } + } else if (geometry.isGeometry) { + console.error('THREE.Line.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + + return this; + } + + raycast(raycaster, intersects) { + const geometry = this.geometry; + const matrixWorld = this.matrixWorld; + const threshold = raycaster.params.Line.threshold; + const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray + + if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); + + _sphere$1.copy(geometry.boundingSphere); + + _sphere$1.applyMatrix4(matrixWorld); + + _sphere$1.radius += threshold; + if (raycaster.ray.intersectsSphere(_sphere$1) === false) return; // + + _inverseMatrix$1.copy(matrixWorld).invert(); + + _ray$1.copy(raycaster.ray).applyMatrix4(_inverseMatrix$1); + + const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3); + const localThresholdSq = localThreshold * localThreshold; + const vStart = new Vector3(); + const vEnd = new Vector3(); + const interSegment = new Vector3(); + const interRay = new Vector3(); + const step = this.isLineSegments ? 2 : 1; + + if (geometry.isBufferGeometry) { + const index = geometry.index; + const attributes = geometry.attributes; + const positionAttribute = attributes.position; + + if (index !== null) { + const start = Math.max(0, drawRange.start); + const end = Math.min(index.count, drawRange.start + drawRange.count); + + for (let i = start, l = end - 1; i < l; i += step) { + const a = index.getX(i); + const b = index.getX(i + 1); + vStart.fromBufferAttribute(positionAttribute, a); + vEnd.fromBufferAttribute(positionAttribute, b); + + const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment); + + if (distSq > localThresholdSq) continue; + interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation + + const distance = raycaster.ray.origin.distanceTo(interRay); + if (distance < raycaster.near || distance > raycaster.far) continue; + intersects.push({ + distance: distance, + // What do we want? intersection point on the ray or on the segment?? + // point: raycaster.ray.at( distance ), + point: interSegment.clone().applyMatrix4(this.matrixWorld), + index: i, + face: null, + faceIndex: null, + object: this + }); + } + } else { + const start = Math.max(0, drawRange.start); + const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count); + + for (let i = start, l = end - 1; i < l; i += step) { + vStart.fromBufferAttribute(positionAttribute, i); + vEnd.fromBufferAttribute(positionAttribute, i + 1); + + const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment); + + if (distSq > localThresholdSq) continue; + interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation + + const distance = raycaster.ray.origin.distanceTo(interRay); + if (distance < raycaster.near || distance > raycaster.far) continue; + intersects.push({ + distance: distance, + // What do we want? intersection point on the ray or on the segment?? + // point: raycaster.ray.at( distance ), + point: interSegment.clone().applyMatrix4(this.matrixWorld), + index: i, + face: null, + faceIndex: null, + object: this + }); + } + } + } else if (geometry.isGeometry) { + console.error('THREE.Line.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + } + + updateMorphTargets() { + const geometry = this.geometry; + + if (geometry.isBufferGeometry) { + const morphAttributes = geometry.morphAttributes; + const keys = Object.keys(morphAttributes); + + if (keys.length > 0) { + const morphAttribute = morphAttributes[keys[0]]; + + if (morphAttribute !== undefined) { + this.morphTargetInfluences = []; + this.morphTargetDictionary = {}; + + for (let m = 0, ml = morphAttribute.length; m < ml; m++) { + const name = morphAttribute[m].name || String(m); + this.morphTargetInfluences.push(0); + this.morphTargetDictionary[name] = m; + } + } + } + } else { + const morphTargets = geometry.morphTargets; + + if (morphTargets !== undefined && morphTargets.length > 0) { + console.error('THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + } + } + + } + + Line.prototype.isLine = true; + + const _start = /*@__PURE__*/new Vector3(); + + const _end = /*@__PURE__*/new Vector3(); + + class LineSegments extends Line { + constructor(geometry, material) { + super(geometry, material); + this.type = 'LineSegments'; + } + + computeLineDistances() { + const geometry = this.geometry; + + if (geometry.isBufferGeometry) { + // we assume non-indexed geometry + if (geometry.index === null) { + const positionAttribute = geometry.attributes.position; + const lineDistances = []; + + for (let i = 0, l = positionAttribute.count; i < l; i += 2) { + _start.fromBufferAttribute(positionAttribute, i); + + _end.fromBufferAttribute(positionAttribute, i + 1); + + lineDistances[i] = i === 0 ? 0 : lineDistances[i - 1]; + lineDistances[i + 1] = lineDistances[i] + _start.distanceTo(_end); + } + + geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1)); + } else { + console.warn('THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.'); + } + } else if (geometry.isGeometry) { + console.error('THREE.LineSegments.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + + return this; + } + + } + + LineSegments.prototype.isLineSegments = true; + + class LineLoop extends Line { + constructor(geometry, material) { + super(geometry, material); + this.type = 'LineLoop'; + } + + } + + LineLoop.prototype.isLineLoop = true; + + /** + * parameters = { + * color: , + * opacity: , + * map: new THREE.Texture( ), + * alphaMap: new THREE.Texture( ), + * + * size: , + * sizeAttenuation: + * + * } + */ + + class PointsMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'PointsMaterial'; + this.color = new Color(0xffffff); + this.map = null; + this.alphaMap = null; + this.size = 1; + this.sizeAttenuation = true; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.map = source.map; + this.alphaMap = source.alphaMap; + this.size = source.size; + this.sizeAttenuation = source.sizeAttenuation; + return this; + } + + } + + PointsMaterial.prototype.isPointsMaterial = true; + + const _inverseMatrix = /*@__PURE__*/new Matrix4(); + + const _ray = /*@__PURE__*/new Ray(); + + const _sphere = /*@__PURE__*/new Sphere(); + + const _position$2 = /*@__PURE__*/new Vector3(); + + class Points extends Object3D { + constructor(geometry = new BufferGeometry(), material = new PointsMaterial()) { + super(); + this.type = 'Points'; + this.geometry = geometry; + this.material = material; + this.updateMorphTargets(); + } + + copy(source) { + super.copy(source); + this.material = source.material; + this.geometry = source.geometry; + return this; + } + + raycast(raycaster, intersects) { + const geometry = this.geometry; + const matrixWorld = this.matrixWorld; + const threshold = raycaster.params.Points.threshold; + const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray + + if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); + + _sphere.copy(geometry.boundingSphere); + + _sphere.applyMatrix4(matrixWorld); + + _sphere.radius += threshold; + if (raycaster.ray.intersectsSphere(_sphere) === false) return; // + + _inverseMatrix.copy(matrixWorld).invert(); + + _ray.copy(raycaster.ray).applyMatrix4(_inverseMatrix); + + const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3); + const localThresholdSq = localThreshold * localThreshold; + + if (geometry.isBufferGeometry) { + const index = geometry.index; + const attributes = geometry.attributes; + const positionAttribute = attributes.position; + + if (index !== null) { + const start = Math.max(0, drawRange.start); + const end = Math.min(index.count, drawRange.start + drawRange.count); + + for (let i = start, il = end; i < il; i++) { + const a = index.getX(i); + + _position$2.fromBufferAttribute(positionAttribute, a); + + testPoint(_position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this); + } + } else { + const start = Math.max(0, drawRange.start); + const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count); + + for (let i = start, l = end; i < l; i++) { + _position$2.fromBufferAttribute(positionAttribute, i); + + testPoint(_position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this); + } + } + } else { + console.error('THREE.Points.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + } + + updateMorphTargets() { + const geometry = this.geometry; + + if (geometry.isBufferGeometry) { + const morphAttributes = geometry.morphAttributes; + const keys = Object.keys(morphAttributes); + + if (keys.length > 0) { + const morphAttribute = morphAttributes[keys[0]]; + + if (morphAttribute !== undefined) { + this.morphTargetInfluences = []; + this.morphTargetDictionary = {}; + + for (let m = 0, ml = morphAttribute.length; m < ml; m++) { + const name = morphAttribute[m].name || String(m); + this.morphTargetInfluences.push(0); + this.morphTargetDictionary[name] = m; + } + } + } + } else { + const morphTargets = geometry.morphTargets; + + if (morphTargets !== undefined && morphTargets.length > 0) { + console.error('THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.'); + } + } + } + + } + + Points.prototype.isPoints = true; + + function testPoint(point, index, localThresholdSq, matrixWorld, raycaster, intersects, object) { + const rayPointDistanceSq = _ray.distanceSqToPoint(point); + + if (rayPointDistanceSq < localThresholdSq) { + const intersectPoint = new Vector3(); + + _ray.closestPointToPoint(point, intersectPoint); + + intersectPoint.applyMatrix4(matrixWorld); + const distance = raycaster.ray.origin.distanceTo(intersectPoint); + if (distance < raycaster.near || distance > raycaster.far) return; + intersects.push({ + distance: distance, + distanceToRay: Math.sqrt(rayPointDistanceSq), + point: intersectPoint, + index: index, + face: null, + object: object + }); + } + } + + class VideoTexture extends Texture { + constructor(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) { + super(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy); + this.format = format !== undefined ? format : RGBFormat; + this.minFilter = minFilter !== undefined ? minFilter : LinearFilter; + this.magFilter = magFilter !== undefined ? magFilter : LinearFilter; + this.generateMipmaps = false; + const scope = this; + + function updateVideo() { + scope.needsUpdate = true; + video.requestVideoFrameCallback(updateVideo); + } + + if ('requestVideoFrameCallback' in video) { + video.requestVideoFrameCallback(updateVideo); + } + } + + clone() { + return new this.constructor(this.image).copy(this); + } + + update() { + const video = this.image; + const hasVideoFrameCallback = ('requestVideoFrameCallback' in video); + + if (hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA) { + this.needsUpdate = true; + } + } + + } + + VideoTexture.prototype.isVideoTexture = true; + + class CompressedTexture extends Texture { + constructor(mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding) { + super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding); + this.image = { + width: width, + height: height + }; + this.mipmaps = mipmaps; // no flipping for cube textures + // (also flipping doesn't work for compressed textures ) + + this.flipY = false; // can't generate mipmaps for compressed textures + // mips must be embedded in DDS files + + this.generateMipmaps = false; + } + + } + + CompressedTexture.prototype.isCompressedTexture = true; + + class CanvasTexture extends Texture { + constructor(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) { + super(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy); + this.needsUpdate = true; + } + + } + + CanvasTexture.prototype.isCanvasTexture = true; + + class DepthTexture extends Texture { + constructor(width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format) { + format = format !== undefined ? format : DepthFormat; + + if (format !== DepthFormat && format !== DepthStencilFormat) { + throw new Error('DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat'); + } + + if (type === undefined && format === DepthFormat) type = UnsignedShortType; + if (type === undefined && format === DepthStencilFormat) type = UnsignedInt248Type; + super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy); + this.image = { + width: width, + height: height + }; + this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; + this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; + this.flipY = false; + this.generateMipmaps = false; + } + + } + + DepthTexture.prototype.isDepthTexture = true; + + class CircleGeometry extends BufferGeometry { + constructor(radius = 1, segments = 8, thetaStart = 0, thetaLength = Math.PI * 2) { + super(); + this.type = 'CircleGeometry'; + this.parameters = { + radius: radius, + segments: segments, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + segments = Math.max(3, segments); // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // helper variables + + const vertex = new Vector3(); + const uv = new Vector2(); // center point + + vertices.push(0, 0, 0); + normals.push(0, 0, 1); + uvs.push(0.5, 0.5); + + for (let s = 0, i = 3; s <= segments; s++, i += 3) { + const segment = thetaStart + s / segments * thetaLength; // vertex + + vertex.x = radius * Math.cos(segment); + vertex.y = radius * Math.sin(segment); + vertices.push(vertex.x, vertex.y, vertex.z); // normal + + normals.push(0, 0, 1); // uvs + + uv.x = (vertices[i] / radius + 1) / 2; + uv.y = (vertices[i + 1] / radius + 1) / 2; + uvs.push(uv.x, uv.y); + } // indices + + + for (let i = 1; i <= segments; i++) { + indices.push(i, i + 1, 0); + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + } + + static fromJSON(data) { + return new CircleGeometry(data.radius, data.segments, data.thetaStart, data.thetaLength); + } + + } + + class CylinderGeometry extends BufferGeometry { + constructor(radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) { + super(); + this.type = 'CylinderGeometry'; + this.parameters = { + radiusTop: radiusTop, + radiusBottom: radiusBottom, + height: height, + radialSegments: radialSegments, + heightSegments: heightSegments, + openEnded: openEnded, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + const scope = this; + radialSegments = Math.floor(radialSegments); + heightSegments = Math.floor(heightSegments); // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // helper variables + + let index = 0; + const indexArray = []; + const halfHeight = height / 2; + let groupStart = 0; // generate geometry + + generateTorso(); + + if (openEnded === false) { + if (radiusTop > 0) generateCap(true); + if (radiusBottom > 0) generateCap(false); + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + + function generateTorso() { + const normal = new Vector3(); + const vertex = new Vector3(); + let groupCount = 0; // this will be used to calculate the normal + + const slope = (radiusBottom - radiusTop) / height; // generate vertices, normals and uvs + + for (let y = 0; y <= heightSegments; y++) { + const indexRow = []; + const v = y / heightSegments; // calculate the radius of the current row + + const radius = v * (radiusBottom - radiusTop) + radiusTop; + + for (let x = 0; x <= radialSegments; x++) { + const u = x / radialSegments; + const theta = u * thetaLength + thetaStart; + const sinTheta = Math.sin(theta); + const cosTheta = Math.cos(theta); // vertex + + vertex.x = radius * sinTheta; + vertex.y = -v * height + halfHeight; + vertex.z = radius * cosTheta; + vertices.push(vertex.x, vertex.y, vertex.z); // normal + + normal.set(sinTheta, slope, cosTheta).normalize(); + normals.push(normal.x, normal.y, normal.z); // uv + + uvs.push(u, 1 - v); // save index of vertex in respective row + + indexRow.push(index++); + } // now save vertices of the row in our index array + + + indexArray.push(indexRow); + } // generate indices + + + for (let x = 0; x < radialSegments; x++) { + for (let y = 0; y < heightSegments; y++) { + // we use the index array to access the correct indices + const a = indexArray[y][x]; + const b = indexArray[y + 1][x]; + const c = indexArray[y + 1][x + 1]; + const d = indexArray[y][x + 1]; // faces + + indices.push(a, b, d); + indices.push(b, c, d); // update group counter + + groupCount += 6; + } + } // add a group to the geometry. this will ensure multi material support + + + scope.addGroup(groupStart, groupCount, 0); // calculate new start value for groups + + groupStart += groupCount; + } + + function generateCap(top) { + // save the index of the first center vertex + const centerIndexStart = index; + const uv = new Vector2(); + const vertex = new Vector3(); + let groupCount = 0; + const radius = top === true ? radiusTop : radiusBottom; + const sign = top === true ? 1 : -1; // first we generate the center vertex data of the cap. + // because the geometry needs one set of uvs per face, + // we must generate a center vertex per face/segment + + for (let x = 1; x <= radialSegments; x++) { + // vertex + vertices.push(0, halfHeight * sign, 0); // normal + + normals.push(0, sign, 0); // uv + + uvs.push(0.5, 0.5); // increase index + + index++; + } // save the index of the last center vertex + + + const centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs + + for (let x = 0; x <= radialSegments; x++) { + const u = x / radialSegments; + const theta = u * thetaLength + thetaStart; + const cosTheta = Math.cos(theta); + const sinTheta = Math.sin(theta); // vertex + + vertex.x = radius * sinTheta; + vertex.y = halfHeight * sign; + vertex.z = radius * cosTheta; + vertices.push(vertex.x, vertex.y, vertex.z); // normal + + normals.push(0, sign, 0); // uv + + uv.x = cosTheta * 0.5 + 0.5; + uv.y = sinTheta * 0.5 * sign + 0.5; + uvs.push(uv.x, uv.y); // increase index + + index++; + } // generate indices + + + for (let x = 0; x < radialSegments; x++) { + const c = centerIndexStart + x; + const i = centerIndexEnd + x; + + if (top === true) { + // face top + indices.push(i, i + 1, c); + } else { + // face bottom + indices.push(i + 1, i, c); + } + + groupCount += 3; + } // add a group to the geometry. this will ensure multi material support + + + scope.addGroup(groupStart, groupCount, top === true ? 1 : 2); // calculate new start value for groups + + groupStart += groupCount; + } + } + + static fromJSON(data) { + return new CylinderGeometry(data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength); + } + + } + + class ConeGeometry extends CylinderGeometry { + constructor(radius = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) { + super(0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength); + this.type = 'ConeGeometry'; + this.parameters = { + radius: radius, + height: height, + radialSegments: radialSegments, + heightSegments: heightSegments, + openEnded: openEnded, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + } + + static fromJSON(data) { + return new ConeGeometry(data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength); + } + + } + + class PolyhedronGeometry extends BufferGeometry { + constructor(vertices = [], indices = [], radius = 1, detail = 0) { + super(); + this.type = 'PolyhedronGeometry'; + this.parameters = { + vertices: vertices, + indices: indices, + radius: radius, + detail: detail + }; // default buffer data + + const vertexBuffer = []; + const uvBuffer = []; // the subdivision creates the vertex buffer data + + subdivide(detail); // all vertices should lie on a conceptual sphere with a given radius + + applyRadius(radius); // finally, create the uv data + + generateUVs(); // build non-indexed geometry + + this.setAttribute('position', new Float32BufferAttribute(vertexBuffer, 3)); + this.setAttribute('normal', new Float32BufferAttribute(vertexBuffer.slice(), 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvBuffer, 2)); + + if (detail === 0) { + this.computeVertexNormals(); // flat normals + } else { + this.normalizeNormals(); // smooth normals + } // helper functions + + + function subdivide(detail) { + const a = new Vector3(); + const b = new Vector3(); + const c = new Vector3(); // iterate over all faces and apply a subdivison with the given detail value + + for (let i = 0; i < indices.length; i += 3) { + // get the vertices of the face + getVertexByIndex(indices[i + 0], a); + getVertexByIndex(indices[i + 1], b); + getVertexByIndex(indices[i + 2], c); // perform subdivision + + subdivideFace(a, b, c, detail); + } + } + + function subdivideFace(a, b, c, detail) { + const cols = detail + 1; // we use this multidimensional array as a data structure for creating the subdivision + + const v = []; // construct all of the vertices for this subdivision + + for (let i = 0; i <= cols; i++) { + v[i] = []; + const aj = a.clone().lerp(c, i / cols); + const bj = b.clone().lerp(c, i / cols); + const rows = cols - i; + + for (let j = 0; j <= rows; j++) { + if (j === 0 && i === cols) { + v[i][j] = aj; + } else { + v[i][j] = aj.clone().lerp(bj, j / rows); + } + } + } // construct all of the faces + + + for (let i = 0; i < cols; i++) { + for (let j = 0; j < 2 * (cols - i) - 1; j++) { + const k = Math.floor(j / 2); + + if (j % 2 === 0) { + pushVertex(v[i][k + 1]); + pushVertex(v[i + 1][k]); + pushVertex(v[i][k]); + } else { + pushVertex(v[i][k + 1]); + pushVertex(v[i + 1][k + 1]); + pushVertex(v[i + 1][k]); + } + } + } + } + + function applyRadius(radius) { + const vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex + + for (let i = 0; i < vertexBuffer.length; i += 3) { + vertex.x = vertexBuffer[i + 0]; + vertex.y = vertexBuffer[i + 1]; + vertex.z = vertexBuffer[i + 2]; + vertex.normalize().multiplyScalar(radius); + vertexBuffer[i + 0] = vertex.x; + vertexBuffer[i + 1] = vertex.y; + vertexBuffer[i + 2] = vertex.z; + } + } + + function generateUVs() { + const vertex = new Vector3(); + + for (let i = 0; i < vertexBuffer.length; i += 3) { + vertex.x = vertexBuffer[i + 0]; + vertex.y = vertexBuffer[i + 1]; + vertex.z = vertexBuffer[i + 2]; + const u = azimuth(vertex) / 2 / Math.PI + 0.5; + const v = inclination(vertex) / Math.PI + 0.5; + uvBuffer.push(u, 1 - v); + } + + correctUVs(); + correctSeam(); + } + + function correctSeam() { + // handle case when face straddles the seam, see #3269 + for (let i = 0; i < uvBuffer.length; i += 6) { + // uv data of a single face + const x0 = uvBuffer[i + 0]; + const x1 = uvBuffer[i + 2]; + const x2 = uvBuffer[i + 4]; + const max = Math.max(x0, x1, x2); + const min = Math.min(x0, x1, x2); // 0.9 is somewhat arbitrary + + if (max > 0.9 && min < 0.1) { + if (x0 < 0.2) uvBuffer[i + 0] += 1; + if (x1 < 0.2) uvBuffer[i + 2] += 1; + if (x2 < 0.2) uvBuffer[i + 4] += 1; + } + } + } + + function pushVertex(vertex) { + vertexBuffer.push(vertex.x, vertex.y, vertex.z); + } + + function getVertexByIndex(index, vertex) { + const stride = index * 3; + vertex.x = vertices[stride + 0]; + vertex.y = vertices[stride + 1]; + vertex.z = vertices[stride + 2]; + } + + function correctUVs() { + const a = new Vector3(); + const b = new Vector3(); + const c = new Vector3(); + const centroid = new Vector3(); + const uvA = new Vector2(); + const uvB = new Vector2(); + const uvC = new Vector2(); + + for (let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6) { + a.set(vertexBuffer[i + 0], vertexBuffer[i + 1], vertexBuffer[i + 2]); + b.set(vertexBuffer[i + 3], vertexBuffer[i + 4], vertexBuffer[i + 5]); + c.set(vertexBuffer[i + 6], vertexBuffer[i + 7], vertexBuffer[i + 8]); + uvA.set(uvBuffer[j + 0], uvBuffer[j + 1]); + uvB.set(uvBuffer[j + 2], uvBuffer[j + 3]); + uvC.set(uvBuffer[j + 4], uvBuffer[j + 5]); + centroid.copy(a).add(b).add(c).divideScalar(3); + const azi = azimuth(centroid); + correctUV(uvA, j + 0, a, azi); + correctUV(uvB, j + 2, b, azi); + correctUV(uvC, j + 4, c, azi); + } + } + + function correctUV(uv, stride, vector, azimuth) { + if (azimuth < 0 && uv.x === 1) { + uvBuffer[stride] = uv.x - 1; + } + + if (vector.x === 0 && vector.z === 0) { + uvBuffer[stride] = azimuth / 2 / Math.PI + 0.5; + } + } // Angle around the Y axis, counter-clockwise when looking from above. + + + function azimuth(vector) { + return Math.atan2(vector.z, -vector.x); + } // Angle above the XZ plane. + + + function inclination(vector) { + return Math.atan2(-vector.y, Math.sqrt(vector.x * vector.x + vector.z * vector.z)); + } + } + + static fromJSON(data) { + return new PolyhedronGeometry(data.vertices, data.indices, data.radius, data.details); + } + + } + + class DodecahedronGeometry extends PolyhedronGeometry { + constructor(radius = 1, detail = 0) { + const t = (1 + Math.sqrt(5)) / 2; + const r = 1 / t; + const vertices = [// (±1, ±1, ±1) + -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, // (0, ±1/φ, ±φ) + 0, -r, -t, 0, -r, t, 0, r, -t, 0, r, t, // (±1/φ, ±φ, 0) + -r, -t, 0, -r, t, 0, r, -t, 0, r, t, 0, // (±φ, 0, ±1/φ) + -t, 0, -r, t, 0, -r, -t, 0, r, t, 0, r]; + const indices = [3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9]; + super(vertices, indices, radius, detail); + this.type = 'DodecahedronGeometry'; + this.parameters = { + radius: radius, + detail: detail + }; + } + + static fromJSON(data) { + return new DodecahedronGeometry(data.radius, data.detail); + } + + } + + const _v0 = new Vector3(); + + const _v1$1 = new Vector3(); + + const _normal = new Vector3(); + + const _triangle = new Triangle(); + + class EdgesGeometry extends BufferGeometry { + constructor(geometry = null, thresholdAngle = 1) { + super(); + this.type = 'EdgesGeometry'; + this.parameters = { + geometry: geometry, + thresholdAngle: thresholdAngle + }; + + if (geometry !== null) { + const precisionPoints = 4; + const precision = Math.pow(10, precisionPoints); + const thresholdDot = Math.cos(DEG2RAD * thresholdAngle); + const indexAttr = geometry.getIndex(); + const positionAttr = geometry.getAttribute('position'); + const indexCount = indexAttr ? indexAttr.count : positionAttr.count; + const indexArr = [0, 0, 0]; + const vertKeys = ['a', 'b', 'c']; + const hashes = new Array(3); + const edgeData = {}; + const vertices = []; + + for (let i = 0; i < indexCount; i += 3) { + if (indexAttr) { + indexArr[0] = indexAttr.getX(i); + indexArr[1] = indexAttr.getX(i + 1); + indexArr[2] = indexAttr.getX(i + 2); + } else { + indexArr[0] = i; + indexArr[1] = i + 1; + indexArr[2] = i + 2; + } + + const { + a, + b, + c + } = _triangle; + a.fromBufferAttribute(positionAttr, indexArr[0]); + b.fromBufferAttribute(positionAttr, indexArr[1]); + c.fromBufferAttribute(positionAttr, indexArr[2]); + + _triangle.getNormal(_normal); // create hashes for the edge from the vertices + + + hashes[0] = `${Math.round(a.x * precision)},${Math.round(a.y * precision)},${Math.round(a.z * precision)}`; + hashes[1] = `${Math.round(b.x * precision)},${Math.round(b.y * precision)},${Math.round(b.z * precision)}`; + hashes[2] = `${Math.round(c.x * precision)},${Math.round(c.y * precision)},${Math.round(c.z * precision)}`; // skip degenerate triangles + + if (hashes[0] === hashes[1] || hashes[1] === hashes[2] || hashes[2] === hashes[0]) { + continue; + } // iterate over every edge + + + for (let j = 0; j < 3; j++) { + // get the first and next vertex making up the edge + const jNext = (j + 1) % 3; + const vecHash0 = hashes[j]; + const vecHash1 = hashes[jNext]; + const v0 = _triangle[vertKeys[j]]; + const v1 = _triangle[vertKeys[jNext]]; + const hash = `${vecHash0}_${vecHash1}`; + const reverseHash = `${vecHash1}_${vecHash0}`; + + if (reverseHash in edgeData && edgeData[reverseHash]) { + // if we found a sibling edge add it into the vertex array if + // it meets the angle threshold and delete the edge from the map. + if (_normal.dot(edgeData[reverseHash].normal) <= thresholdDot) { + vertices.push(v0.x, v0.y, v0.z); + vertices.push(v1.x, v1.y, v1.z); + } + + edgeData[reverseHash] = null; + } else if (!(hash in edgeData)) { + // if we've already got an edge here then skip adding a new one + edgeData[hash] = { + index0: indexArr[j], + index1: indexArr[jNext], + normal: _normal.clone() + }; + } + } + } // iterate over all remaining, unmatched edges and add them to the vertex array + + + for (const key in edgeData) { + if (edgeData[key]) { + const { + index0, + index1 + } = edgeData[key]; + + _v0.fromBufferAttribute(positionAttr, index0); + + _v1$1.fromBufferAttribute(positionAttr, index1); + + vertices.push(_v0.x, _v0.y, _v0.z); + vertices.push(_v1$1.x, _v1$1.y, _v1$1.z); + } + } + + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + } + } + + } + + /** + * Extensible curve object. + * + * Some common of curve methods: + * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget ) + * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget ) + * .getPoints(), .getSpacedPoints() + * .getLength() + * .updateArcLengths() + * + * This following curves inherit from THREE.Curve: + * + * -- 2D curves -- + * THREE.ArcCurve + * THREE.CubicBezierCurve + * THREE.EllipseCurve + * THREE.LineCurve + * THREE.QuadraticBezierCurve + * THREE.SplineCurve + * + * -- 3D curves -- + * THREE.CatmullRomCurve3 + * THREE.CubicBezierCurve3 + * THREE.LineCurve3 + * THREE.QuadraticBezierCurve3 + * + * A series of curves can be represented as a THREE.CurvePath. + * + **/ + + class Curve { + constructor() { + this.type = 'Curve'; + this.arcLengthDivisions = 200; + } // Virtual base class method to overwrite and implement in subclasses + // - t [0 .. 1] + + + getPoint() { + console.warn('THREE.Curve: .getPoint() not implemented.'); + return null; + } // Get point at relative position in curve according to arc length + // - u [0 .. 1] + + + getPointAt(u, optionalTarget) { + const t = this.getUtoTmapping(u); + return this.getPoint(t, optionalTarget); + } // Get sequence of points using getPoint( t ) + + + getPoints(divisions = 5) { + const points = []; + + for (let d = 0; d <= divisions; d++) { + points.push(this.getPoint(d / divisions)); + } + + return points; + } // Get sequence of points using getPointAt( u ) + + + getSpacedPoints(divisions = 5) { + const points = []; + + for (let d = 0; d <= divisions; d++) { + points.push(this.getPointAt(d / divisions)); + } + + return points; + } // Get total curve arc length + + + getLength() { + const lengths = this.getLengths(); + return lengths[lengths.length - 1]; + } // Get list of cumulative segment lengths + + + getLengths(divisions = this.arcLengthDivisions) { + if (this.cacheArcLengths && this.cacheArcLengths.length === divisions + 1 && !this.needsUpdate) { + return this.cacheArcLengths; + } + + this.needsUpdate = false; + const cache = []; + let current, + last = this.getPoint(0); + let sum = 0; + cache.push(0); + + for (let p = 1; p <= divisions; p++) { + current = this.getPoint(p / divisions); + sum += current.distanceTo(last); + cache.push(sum); + last = current; + } + + this.cacheArcLengths = cache; + return cache; // { sums: cache, sum: sum }; Sum is in the last element. + } + + updateArcLengths() { + this.needsUpdate = true; + this.getLengths(); + } // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant + + + getUtoTmapping(u, distance) { + const arcLengths = this.getLengths(); + let i = 0; + const il = arcLengths.length; + let targetArcLength; // The targeted u distance value to get + + if (distance) { + targetArcLength = distance; + } else { + targetArcLength = u * arcLengths[il - 1]; + } // binary search for the index with largest value smaller than target u distance + + + let low = 0, + high = il - 1, + comparison; + + while (low <= high) { + i = Math.floor(low + (high - low) / 2); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats + + comparison = arcLengths[i] - targetArcLength; + + if (comparison < 0) { + low = i + 1; + } else if (comparison > 0) { + high = i - 1; + } else { + high = i; + break; // DONE + } + } + + i = high; + + if (arcLengths[i] === targetArcLength) { + return i / (il - 1); + } // we could get finer grain at lengths, or use simple interpolation between two points + + + const lengthBefore = arcLengths[i]; + const lengthAfter = arcLengths[i + 1]; + const segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points + + const segmentFraction = (targetArcLength - lengthBefore) / segmentLength; // add that fractional amount to t + + const t = (i + segmentFraction) / (il - 1); + return t; + } // Returns a unit vector tangent at t + // In case any sub curve does not implement its tangent derivation, + // 2 points a small delta apart will be used to find its gradient + // which seems to give a reasonable approximation + + + getTangent(t, optionalTarget) { + const delta = 0.0001; + let t1 = t - delta; + let t2 = t + delta; // Capping in case of danger + + if (t1 < 0) t1 = 0; + if (t2 > 1) t2 = 1; + const pt1 = this.getPoint(t1); + const pt2 = this.getPoint(t2); + const tangent = optionalTarget || (pt1.isVector2 ? new Vector2() : new Vector3()); + tangent.copy(pt2).sub(pt1).normalize(); + return tangent; + } + + getTangentAt(u, optionalTarget) { + const t = this.getUtoTmapping(u); + return this.getTangent(t, optionalTarget); + } + + computeFrenetFrames(segments, closed) { + // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf + const normal = new Vector3(); + const tangents = []; + const normals = []; + const binormals = []; + const vec = new Vector3(); + const mat = new Matrix4(); // compute the tangent vectors for each segment on the curve + + for (let i = 0; i <= segments; i++) { + const u = i / segments; + tangents[i] = this.getTangentAt(u, new Vector3()); + } // select an initial normal vector perpendicular to the first tangent vector, + // and in the direction of the minimum tangent xyz component + + + normals[0] = new Vector3(); + binormals[0] = new Vector3(); + let min = Number.MAX_VALUE; + const tx = Math.abs(tangents[0].x); + const ty = Math.abs(tangents[0].y); + const tz = Math.abs(tangents[0].z); + + if (tx <= min) { + min = tx; + normal.set(1, 0, 0); + } + + if (ty <= min) { + min = ty; + normal.set(0, 1, 0); + } + + if (tz <= min) { + normal.set(0, 0, 1); + } + + vec.crossVectors(tangents[0], normal).normalize(); + normals[0].crossVectors(tangents[0], vec); + binormals[0].crossVectors(tangents[0], normals[0]); // compute the slowly-varying normal and binormal vectors for each segment on the curve + + for (let i = 1; i <= segments; i++) { + normals[i] = normals[i - 1].clone(); + binormals[i] = binormals[i - 1].clone(); + vec.crossVectors(tangents[i - 1], tangents[i]); + + if (vec.length() > Number.EPSILON) { + vec.normalize(); + const theta = Math.acos(clamp(tangents[i - 1].dot(tangents[i]), -1, 1)); // clamp for floating pt errors + + normals[i].applyMatrix4(mat.makeRotationAxis(vec, theta)); + } + + binormals[i].crossVectors(tangents[i], normals[i]); + } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same + + + if (closed === true) { + let theta = Math.acos(clamp(normals[0].dot(normals[segments]), -1, 1)); + theta /= segments; + + if (tangents[0].dot(vec.crossVectors(normals[0], normals[segments])) > 0) { + theta = -theta; + } + + for (let i = 1; i <= segments; i++) { + // twist a little... + normals[i].applyMatrix4(mat.makeRotationAxis(tangents[i], theta * i)); + binormals[i].crossVectors(tangents[i], normals[i]); + } + } + + return { + tangents: tangents, + normals: normals, + binormals: binormals + }; + } + + clone() { + return new this.constructor().copy(this); + } + + copy(source) { + this.arcLengthDivisions = source.arcLengthDivisions; + return this; + } + + toJSON() { + const data = { + metadata: { + version: 4.5, + type: 'Curve', + generator: 'Curve.toJSON' + } + }; + data.arcLengthDivisions = this.arcLengthDivisions; + data.type = this.type; + return data; + } + + fromJSON(json) { + this.arcLengthDivisions = json.arcLengthDivisions; + return this; + } + + } + + class EllipseCurve extends Curve { + constructor(aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0) { + super(); + this.type = 'EllipseCurve'; + this.aX = aX; + this.aY = aY; + this.xRadius = xRadius; + this.yRadius = yRadius; + this.aStartAngle = aStartAngle; + this.aEndAngle = aEndAngle; + this.aClockwise = aClockwise; + this.aRotation = aRotation; + } + + getPoint(t, optionalTarget) { + const point = optionalTarget || new Vector2(); + const twoPi = Math.PI * 2; + let deltaAngle = this.aEndAngle - this.aStartAngle; + const samePoints = Math.abs(deltaAngle) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI + + while (deltaAngle < 0) deltaAngle += twoPi; + + while (deltaAngle > twoPi) deltaAngle -= twoPi; + + if (deltaAngle < Number.EPSILON) { + if (samePoints) { + deltaAngle = 0; + } else { + deltaAngle = twoPi; + } + } + + if (this.aClockwise === true && !samePoints) { + if (deltaAngle === twoPi) { + deltaAngle = -twoPi; + } else { + deltaAngle = deltaAngle - twoPi; + } + } + + const angle = this.aStartAngle + t * deltaAngle; + let x = this.aX + this.xRadius * Math.cos(angle); + let y = this.aY + this.yRadius * Math.sin(angle); + + if (this.aRotation !== 0) { + const cos = Math.cos(this.aRotation); + const sin = Math.sin(this.aRotation); + const tx = x - this.aX; + const ty = y - this.aY; // Rotate the point about the center of the ellipse. + + x = tx * cos - ty * sin + this.aX; + y = tx * sin + ty * cos + this.aY; + } + + return point.set(x, y); + } + + copy(source) { + super.copy(source); + this.aX = source.aX; + this.aY = source.aY; + this.xRadius = source.xRadius; + this.yRadius = source.yRadius; + this.aStartAngle = source.aStartAngle; + this.aEndAngle = source.aEndAngle; + this.aClockwise = source.aClockwise; + this.aRotation = source.aRotation; + return this; + } + + toJSON() { + const data = super.toJSON(); + data.aX = this.aX; + data.aY = this.aY; + data.xRadius = this.xRadius; + data.yRadius = this.yRadius; + data.aStartAngle = this.aStartAngle; + data.aEndAngle = this.aEndAngle; + data.aClockwise = this.aClockwise; + data.aRotation = this.aRotation; + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.aX = json.aX; + this.aY = json.aY; + this.xRadius = json.xRadius; + this.yRadius = json.yRadius; + this.aStartAngle = json.aStartAngle; + this.aEndAngle = json.aEndAngle; + this.aClockwise = json.aClockwise; + this.aRotation = json.aRotation; + return this; + } + + } + + EllipseCurve.prototype.isEllipseCurve = true; + + class ArcCurve extends EllipseCurve { + constructor(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { + super(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise); + this.type = 'ArcCurve'; + } + + } + + ArcCurve.prototype.isArcCurve = true; + + /** + * Centripetal CatmullRom Curve - which is useful for avoiding + * cusps and self-intersections in non-uniform catmull rom curves. + * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf + * + * curve.type accepts centripetal(default), chordal and catmullrom + * curve.tension is used for catmullrom which defaults to 0.5 + */ + + /* + Based on an optimized c++ solution in + - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ + - http://ideone.com/NoEbVM + + This CubicPoly class could be used for reusing some variables and calculations, + but for three.js curve use, it could be possible inlined and flatten into a single function call + which can be placed in CurveUtils. + */ + + function CubicPoly() { + let c0 = 0, + c1 = 0, + c2 = 0, + c3 = 0; + /* + * Compute coefficients for a cubic polynomial + * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 + * such that + * p(0) = x0, p(1) = x1 + * and + * p'(0) = t0, p'(1) = t1. + */ + + function init(x0, x1, t0, t1) { + c0 = x0; + c1 = t0; + c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1; + c3 = 2 * x0 - 2 * x1 + t0 + t1; + } + + return { + initCatmullRom: function (x0, x1, x2, x3, tension) { + init(x1, x2, tension * (x2 - x0), tension * (x3 - x1)); + }, + initNonuniformCatmullRom: function (x0, x1, x2, x3, dt0, dt1, dt2) { + // compute tangents when parameterized in [t1,t2] + let t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1; + let t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2; // rescale tangents for parametrization in [0,1] + + t1 *= dt1; + t2 *= dt1; + init(x1, x2, t1, t2); + }, + calc: function (t) { + const t2 = t * t; + const t3 = t2 * t; + return c0 + c1 * t + c2 * t2 + c3 * t3; + } + }; + } // + + + const tmp = new Vector3(); + const px = new CubicPoly(), + py = new CubicPoly(), + pz = new CubicPoly(); + + class CatmullRomCurve3 extends Curve { + constructor(points = [], closed = false, curveType = 'centripetal', tension = 0.5) { + super(); + this.type = 'CatmullRomCurve3'; + this.points = points; + this.closed = closed; + this.curveType = curveType; + this.tension = tension; + } + + getPoint(t, optionalTarget = new Vector3()) { + const point = optionalTarget; + const points = this.points; + const l = points.length; + const p = (l - (this.closed ? 0 : 1)) * t; + let intPoint = Math.floor(p); + let weight = p - intPoint; + + if (this.closed) { + intPoint += intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / l) + 1) * l; + } else if (weight === 0 && intPoint === l - 1) { + intPoint = l - 2; + weight = 1; + } + + let p0, p3; // 4 points (p1 & p2 defined below) + + if (this.closed || intPoint > 0) { + p0 = points[(intPoint - 1) % l]; + } else { + // extrapolate first point + tmp.subVectors(points[0], points[1]).add(points[0]); + p0 = tmp; + } + + const p1 = points[intPoint % l]; + const p2 = points[(intPoint + 1) % l]; + + if (this.closed || intPoint + 2 < l) { + p3 = points[(intPoint + 2) % l]; + } else { + // extrapolate last point + tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]); + p3 = tmp; + } + + if (this.curveType === 'centripetal' || this.curveType === 'chordal') { + // init Centripetal / Chordal Catmull-Rom + const pow = this.curveType === 'chordal' ? 0.5 : 0.25; + let dt0 = Math.pow(p0.distanceToSquared(p1), pow); + let dt1 = Math.pow(p1.distanceToSquared(p2), pow); + let dt2 = Math.pow(p2.distanceToSquared(p3), pow); // safety check for repeated points + + if (dt1 < 1e-4) dt1 = 1.0; + if (dt0 < 1e-4) dt0 = dt1; + if (dt2 < 1e-4) dt2 = dt1; + px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2); + py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2); + pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2); + } else if (this.curveType === 'catmullrom') { + px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this.tension); + py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this.tension); + pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this.tension); + } + + point.set(px.calc(weight), py.calc(weight), pz.calc(weight)); + return point; + } + + copy(source) { + super.copy(source); + this.points = []; + + for (let i = 0, l = source.points.length; i < l; i++) { + const point = source.points[i]; + this.points.push(point.clone()); + } + + this.closed = source.closed; + this.curveType = source.curveType; + this.tension = source.tension; + return this; + } + + toJSON() { + const data = super.toJSON(); + data.points = []; + + for (let i = 0, l = this.points.length; i < l; i++) { + const point = this.points[i]; + data.points.push(point.toArray()); + } + + data.closed = this.closed; + data.curveType = this.curveType; + data.tension = this.tension; + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.points = []; + + for (let i = 0, l = json.points.length; i < l; i++) { + const point = json.points[i]; + this.points.push(new Vector3().fromArray(point)); + } + + this.closed = json.closed; + this.curveType = json.curveType; + this.tension = json.tension; + return this; + } + + } + + CatmullRomCurve3.prototype.isCatmullRomCurve3 = true; + + /** + * Bezier Curves formulas obtained from + * http://en.wikipedia.org/wiki/Bézier_curve + */ + function CatmullRom(t, p0, p1, p2, p3) { + const v0 = (p2 - p0) * 0.5; + const v1 = (p3 - p1) * 0.5; + const t2 = t * t; + const t3 = t * t2; + return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1; + } // + + + function QuadraticBezierP0(t, p) { + const k = 1 - t; + return k * k * p; + } + + function QuadraticBezierP1(t, p) { + return 2 * (1 - t) * t * p; + } + + function QuadraticBezierP2(t, p) { + return t * t * p; + } + + function QuadraticBezier(t, p0, p1, p2) { + return QuadraticBezierP0(t, p0) + QuadraticBezierP1(t, p1) + QuadraticBezierP2(t, p2); + } // + + + function CubicBezierP0(t, p) { + const k = 1 - t; + return k * k * k * p; + } + + function CubicBezierP1(t, p) { + const k = 1 - t; + return 3 * k * k * t * p; + } + + function CubicBezierP2(t, p) { + return 3 * (1 - t) * t * t * p; + } + + function CubicBezierP3(t, p) { + return t * t * t * p; + } + + function CubicBezier(t, p0, p1, p2, p3) { + return CubicBezierP0(t, p0) + CubicBezierP1(t, p1) + CubicBezierP2(t, p2) + CubicBezierP3(t, p3); + } + + class CubicBezierCurve extends Curve { + constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2()) { + super(); + this.type = 'CubicBezierCurve'; + this.v0 = v0; + this.v1 = v1; + this.v2 = v2; + this.v3 = v3; + } + + getPoint(t, optionalTarget = new Vector2()) { + const point = optionalTarget; + const v0 = this.v0, + v1 = this.v1, + v2 = this.v2, + v3 = this.v3; + point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y)); + return point; + } + + copy(source) { + super.copy(source); + this.v0.copy(source.v0); + this.v1.copy(source.v1); + this.v2.copy(source.v2); + this.v3.copy(source.v3); + return this; + } + + toJSON() { + const data = super.toJSON(); + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + data.v3 = this.v3.toArray(); + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.v0.fromArray(json.v0); + this.v1.fromArray(json.v1); + this.v2.fromArray(json.v2); + this.v3.fromArray(json.v3); + return this; + } + + } + + CubicBezierCurve.prototype.isCubicBezierCurve = true; + + class CubicBezierCurve3 extends Curve { + constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3()) { + super(); + this.type = 'CubicBezierCurve3'; + this.v0 = v0; + this.v1 = v1; + this.v2 = v2; + this.v3 = v3; + } + + getPoint(t, optionalTarget = new Vector3()) { + const point = optionalTarget; + const v0 = this.v0, + v1 = this.v1, + v2 = this.v2, + v3 = this.v3; + point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y), CubicBezier(t, v0.z, v1.z, v2.z, v3.z)); + return point; + } + + copy(source) { + super.copy(source); + this.v0.copy(source.v0); + this.v1.copy(source.v1); + this.v2.copy(source.v2); + this.v3.copy(source.v3); + return this; + } + + toJSON() { + const data = super.toJSON(); + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + data.v3 = this.v3.toArray(); + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.v0.fromArray(json.v0); + this.v1.fromArray(json.v1); + this.v2.fromArray(json.v2); + this.v3.fromArray(json.v3); + return this; + } + + } + + CubicBezierCurve3.prototype.isCubicBezierCurve3 = true; + + class LineCurve extends Curve { + constructor(v1 = new Vector2(), v2 = new Vector2()) { + super(); + this.type = 'LineCurve'; + this.v1 = v1; + this.v2 = v2; + } + + getPoint(t, optionalTarget = new Vector2()) { + const point = optionalTarget; + + if (t === 1) { + point.copy(this.v2); + } else { + point.copy(this.v2).sub(this.v1); + point.multiplyScalar(t).add(this.v1); + } + + return point; + } // Line curve is linear, so we can overwrite default getPointAt + + + getPointAt(u, optionalTarget) { + return this.getPoint(u, optionalTarget); + } + + getTangent(t, optionalTarget) { + const tangent = optionalTarget || new Vector2(); + tangent.copy(this.v2).sub(this.v1).normalize(); + return tangent; + } + + copy(source) { + super.copy(source); + this.v1.copy(source.v1); + this.v2.copy(source.v2); + return this; + } + + toJSON() { + const data = super.toJSON(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.v1.fromArray(json.v1); + this.v2.fromArray(json.v2); + return this; + } + + } + + LineCurve.prototype.isLineCurve = true; + + class LineCurve3 extends Curve { + constructor(v1 = new Vector3(), v2 = new Vector3()) { + super(); + this.type = 'LineCurve3'; + this.isLineCurve3 = true; + this.v1 = v1; + this.v2 = v2; + } + + getPoint(t, optionalTarget = new Vector3()) { + const point = optionalTarget; + + if (t === 1) { + point.copy(this.v2); + } else { + point.copy(this.v2).sub(this.v1); + point.multiplyScalar(t).add(this.v1); + } + + return point; + } // Line curve is linear, so we can overwrite default getPointAt + + + getPointAt(u, optionalTarget) { + return this.getPoint(u, optionalTarget); + } + + copy(source) { + super.copy(source); + this.v1.copy(source.v1); + this.v2.copy(source.v2); + return this; + } + + toJSON() { + const data = super.toJSON(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.v1.fromArray(json.v1); + this.v2.fromArray(json.v2); + return this; + } + + } + + class QuadraticBezierCurve extends Curve { + constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2()) { + super(); + this.type = 'QuadraticBezierCurve'; + this.v0 = v0; + this.v1 = v1; + this.v2 = v2; + } + + getPoint(t, optionalTarget = new Vector2()) { + const point = optionalTarget; + const v0 = this.v0, + v1 = this.v1, + v2 = this.v2; + point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y)); + return point; + } + + copy(source) { + super.copy(source); + this.v0.copy(source.v0); + this.v1.copy(source.v1); + this.v2.copy(source.v2); + return this; + } + + toJSON() { + const data = super.toJSON(); + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.v0.fromArray(json.v0); + this.v1.fromArray(json.v1); + this.v2.fromArray(json.v2); + return this; + } + + } + + QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true; + + class QuadraticBezierCurve3 extends Curve { + constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3()) { + super(); + this.type = 'QuadraticBezierCurve3'; + this.v0 = v0; + this.v1 = v1; + this.v2 = v2; + } + + getPoint(t, optionalTarget = new Vector3()) { + const point = optionalTarget; + const v0 = this.v0, + v1 = this.v1, + v2 = this.v2; + point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y), QuadraticBezier(t, v0.z, v1.z, v2.z)); + return point; + } + + copy(source) { + super.copy(source); + this.v0.copy(source.v0); + this.v1.copy(source.v1); + this.v2.copy(source.v2); + return this; + } + + toJSON() { + const data = super.toJSON(); + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.v0.fromArray(json.v0); + this.v1.fromArray(json.v1); + this.v2.fromArray(json.v2); + return this; + } + + } + + QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true; + + class SplineCurve extends Curve { + constructor(points = []) { + super(); + this.type = 'SplineCurve'; + this.points = points; + } + + getPoint(t, optionalTarget = new Vector2()) { + const point = optionalTarget; + const points = this.points; + const p = (points.length - 1) * t; + const intPoint = Math.floor(p); + const weight = p - intPoint; + const p0 = points[intPoint === 0 ? intPoint : intPoint - 1]; + const p1 = points[intPoint]; + const p2 = points[intPoint > points.length - 2 ? points.length - 1 : intPoint + 1]; + const p3 = points[intPoint > points.length - 3 ? points.length - 1 : intPoint + 2]; + point.set(CatmullRom(weight, p0.x, p1.x, p2.x, p3.x), CatmullRom(weight, p0.y, p1.y, p2.y, p3.y)); + return point; + } + + copy(source) { + super.copy(source); + this.points = []; + + for (let i = 0, l = source.points.length; i < l; i++) { + const point = source.points[i]; + this.points.push(point.clone()); + } + + return this; + } + + toJSON() { + const data = super.toJSON(); + data.points = []; + + for (let i = 0, l = this.points.length; i < l; i++) { + const point = this.points[i]; + data.points.push(point.toArray()); + } + + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.points = []; + + for (let i = 0, l = json.points.length; i < l; i++) { + const point = json.points[i]; + this.points.push(new Vector2().fromArray(point)); + } + + return this; + } + + } + + SplineCurve.prototype.isSplineCurve = true; + + var Curves = /*#__PURE__*/Object.freeze({ + __proto__: null, + ArcCurve: ArcCurve, + CatmullRomCurve3: CatmullRomCurve3, + CubicBezierCurve: CubicBezierCurve, + CubicBezierCurve3: CubicBezierCurve3, + EllipseCurve: EllipseCurve, + LineCurve: LineCurve, + LineCurve3: LineCurve3, + QuadraticBezierCurve: QuadraticBezierCurve, + QuadraticBezierCurve3: QuadraticBezierCurve3, + SplineCurve: SplineCurve + }); + + /************************************************************** + * Curved Path - a curve path is simply a array of connected + * curves, but retains the api of a curve + **************************************************************/ + + class CurvePath extends Curve { + constructor() { + super(); + this.type = 'CurvePath'; + this.curves = []; + this.autoClose = false; // Automatically closes the path + } + + add(curve) { + this.curves.push(curve); + } + + closePath() { + // Add a line curve if start and end of lines are not connected + const startPoint = this.curves[0].getPoint(0); + const endPoint = this.curves[this.curves.length - 1].getPoint(1); + + if (!startPoint.equals(endPoint)) { + this.curves.push(new LineCurve(endPoint, startPoint)); + } + } // To get accurate point with reference to + // entire path distance at time t, + // following has to be done: + // 1. Length of each sub path have to be known + // 2. Locate and identify type of curve + // 3. Get t for the curve + // 4. Return curve.getPointAt(t') + + + getPoint(t, optionalTarget) { + const d = t * this.getLength(); + const curveLengths = this.getCurveLengths(); + let i = 0; // To think about boundaries points. + + while (i < curveLengths.length) { + if (curveLengths[i] >= d) { + const diff = curveLengths[i] - d; + const curve = this.curves[i]; + const segmentLength = curve.getLength(); + const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength; + return curve.getPointAt(u, optionalTarget); + } + + i++; + } + + return null; // loop where sum != 0, sum > d , sum+1 1 && !points[points.length - 1].equals(points[0])) { + points.push(points[0]); + } + + return points; + } + + copy(source) { + super.copy(source); + this.curves = []; + + for (let i = 0, l = source.curves.length; i < l; i++) { + const curve = source.curves[i]; + this.curves.push(curve.clone()); + } + + this.autoClose = source.autoClose; + return this; + } + + toJSON() { + const data = super.toJSON(); + data.autoClose = this.autoClose; + data.curves = []; + + for (let i = 0, l = this.curves.length; i < l; i++) { + const curve = this.curves[i]; + data.curves.push(curve.toJSON()); + } + + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.autoClose = json.autoClose; + this.curves = []; + + for (let i = 0, l = json.curves.length; i < l; i++) { + const curve = json.curves[i]; + this.curves.push(new Curves[curve.type]().fromJSON(curve)); + } + + return this; + } + + } + + class Path extends CurvePath { + constructor(points) { + super(); + this.type = 'Path'; + this.currentPoint = new Vector2(); + + if (points) { + this.setFromPoints(points); + } + } + + setFromPoints(points) { + this.moveTo(points[0].x, points[0].y); + + for (let i = 1, l = points.length; i < l; i++) { + this.lineTo(points[i].x, points[i].y); + } + + return this; + } + + moveTo(x, y) { + this.currentPoint.set(x, y); // TODO consider referencing vectors instead of copying? + + return this; + } + + lineTo(x, y) { + const curve = new LineCurve(this.currentPoint.clone(), new Vector2(x, y)); + this.curves.push(curve); + this.currentPoint.set(x, y); + return this; + } + + quadraticCurveTo(aCPx, aCPy, aX, aY) { + const curve = new QuadraticBezierCurve(this.currentPoint.clone(), new Vector2(aCPx, aCPy), new Vector2(aX, aY)); + this.curves.push(curve); + this.currentPoint.set(aX, aY); + return this; + } + + bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) { + const curve = new CubicBezierCurve(this.currentPoint.clone(), new Vector2(aCP1x, aCP1y), new Vector2(aCP2x, aCP2y), new Vector2(aX, aY)); + this.curves.push(curve); + this.currentPoint.set(aX, aY); + return this; + } + + splineThru(pts + /*Array of Vector*/ + ) { + const npts = [this.currentPoint.clone()].concat(pts); + const curve = new SplineCurve(npts); + this.curves.push(curve); + this.currentPoint.copy(pts[pts.length - 1]); + return this; + } + + arc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { + const x0 = this.currentPoint.x; + const y0 = this.currentPoint.y; + this.absarc(aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise); + return this; + } + + absarc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { + this.absellipse(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise); + return this; + } + + ellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) { + const x0 = this.currentPoint.x; + const y0 = this.currentPoint.y; + this.absellipse(aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation); + return this; + } + + absellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) { + const curve = new EllipseCurve(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation); + + if (this.curves.length > 0) { + // if a previous curve is present, attempt to join + const firstPoint = curve.getPoint(0); + + if (!firstPoint.equals(this.currentPoint)) { + this.lineTo(firstPoint.x, firstPoint.y); + } + } + + this.curves.push(curve); + const lastPoint = curve.getPoint(1); + this.currentPoint.copy(lastPoint); + return this; + } + + copy(source) { + super.copy(source); + this.currentPoint.copy(source.currentPoint); + return this; + } + + toJSON() { + const data = super.toJSON(); + data.currentPoint = this.currentPoint.toArray(); + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.currentPoint.fromArray(json.currentPoint); + return this; + } + + } + + class Shape extends Path { + constructor(points) { + super(points); + this.uuid = generateUUID(); + this.type = 'Shape'; + this.holes = []; + } + + getPointsHoles(divisions) { + const holesPts = []; + + for (let i = 0, l = this.holes.length; i < l; i++) { + holesPts[i] = this.holes[i].getPoints(divisions); + } + + return holesPts; + } // get points of shape and holes (keypoints based on segments parameter) + + + extractPoints(divisions) { + return { + shape: this.getPoints(divisions), + holes: this.getPointsHoles(divisions) + }; + } + + copy(source) { + super.copy(source); + this.holes = []; + + for (let i = 0, l = source.holes.length; i < l; i++) { + const hole = source.holes[i]; + this.holes.push(hole.clone()); + } + + return this; + } + + toJSON() { + const data = super.toJSON(); + data.uuid = this.uuid; + data.holes = []; + + for (let i = 0, l = this.holes.length; i < l; i++) { + const hole = this.holes[i]; + data.holes.push(hole.toJSON()); + } + + return data; + } + + fromJSON(json) { + super.fromJSON(json); + this.uuid = json.uuid; + this.holes = []; + + for (let i = 0, l = json.holes.length; i < l; i++) { + const hole = json.holes[i]; + this.holes.push(new Path().fromJSON(hole)); + } + + return this; + } + + } + + /** + * Port from https://github.com/mapbox/earcut (v2.2.2) + */ + const Earcut = { + triangulate: function (data, holeIndices, dim = 2) { + const hasHoles = holeIndices && holeIndices.length; + const outerLen = hasHoles ? holeIndices[0] * dim : data.length; + let outerNode = linkedList(data, 0, outerLen, dim, true); + const triangles = []; + if (!outerNode || outerNode.next === outerNode.prev) return triangles; + let minX, minY, maxX, maxY, x, y, invSize; + if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox + + if (data.length > 80 * dim) { + minX = maxX = data[0]; + minY = maxY = data[1]; + + for (let i = dim; i < outerLen; i += dim) { + x = data[i]; + y = data[i + 1]; + if (x < minX) minX = x; + if (y < minY) minY = y; + if (x > maxX) maxX = x; + if (y > maxY) maxY = y; + } // minX, minY and invSize are later used to transform coords into integers for z-order calculation + + + invSize = Math.max(maxX - minX, maxY - minY); + invSize = invSize !== 0 ? 1 / invSize : 0; + } + + earcutLinked(outerNode, triangles, dim, minX, minY, invSize); + return triangles; + } + }; // create a circular doubly linked list from polygon points in the specified winding order + + function linkedList(data, start, end, dim, clockwise) { + let i, last; + + if (clockwise === signedArea(data, start, end, dim) > 0) { + for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last); + } else { + for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last); + } + + if (last && equals(last, last.next)) { + removeNode(last); + last = last.next; + } + + return last; + } // eliminate colinear or duplicate points + + + function filterPoints(start, end) { + if (!start) return start; + if (!end) end = start; + let p = start, + again; + + do { + again = false; + + if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) { + removeNode(p); + p = end = p.prev; + if (p === p.next) break; + again = true; + } else { + p = p.next; + } + } while (again || p !== end); + + return end; + } // main ear slicing loop which triangulates a polygon (given as a linked list) + + + function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) { + if (!ear) return; // interlink polygon nodes in z-order + + if (!pass && invSize) indexCurve(ear, minX, minY, invSize); + let stop = ear, + prev, + next; // iterate through ears, slicing them one by one + + while (ear.prev !== ear.next) { + prev = ear.prev; + next = ear.next; + + if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) { + // cut off the triangle + triangles.push(prev.i / dim); + triangles.push(ear.i / dim); + triangles.push(next.i / dim); + removeNode(ear); // skipping the next vertex leads to less sliver triangles + + ear = next.next; + stop = next.next; + continue; + } + + ear = next; // if we looped through the whole remaining polygon and can't find any more ears + + if (ear === stop) { + // try filtering points and slicing again + if (!pass) { + earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); // if this didn't work, try curing all small self-intersections locally + } else if (pass === 1) { + ear = cureLocalIntersections(filterPoints(ear), triangles, dim); + earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); // as a last resort, try splitting the remaining polygon into two + } else if (pass === 2) { + splitEarcut(ear, triangles, dim, minX, minY, invSize); + } + + break; + } + } + } // check whether a polygon node forms a valid ear with adjacent nodes + + + function isEar(ear) { + const a = ear.prev, + b = ear, + c = ear.next; + if (area(a, b, c) >= 0) return false; // reflex, can't be an ear + // now make sure we don't have other points inside the potential ear + + let p = ear.next.next; + + while (p !== ear.prev) { + if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; + p = p.next; + } + + return true; + } + + function isEarHashed(ear, minX, minY, invSize) { + const a = ear.prev, + b = ear, + c = ear.next; + if (area(a, b, c) >= 0) return false; // reflex, can't be an ear + // triangle bbox; min & max are calculated like this for speed + + const minTX = a.x < b.x ? a.x < c.x ? a.x : c.x : b.x < c.x ? b.x : c.x, + minTY = a.y < b.y ? a.y < c.y ? a.y : c.y : b.y < c.y ? b.y : c.y, + maxTX = a.x > b.x ? a.x > c.x ? a.x : c.x : b.x > c.x ? b.x : c.x, + maxTY = a.y > b.y ? a.y > c.y ? a.y : c.y : b.y > c.y ? b.y : c.y; // z-order range for the current triangle bbox; + + const minZ = zOrder(minTX, minTY, minX, minY, invSize), + maxZ = zOrder(maxTX, maxTY, minX, minY, invSize); + let p = ear.prevZ, + n = ear.nextZ; // look for points inside the triangle in both directions + + while (p && p.z >= minZ && n && n.z <= maxZ) { + if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; + p = p.prevZ; + if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false; + n = n.nextZ; + } // look for remaining points in decreasing z-order + + + while (p && p.z >= minZ) { + if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; + p = p.prevZ; + } // look for remaining points in increasing z-order + + + while (n && n.z <= maxZ) { + if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false; + n = n.nextZ; + } + + return true; + } // go through all polygon nodes and cure small local self-intersections + + + function cureLocalIntersections(start, triangles, dim) { + let p = start; + + do { + const a = p.prev, + b = p.next.next; + + if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) { + triangles.push(a.i / dim); + triangles.push(p.i / dim); + triangles.push(b.i / dim); // remove two nodes involved + + removeNode(p); + removeNode(p.next); + p = start = b; + } + + p = p.next; + } while (p !== start); + + return filterPoints(p); + } // try splitting polygon into two and triangulate them independently + + + function splitEarcut(start, triangles, dim, minX, minY, invSize) { + // look for a valid diagonal that divides the polygon into two + let a = start; + + do { + let b = a.next.next; + + while (b !== a.prev) { + if (a.i !== b.i && isValidDiagonal(a, b)) { + // split the polygon in two by the diagonal + let c = splitPolygon(a, b); // filter colinear points around the cuts + + a = filterPoints(a, a.next); + c = filterPoints(c, c.next); // run earcut on each half + + earcutLinked(a, triangles, dim, minX, minY, invSize); + earcutLinked(c, triangles, dim, minX, minY, invSize); + return; + } + + b = b.next; + } + + a = a.next; + } while (a !== start); + } // link every hole into the outer loop, producing a single-ring polygon without holes + + + function eliminateHoles(data, holeIndices, outerNode, dim) { + const queue = []; + let i, len, start, end, list; + + for (i = 0, len = holeIndices.length; i < len; i++) { + start = holeIndices[i] * dim; + end = i < len - 1 ? holeIndices[i + 1] * dim : data.length; + list = linkedList(data, start, end, dim, false); + if (list === list.next) list.steiner = true; + queue.push(getLeftmost(list)); + } + + queue.sort(compareX); // process holes from left to right + + for (i = 0; i < queue.length; i++) { + eliminateHole(queue[i], outerNode); + outerNode = filterPoints(outerNode, outerNode.next); + } + + return outerNode; + } + + function compareX(a, b) { + return a.x - b.x; + } // find a bridge between vertices that connects hole with an outer ring and and link it + + + function eliminateHole(hole, outerNode) { + outerNode = findHoleBridge(hole, outerNode); + + if (outerNode) { + const b = splitPolygon(outerNode, hole); // filter collinear points around the cuts + + filterPoints(outerNode, outerNode.next); + filterPoints(b, b.next); + } + } // David Eberly's algorithm for finding a bridge between hole and outer polygon + + + function findHoleBridge(hole, outerNode) { + let p = outerNode; + const hx = hole.x; + const hy = hole.y; + let qx = -Infinity, + m; // find a segment intersected by a ray from the hole's leftmost point to the left; + // segment's endpoint with lesser x will be potential connection point + + do { + if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) { + const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y); + + if (x <= hx && x > qx) { + qx = x; + + if (x === hx) { + if (hy === p.y) return p; + if (hy === p.next.y) return p.next; + } + + m = p.x < p.next.x ? p : p.next; + } + } + + p = p.next; + } while (p !== outerNode); + + if (!m) return null; + if (hx === qx) return m; // hole touches outer segment; pick leftmost endpoint + // look for points inside the triangle of hole point, segment intersection and endpoint; + // if there are no points found, we have a valid connection; + // otherwise choose the point of the minimum angle with the ray as connection point + + const stop = m, + mx = m.x, + my = m.y; + let tanMin = Infinity, + tan; + p = m; + + do { + if (hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) { + tan = Math.abs(hy - p.y) / (hx - p.x); // tangential + + if (locallyInside(p, hole) && (tan < tanMin || tan === tanMin && (p.x > m.x || p.x === m.x && sectorContainsSector(m, p)))) { + m = p; + tanMin = tan; + } + } + + p = p.next; + } while (p !== stop); + + return m; + } // whether sector in vertex m contains sector in vertex p in the same coordinates + + + function sectorContainsSector(m, p) { + return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0; + } // interlink polygon nodes in z-order + + + function indexCurve(start, minX, minY, invSize) { + let p = start; + + do { + if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize); + p.prevZ = p.prev; + p.nextZ = p.next; + p = p.next; + } while (p !== start); + + p.prevZ.nextZ = null; + p.prevZ = null; + sortLinked(p); + } // Simon Tatham's linked list merge sort algorithm + // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html + + + function sortLinked(list) { + let i, + p, + q, + e, + tail, + numMerges, + pSize, + qSize, + inSize = 1; + + do { + p = list; + list = null; + tail = null; + numMerges = 0; + + while (p) { + numMerges++; + q = p; + pSize = 0; + + for (i = 0; i < inSize; i++) { + pSize++; + q = q.nextZ; + if (!q) break; + } + + qSize = inSize; + + while (pSize > 0 || qSize > 0 && q) { + if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) { + e = p; + p = p.nextZ; + pSize--; + } else { + e = q; + q = q.nextZ; + qSize--; + } + + if (tail) tail.nextZ = e;else list = e; + e.prevZ = tail; + tail = e; + } + + p = q; + } + + tail.nextZ = null; + inSize *= 2; + } while (numMerges > 1); + + return list; + } // z-order of a point given coords and inverse of the longer side of data bbox + + + function zOrder(x, y, minX, minY, invSize) { + // coords are transformed into non-negative 15-bit integer range + x = 32767 * (x - minX) * invSize; + y = 32767 * (y - minY) * invSize; + x = (x | x << 8) & 0x00FF00FF; + x = (x | x << 4) & 0x0F0F0F0F; + x = (x | x << 2) & 0x33333333; + x = (x | x << 1) & 0x55555555; + y = (y | y << 8) & 0x00FF00FF; + y = (y | y << 4) & 0x0F0F0F0F; + y = (y | y << 2) & 0x33333333; + y = (y | y << 1) & 0x55555555; + return x | y << 1; + } // find the leftmost node of a polygon ring + + + function getLeftmost(start) { + let p = start, + leftmost = start; + + do { + if (p.x < leftmost.x || p.x === leftmost.x && p.y < leftmost.y) leftmost = p; + p = p.next; + } while (p !== start); + + return leftmost; + } // check if a point lies within a convex triangle + + + function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) { + return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0; + } // check if a diagonal between two polygon nodes is valid (lies in polygon interior) + + + function isValidDiagonal(a, b) { + return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && (locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && (area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors + equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case + } // signed area of a triangle + + + function area(p, q, r) { + return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); + } // check if two points are equal + + + function equals(p1, p2) { + return p1.x === p2.x && p1.y === p2.y; + } // check if two segments intersect + + + function intersects(p1, q1, p2, q2) { + const o1 = sign(area(p1, q1, p2)); + const o2 = sign(area(p1, q1, q2)); + const o3 = sign(area(p2, q2, p1)); + const o4 = sign(area(p2, q2, q1)); + if (o1 !== o2 && o3 !== o4) return true; // general case + + if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1 + + if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1 + + if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2 + + if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2 + + return false; + } // for collinear points p, q, r, check if point q lies on segment pr + + + function onSegment(p, q, r) { + return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y); + } + + function sign(num) { + return num > 0 ? 1 : num < 0 ? -1 : 0; + } // check if a polygon diagonal intersects any polygon segments + + + function intersectsPolygon(a, b) { + let p = a; + + do { + if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b)) return true; + p = p.next; + } while (p !== a); + + return false; + } // check if a polygon diagonal is locally inside the polygon + + + function locallyInside(a, b) { + return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0; + } // check if the middle point of a polygon diagonal is inside the polygon + + + function middleInside(a, b) { + let p = a, + inside = false; + const px = (a.x + b.x) / 2, + py = (a.y + b.y) / 2; + + do { + if (p.y > py !== p.next.y > py && p.next.y !== p.y && px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x) inside = !inside; + p = p.next; + } while (p !== a); + + return inside; + } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; + // if one belongs to the outer ring and another to a hole, it merges it into a single ring + + + function splitPolygon(a, b) { + const a2 = new Node(a.i, a.x, a.y), + b2 = new Node(b.i, b.x, b.y), + an = a.next, + bp = b.prev; + a.next = b; + b.prev = a; + a2.next = an; + an.prev = a2; + b2.next = a2; + a2.prev = b2; + bp.next = b2; + b2.prev = bp; + return b2; + } // create a node and optionally link it with previous one (in a circular doubly linked list) + + + function insertNode(i, x, y, last) { + const p = new Node(i, x, y); + + if (!last) { + p.prev = p; + p.next = p; + } else { + p.next = last.next; + p.prev = last; + last.next.prev = p; + last.next = p; + } + + return p; + } + + function removeNode(p) { + p.next.prev = p.prev; + p.prev.next = p.next; + if (p.prevZ) p.prevZ.nextZ = p.nextZ; + if (p.nextZ) p.nextZ.prevZ = p.prevZ; + } + + function Node(i, x, y) { + // vertex index in coordinates array + this.i = i; // vertex coordinates + + this.x = x; + this.y = y; // previous and next vertex nodes in a polygon ring + + this.prev = null; + this.next = null; // z-order curve value + + this.z = null; // previous and next nodes in z-order + + this.prevZ = null; + this.nextZ = null; // indicates whether this is a steiner point + + this.steiner = false; + } + + function signedArea(data, start, end, dim) { + let sum = 0; + + for (let i = start, j = end - dim; i < end; i += dim) { + sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]); + j = i; + } + + return sum; + } + + class ShapeUtils { + // calculate area of the contour polygon + static area(contour) { + const n = contour.length; + let a = 0.0; + + for (let p = n - 1, q = 0; q < n; p = q++) { + a += contour[p].x * contour[q].y - contour[q].x * contour[p].y; + } + + return a * 0.5; + } + + static isClockWise(pts) { + return ShapeUtils.area(pts) < 0; + } + + static triangulateShape(contour, holes) { + const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ] + + const holeIndices = []; // array of hole indices + + const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ] + + removeDupEndPts(contour); + addContour(vertices, contour); // + + let holeIndex = contour.length; + holes.forEach(removeDupEndPts); + + for (let i = 0; i < holes.length; i++) { + holeIndices.push(holeIndex); + holeIndex += holes[i].length; + addContour(vertices, holes[i]); + } // + + + const triangles = Earcut.triangulate(vertices, holeIndices); // + + for (let i = 0; i < triangles.length; i += 3) { + faces.push(triangles.slice(i, i + 3)); + } + + return faces; + } + + } + + function removeDupEndPts(points) { + const l = points.length; + + if (l > 2 && points[l - 1].equals(points[0])) { + points.pop(); + } + } + + function addContour(vertices, contour) { + for (let i = 0; i < contour.length; i++) { + vertices.push(contour[i].x); + vertices.push(contour[i].y); + } + } + + /** + * Creates extruded geometry from a path shape. + * + * parameters = { + * + * curveSegments: , // number of points on the curves + * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too + * depth: , // Depth to extrude the shape + * + * bevelEnabled: , // turn on bevel + * bevelThickness: , // how deep into the original shape bevel goes + * bevelSize: , // how far from shape outline (including bevelOffset) is bevel + * bevelOffset: , // how far from shape outline does bevel start + * bevelSegments: , // number of bevel layers + * + * extrudePath: // curve to extrude shape along + * + * UVGenerator: // object that provides UV generator functions + * + * } + */ + + class ExtrudeGeometry extends BufferGeometry { + constructor(shapes = new Shape([new Vector2(0.5, 0.5), new Vector2(-0.5, 0.5), new Vector2(-0.5, -0.5), new Vector2(0.5, -0.5)]), options = {}) { + super(); + this.type = 'ExtrudeGeometry'; + this.parameters = { + shapes: shapes, + options: options + }; + shapes = Array.isArray(shapes) ? shapes : [shapes]; + const scope = this; + const verticesArray = []; + const uvArray = []; + + for (let i = 0, l = shapes.length; i < l; i++) { + const shape = shapes[i]; + addShape(shape); + } // build geometry + + + this.setAttribute('position', new Float32BufferAttribute(verticesArray, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvArray, 2)); + this.computeVertexNormals(); // functions + + function addShape(shape) { + const placeholder = []; // options + + const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; + const steps = options.steps !== undefined ? options.steps : 1; + let depth = options.depth !== undefined ? options.depth : 1; + let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; + let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 0.2; + let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 0.1; + let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0; + let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; + const extrudePath = options.extrudePath; + const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // deprecated options + + if (options.amount !== undefined) { + console.warn('THREE.ExtrudeBufferGeometry: amount has been renamed to depth.'); + depth = options.amount; + } // + + + let extrudePts, + extrudeByPath = false; + let splineTube, binormal, normal, position2; + + if (extrudePath) { + extrudePts = extrudePath.getSpacedPoints(steps); + extrudeByPath = true; + bevelEnabled = false; // bevels not supported for path extrusion + // SETUP TNB variables + // TODO1 - have a .isClosed in spline? + + splineTube = extrudePath.computeFrenetFrames(steps, false); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); + + binormal = new Vector3(); + normal = new Vector3(); + position2 = new Vector3(); + } // Safeguards if bevels are not enabled + + + if (!bevelEnabled) { + bevelSegments = 0; + bevelThickness = 0; + bevelSize = 0; + bevelOffset = 0; + } // Variables initialization + + + const shapePoints = shape.extractPoints(curveSegments); + let vertices = shapePoints.shape; + const holes = shapePoints.holes; + const reverse = !ShapeUtils.isClockWise(vertices); + + if (reverse) { + vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ... + + for (let h = 0, hl = holes.length; h < hl; h++) { + const ahole = holes[h]; + + if (ShapeUtils.isClockWise(ahole)) { + holes[h] = ahole.reverse(); + } + } + } + + const faces = ShapeUtils.triangulateShape(vertices, holes); + /* Vertices */ + + const contour = vertices; // vertices has all points but contour has only points of circumference + + for (let h = 0, hl = holes.length; h < hl; h++) { + const ahole = holes[h]; + vertices = vertices.concat(ahole); + } + + function scalePt2(pt, vec, size) { + if (!vec) console.error('THREE.ExtrudeGeometry: vec does not exist'); + return vec.clone().multiplyScalar(size).add(pt); + } + + const vlen = vertices.length, + flen = faces.length; // Find directions for point movement + + function getBevelVec(inPt, inPrev, inNext) { + // computes for inPt the corresponding point inPt' on a new contour + // shifted by 1 unit (length of normalized vector) to the left + // if we walk along contour clockwise, this new contour is outside the old one + // + // inPt' is the intersection of the two lines parallel to the two + // adjacent edges of inPt at a distance of 1 unit on the left side. + let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt + // good reading for geometry algorithms (here: line-line intersection) + // http://geomalgorithms.com/a05-_intersect-1.html + + const v_prev_x = inPt.x - inPrev.x, + v_prev_y = inPt.y - inPrev.y; + const v_next_x = inNext.x - inPt.x, + v_next_y = inNext.y - inPt.y; + const v_prev_lensq = v_prev_x * v_prev_x + v_prev_y * v_prev_y; // check for collinear edges + + const collinear0 = v_prev_x * v_next_y - v_prev_y * v_next_x; + + if (Math.abs(collinear0) > Number.EPSILON) { + // not collinear + // length of vectors for normalizing + const v_prev_len = Math.sqrt(v_prev_lensq); + const v_next_len = Math.sqrt(v_next_x * v_next_x + v_next_y * v_next_y); // shift adjacent points by unit vectors to the left + + const ptPrevShift_x = inPrev.x - v_prev_y / v_prev_len; + const ptPrevShift_y = inPrev.y + v_prev_x / v_prev_len; + const ptNextShift_x = inNext.x - v_next_y / v_next_len; + const ptNextShift_y = inNext.y + v_next_x / v_next_len; // scaling factor for v_prev to intersection point + + const sf = ((ptNextShift_x - ptPrevShift_x) * v_next_y - (ptNextShift_y - ptPrevShift_y) * v_next_x) / (v_prev_x * v_next_y - v_prev_y * v_next_x); // vector from inPt to intersection point + + v_trans_x = ptPrevShift_x + v_prev_x * sf - inPt.x; + v_trans_y = ptPrevShift_y + v_prev_y * sf - inPt.y; // Don't normalize!, otherwise sharp corners become ugly + // but prevent crazy spikes + + const v_trans_lensq = v_trans_x * v_trans_x + v_trans_y * v_trans_y; + + if (v_trans_lensq <= 2) { + return new Vector2(v_trans_x, v_trans_y); + } else { + shrink_by = Math.sqrt(v_trans_lensq / 2); + } + } else { + // handle special case of collinear edges + let direction_eq = false; // assumes: opposite + + if (v_prev_x > Number.EPSILON) { + if (v_next_x > Number.EPSILON) { + direction_eq = true; + } + } else { + if (v_prev_x < -Number.EPSILON) { + if (v_next_x < -Number.EPSILON) { + direction_eq = true; + } + } else { + if (Math.sign(v_prev_y) === Math.sign(v_next_y)) { + direction_eq = true; + } + } + } + + if (direction_eq) { + // console.log("Warning: lines are a straight sequence"); + v_trans_x = -v_prev_y; + v_trans_y = v_prev_x; + shrink_by = Math.sqrt(v_prev_lensq); + } else { + // console.log("Warning: lines are a straight spike"); + v_trans_x = v_prev_x; + v_trans_y = v_prev_y; + shrink_by = Math.sqrt(v_prev_lensq / 2); + } + } + + return new Vector2(v_trans_x / shrink_by, v_trans_y / shrink_by); + } + + const contourMovements = []; + + for (let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) { + if (j === il) j = 0; + if (k === il) k = 0; // (j)---(i)---(k) + // console.log('i,j,k', i, j , k) + + contourMovements[i] = getBevelVec(contour[i], contour[j], contour[k]); + } + + const holesMovements = []; + let oneHoleMovements, + verticesMovements = contourMovements.concat(); + + for (let h = 0, hl = holes.length; h < hl; h++) { + const ahole = holes[h]; + oneHoleMovements = []; + + for (let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) { + if (j === il) j = 0; + if (k === il) k = 0; // (j)---(i)---(k) + + oneHoleMovements[i] = getBevelVec(ahole[i], ahole[j], ahole[k]); + } + + holesMovements.push(oneHoleMovements); + verticesMovements = verticesMovements.concat(oneHoleMovements); + } // Loop bevelSegments, 1 for the front, 1 for the back + + + for (let b = 0; b < bevelSegments; b++) { + //for ( b = bevelSegments; b > 0; b -- ) { + const t = b / bevelSegments; + const z = bevelThickness * Math.cos(t * Math.PI / 2); + const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape + + for (let i = 0, il = contour.length; i < il; i++) { + const vert = scalePt2(contour[i], contourMovements[i], bs); + v(vert.x, vert.y, -z); + } // expand holes + + + for (let h = 0, hl = holes.length; h < hl; h++) { + const ahole = holes[h]; + oneHoleMovements = holesMovements[h]; + + for (let i = 0, il = ahole.length; i < il; i++) { + const vert = scalePt2(ahole[i], oneHoleMovements[i], bs); + v(vert.x, vert.y, -z); + } + } + } + + const bs = bevelSize + bevelOffset; // Back facing vertices + + for (let i = 0; i < vlen; i++) { + const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i]; + + if (!extrudeByPath) { + v(vert.x, vert.y, 0); + } else { + // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); + normal.copy(splineTube.normals[0]).multiplyScalar(vert.x); + binormal.copy(splineTube.binormals[0]).multiplyScalar(vert.y); + position2.copy(extrudePts[0]).add(normal).add(binormal); + v(position2.x, position2.y, position2.z); + } + } // Add stepped vertices... + // Including front facing vertices + + + for (let s = 1; s <= steps; s++) { + for (let i = 0; i < vlen; i++) { + const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i]; + + if (!extrudeByPath) { + v(vert.x, vert.y, depth / steps * s); + } else { + // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); + normal.copy(splineTube.normals[s]).multiplyScalar(vert.x); + binormal.copy(splineTube.binormals[s]).multiplyScalar(vert.y); + position2.copy(extrudePts[s]).add(normal).add(binormal); + v(position2.x, position2.y, position2.z); + } + } + } // Add bevel segments planes + //for ( b = 1; b <= bevelSegments; b ++ ) { + + + for (let b = bevelSegments - 1; b >= 0; b--) { + const t = b / bevelSegments; + const z = bevelThickness * Math.cos(t * Math.PI / 2); + const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape + + for (let i = 0, il = contour.length; i < il; i++) { + const vert = scalePt2(contour[i], contourMovements[i], bs); + v(vert.x, vert.y, depth + z); + } // expand holes + + + for (let h = 0, hl = holes.length; h < hl; h++) { + const ahole = holes[h]; + oneHoleMovements = holesMovements[h]; + + for (let i = 0, il = ahole.length; i < il; i++) { + const vert = scalePt2(ahole[i], oneHoleMovements[i], bs); + + if (!extrudeByPath) { + v(vert.x, vert.y, depth + z); + } else { + v(vert.x, vert.y + extrudePts[steps - 1].y, extrudePts[steps - 1].x + z); + } + } + } + } + /* Faces */ + // Top and bottom faces + + + buildLidFaces(); // Sides faces + + buildSideFaces(); ///// Internal functions + + function buildLidFaces() { + const start = verticesArray.length / 3; + + if (bevelEnabled) { + let layer = 0; // steps + 1 + + let offset = vlen * layer; // Bottom faces + + for (let i = 0; i < flen; i++) { + const face = faces[i]; + f3(face[2] + offset, face[1] + offset, face[0] + offset); + } + + layer = steps + bevelSegments * 2; + offset = vlen * layer; // Top faces + + for (let i = 0; i < flen; i++) { + const face = faces[i]; + f3(face[0] + offset, face[1] + offset, face[2] + offset); + } + } else { + // Bottom faces + for (let i = 0; i < flen; i++) { + const face = faces[i]; + f3(face[2], face[1], face[0]); + } // Top faces + + + for (let i = 0; i < flen; i++) { + const face = faces[i]; + f3(face[0] + vlen * steps, face[1] + vlen * steps, face[2] + vlen * steps); + } + } + + scope.addGroup(start, verticesArray.length / 3 - start, 0); + } // Create faces for the z-sides of the shape + + + function buildSideFaces() { + const start = verticesArray.length / 3; + let layeroffset = 0; + sidewalls(contour, layeroffset); + layeroffset += contour.length; + + for (let h = 0, hl = holes.length; h < hl; h++) { + const ahole = holes[h]; + sidewalls(ahole, layeroffset); //, true + + layeroffset += ahole.length; + } + + scope.addGroup(start, verticesArray.length / 3 - start, 1); + } + + function sidewalls(contour, layeroffset) { + let i = contour.length; + + while (--i >= 0) { + const j = i; + let k = i - 1; + if (k < 0) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length); + + for (let s = 0, sl = steps + bevelSegments * 2; s < sl; s++) { + const slen1 = vlen * s; + const slen2 = vlen * (s + 1); + const a = layeroffset + j + slen1, + b = layeroffset + k + slen1, + c = layeroffset + k + slen2, + d = layeroffset + j + slen2; + f4(a, b, c, d); + } + } + } + + function v(x, y, z) { + placeholder.push(x); + placeholder.push(y); + placeholder.push(z); + } + + function f3(a, b, c) { + addVertex(a); + addVertex(b); + addVertex(c); + const nextIndex = verticesArray.length / 3; + const uvs = uvgen.generateTopUV(scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1); + addUV(uvs[0]); + addUV(uvs[1]); + addUV(uvs[2]); + } + + function f4(a, b, c, d) { + addVertex(a); + addVertex(b); + addVertex(d); + addVertex(b); + addVertex(c); + addVertex(d); + const nextIndex = verticesArray.length / 3; + const uvs = uvgen.generateSideWallUV(scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1); + addUV(uvs[0]); + addUV(uvs[1]); + addUV(uvs[3]); + addUV(uvs[1]); + addUV(uvs[2]); + addUV(uvs[3]); + } + + function addVertex(index) { + verticesArray.push(placeholder[index * 3 + 0]); + verticesArray.push(placeholder[index * 3 + 1]); + verticesArray.push(placeholder[index * 3 + 2]); + } + + function addUV(vector2) { + uvArray.push(vector2.x); + uvArray.push(vector2.y); + } + } + } + + toJSON() { + const data = super.toJSON(); + const shapes = this.parameters.shapes; + const options = this.parameters.options; + return toJSON$1(shapes, options, data); + } + + static fromJSON(data, shapes) { + const geometryShapes = []; + + for (let j = 0, jl = data.shapes.length; j < jl; j++) { + const shape = shapes[data.shapes[j]]; + geometryShapes.push(shape); + } + + const extrudePath = data.options.extrudePath; + + if (extrudePath !== undefined) { + data.options.extrudePath = new Curves[extrudePath.type]().fromJSON(extrudePath); + } + + return new ExtrudeGeometry(geometryShapes, data.options); + } + + } + + const WorldUVGenerator = { + generateTopUV: function (geometry, vertices, indexA, indexB, indexC) { + const a_x = vertices[indexA * 3]; + const a_y = vertices[indexA * 3 + 1]; + const b_x = vertices[indexB * 3]; + const b_y = vertices[indexB * 3 + 1]; + const c_x = vertices[indexC * 3]; + const c_y = vertices[indexC * 3 + 1]; + return [new Vector2(a_x, a_y), new Vector2(b_x, b_y), new Vector2(c_x, c_y)]; + }, + generateSideWallUV: function (geometry, vertices, indexA, indexB, indexC, indexD) { + const a_x = vertices[indexA * 3]; + const a_y = vertices[indexA * 3 + 1]; + const a_z = vertices[indexA * 3 + 2]; + const b_x = vertices[indexB * 3]; + const b_y = vertices[indexB * 3 + 1]; + const b_z = vertices[indexB * 3 + 2]; + const c_x = vertices[indexC * 3]; + const c_y = vertices[indexC * 3 + 1]; + const c_z = vertices[indexC * 3 + 2]; + const d_x = vertices[indexD * 3]; + const d_y = vertices[indexD * 3 + 1]; + const d_z = vertices[indexD * 3 + 2]; + + if (Math.abs(a_y - b_y) < Math.abs(a_x - b_x)) { + return [new Vector2(a_x, 1 - a_z), new Vector2(b_x, 1 - b_z), new Vector2(c_x, 1 - c_z), new Vector2(d_x, 1 - d_z)]; + } else { + return [new Vector2(a_y, 1 - a_z), new Vector2(b_y, 1 - b_z), new Vector2(c_y, 1 - c_z), new Vector2(d_y, 1 - d_z)]; + } + } + }; + + function toJSON$1(shapes, options, data) { + data.shapes = []; + + if (Array.isArray(shapes)) { + for (let i = 0, l = shapes.length; i < l; i++) { + const shape = shapes[i]; + data.shapes.push(shape.uuid); + } + } else { + data.shapes.push(shapes.uuid); + } + + if (options.extrudePath !== undefined) data.options.extrudePath = options.extrudePath.toJSON(); + return data; + } + + class IcosahedronGeometry extends PolyhedronGeometry { + constructor(radius = 1, detail = 0) { + const t = (1 + Math.sqrt(5)) / 2; + const vertices = [-1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, 0, -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, t, 0, -1, t, 0, 1, -t, 0, -1, -t, 0, 1]; + const indices = [0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1]; + super(vertices, indices, radius, detail); + this.type = 'IcosahedronGeometry'; + this.parameters = { + radius: radius, + detail: detail + }; + } + + static fromJSON(data) { + return new IcosahedronGeometry(data.radius, data.detail); + } + + } + + class LatheGeometry extends BufferGeometry { + constructor(points = [new Vector2(0, 0.5), new Vector2(0.5, 0), new Vector2(0, -0.5)], segments = 12, phiStart = 0, phiLength = Math.PI * 2) { + super(); + this.type = 'LatheGeometry'; + this.parameters = { + points: points, + segments: segments, + phiStart: phiStart, + phiLength: phiLength + }; + segments = Math.floor(segments); // clamp phiLength so it's in range of [ 0, 2PI ] + + phiLength = clamp(phiLength, 0, Math.PI * 2); // buffers + + const indices = []; + const vertices = []; + const uvs = []; // helper variables + + const inverseSegments = 1.0 / segments; + const vertex = new Vector3(); + const uv = new Vector2(); // generate vertices and uvs + + for (let i = 0; i <= segments; i++) { + const phi = phiStart + i * inverseSegments * phiLength; + const sin = Math.sin(phi); + const cos = Math.cos(phi); + + for (let j = 0; j <= points.length - 1; j++) { + // vertex + vertex.x = points[j].x * sin; + vertex.y = points[j].y; + vertex.z = points[j].x * cos; + vertices.push(vertex.x, vertex.y, vertex.z); // uv + + uv.x = i / segments; + uv.y = j / (points.length - 1); + uvs.push(uv.x, uv.y); + } + } // indices + + + for (let i = 0; i < segments; i++) { + for (let j = 0; j < points.length - 1; j++) { + const base = j + i * points.length; + const a = base; + const b = base + points.length; + const c = base + points.length + 1; + const d = base + 1; // faces + + indices.push(a, b, d); + indices.push(b, c, d); + } + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // generate normals + + this.computeVertexNormals(); // if the geometry is closed, we need to average the normals along the seam. + // because the corresponding vertices are identical (but still have different UVs). + + if (phiLength === Math.PI * 2) { + const normals = this.attributes.normal.array; + const n1 = new Vector3(); + const n2 = new Vector3(); + const n = new Vector3(); // this is the buffer offset for the last line of vertices + + const base = segments * points.length * 3; + + for (let i = 0, j = 0; i < points.length; i++, j += 3) { + // select the normal of the vertex in the first line + n1.x = normals[j + 0]; + n1.y = normals[j + 1]; + n1.z = normals[j + 2]; // select the normal of the vertex in the last line + + n2.x = normals[base + j + 0]; + n2.y = normals[base + j + 1]; + n2.z = normals[base + j + 2]; // average normals + + n.addVectors(n1, n2).normalize(); // assign the new values to both normals + + normals[j + 0] = normals[base + j + 0] = n.x; + normals[j + 1] = normals[base + j + 1] = n.y; + normals[j + 2] = normals[base + j + 2] = n.z; + } + } + } + + static fromJSON(data) { + return new LatheGeometry(data.points, data.segments, data.phiStart, data.phiLength); + } + + } + + class OctahedronGeometry extends PolyhedronGeometry { + constructor(radius = 1, detail = 0) { + const vertices = [1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1]; + const indices = [0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2]; + super(vertices, indices, radius, detail); + this.type = 'OctahedronGeometry'; + this.parameters = { + radius: radius, + detail: detail + }; + } + + static fromJSON(data) { + return new OctahedronGeometry(data.radius, data.detail); + } + + } + + class RingGeometry extends BufferGeometry { + constructor(innerRadius = 0.5, outerRadius = 1, thetaSegments = 8, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2) { + super(); + this.type = 'RingGeometry'; + this.parameters = { + innerRadius: innerRadius, + outerRadius: outerRadius, + thetaSegments: thetaSegments, + phiSegments: phiSegments, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + thetaSegments = Math.max(3, thetaSegments); + phiSegments = Math.max(1, phiSegments); // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // some helper variables + + let radius = innerRadius; + const radiusStep = (outerRadius - innerRadius) / phiSegments; + const vertex = new Vector3(); + const uv = new Vector2(); // generate vertices, normals and uvs + + for (let j = 0; j <= phiSegments; j++) { + for (let i = 0; i <= thetaSegments; i++) { + // values are generate from the inside of the ring to the outside + const segment = thetaStart + i / thetaSegments * thetaLength; // vertex + + vertex.x = radius * Math.cos(segment); + vertex.y = radius * Math.sin(segment); + vertices.push(vertex.x, vertex.y, vertex.z); // normal + + normals.push(0, 0, 1); // uv + + uv.x = (vertex.x / outerRadius + 1) / 2; + uv.y = (vertex.y / outerRadius + 1) / 2; + uvs.push(uv.x, uv.y); + } // increase the radius for next row of vertices + + + radius += radiusStep; + } // indices + + + for (let j = 0; j < phiSegments; j++) { + const thetaSegmentLevel = j * (thetaSegments + 1); + + for (let i = 0; i < thetaSegments; i++) { + const segment = i + thetaSegmentLevel; + const a = segment; + const b = segment + thetaSegments + 1; + const c = segment + thetaSegments + 2; + const d = segment + 1; // faces + + indices.push(a, b, d); + indices.push(b, c, d); + } + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + } + + static fromJSON(data) { + return new RingGeometry(data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength); + } + + } + + class ShapeGeometry extends BufferGeometry { + constructor(shapes = new Shape([new Vector2(0, 0.5), new Vector2(-0.5, -0.5), new Vector2(0.5, -0.5)]), curveSegments = 12) { + super(); + this.type = 'ShapeGeometry'; + this.parameters = { + shapes: shapes, + curveSegments: curveSegments + }; // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // helper variables + + let groupStart = 0; + let groupCount = 0; // allow single and array values for "shapes" parameter + + if (Array.isArray(shapes) === false) { + addShape(shapes); + } else { + for (let i = 0; i < shapes.length; i++) { + addShape(shapes[i]); + this.addGroup(groupStart, groupCount, i); // enables MultiMaterial support + + groupStart += groupCount; + groupCount = 0; + } + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // helper functions + + function addShape(shape) { + const indexOffset = vertices.length / 3; + const points = shape.extractPoints(curveSegments); + let shapeVertices = points.shape; + const shapeHoles = points.holes; // check direction of vertices + + if (ShapeUtils.isClockWise(shapeVertices) === false) { + shapeVertices = shapeVertices.reverse(); + } + + for (let i = 0, l = shapeHoles.length; i < l; i++) { + const shapeHole = shapeHoles[i]; + + if (ShapeUtils.isClockWise(shapeHole) === true) { + shapeHoles[i] = shapeHole.reverse(); + } + } + + const faces = ShapeUtils.triangulateShape(shapeVertices, shapeHoles); // join vertices of inner and outer paths to a single array + + for (let i = 0, l = shapeHoles.length; i < l; i++) { + const shapeHole = shapeHoles[i]; + shapeVertices = shapeVertices.concat(shapeHole); + } // vertices, normals, uvs + + + for (let i = 0, l = shapeVertices.length; i < l; i++) { + const vertex = shapeVertices[i]; + vertices.push(vertex.x, vertex.y, 0); + normals.push(0, 0, 1); + uvs.push(vertex.x, vertex.y); // world uvs + } // incides + + + for (let i = 0, l = faces.length; i < l; i++) { + const face = faces[i]; + const a = face[0] + indexOffset; + const b = face[1] + indexOffset; + const c = face[2] + indexOffset; + indices.push(a, b, c); + groupCount += 3; + } + } + } + + toJSON() { + const data = super.toJSON(); + const shapes = this.parameters.shapes; + return toJSON(shapes, data); + } + + static fromJSON(data, shapes) { + const geometryShapes = []; + + for (let j = 0, jl = data.shapes.length; j < jl; j++) { + const shape = shapes[data.shapes[j]]; + geometryShapes.push(shape); + } + + return new ShapeGeometry(geometryShapes, data.curveSegments); + } + + } + + function toJSON(shapes, data) { + data.shapes = []; + + if (Array.isArray(shapes)) { + for (let i = 0, l = shapes.length; i < l; i++) { + const shape = shapes[i]; + data.shapes.push(shape.uuid); + } + } else { + data.shapes.push(shapes.uuid); + } + + return data; + } + + class SphereGeometry extends BufferGeometry { + constructor(radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI) { + super(); + this.type = 'SphereGeometry'; + this.parameters = { + radius: radius, + widthSegments: widthSegments, + heightSegments: heightSegments, + phiStart: phiStart, + phiLength: phiLength, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + widthSegments = Math.max(3, Math.floor(widthSegments)); + heightSegments = Math.max(2, Math.floor(heightSegments)); + const thetaEnd = Math.min(thetaStart + thetaLength, Math.PI); + let index = 0; + const grid = []; + const vertex = new Vector3(); + const normal = new Vector3(); // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // generate vertices, normals and uvs + + for (let iy = 0; iy <= heightSegments; iy++) { + const verticesRow = []; + const v = iy / heightSegments; // special case for the poles + + let uOffset = 0; + + if (iy == 0 && thetaStart == 0) { + uOffset = 0.5 / widthSegments; + } else if (iy == heightSegments && thetaEnd == Math.PI) { + uOffset = -0.5 / widthSegments; + } + + for (let ix = 0; ix <= widthSegments; ix++) { + const u = ix / widthSegments; // vertex + + vertex.x = -radius * Math.cos(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength); + vertex.y = radius * Math.cos(thetaStart + v * thetaLength); + vertex.z = radius * Math.sin(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength); + vertices.push(vertex.x, vertex.y, vertex.z); // normal + + normal.copy(vertex).normalize(); + normals.push(normal.x, normal.y, normal.z); // uv + + uvs.push(u + uOffset, 1 - v); + verticesRow.push(index++); + } + + grid.push(verticesRow); + } // indices + + + for (let iy = 0; iy < heightSegments; iy++) { + for (let ix = 0; ix < widthSegments; ix++) { + const a = grid[iy][ix + 1]; + const b = grid[iy][ix]; + const c = grid[iy + 1][ix]; + const d = grid[iy + 1][ix + 1]; + if (iy !== 0 || thetaStart > 0) indices.push(a, b, d); + if (iy !== heightSegments - 1 || thetaEnd < Math.PI) indices.push(b, c, d); + } + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + } + + static fromJSON(data) { + return new SphereGeometry(data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength); + } + + } + + class TetrahedronGeometry extends PolyhedronGeometry { + constructor(radius = 1, detail = 0) { + const vertices = [1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1]; + const indices = [2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1]; + super(vertices, indices, radius, detail); + this.type = 'TetrahedronGeometry'; + this.parameters = { + radius: radius, + detail: detail + }; + } + + static fromJSON(data) { + return new TetrahedronGeometry(data.radius, data.detail); + } + + } + + class TorusGeometry extends BufferGeometry { + constructor(radius = 1, tube = 0.4, radialSegments = 8, tubularSegments = 6, arc = Math.PI * 2) { + super(); + this.type = 'TorusGeometry'; + this.parameters = { + radius: radius, + tube: tube, + radialSegments: radialSegments, + tubularSegments: tubularSegments, + arc: arc + }; + radialSegments = Math.floor(radialSegments); + tubularSegments = Math.floor(tubularSegments); // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // helper variables + + const center = new Vector3(); + const vertex = new Vector3(); + const normal = new Vector3(); // generate vertices, normals and uvs + + for (let j = 0; j <= radialSegments; j++) { + for (let i = 0; i <= tubularSegments; i++) { + const u = i / tubularSegments * arc; + const v = j / radialSegments * Math.PI * 2; // vertex + + vertex.x = (radius + tube * Math.cos(v)) * Math.cos(u); + vertex.y = (radius + tube * Math.cos(v)) * Math.sin(u); + vertex.z = tube * Math.sin(v); + vertices.push(vertex.x, vertex.y, vertex.z); // normal + + center.x = radius * Math.cos(u); + center.y = radius * Math.sin(u); + normal.subVectors(vertex, center).normalize(); + normals.push(normal.x, normal.y, normal.z); // uv + + uvs.push(i / tubularSegments); + uvs.push(j / radialSegments); + } + } // generate indices + + + for (let j = 1; j <= radialSegments; j++) { + for (let i = 1; i <= tubularSegments; i++) { + // indices + const a = (tubularSegments + 1) * j + i - 1; + const b = (tubularSegments + 1) * (j - 1) + i - 1; + const c = (tubularSegments + 1) * (j - 1) + i; + const d = (tubularSegments + 1) * j + i; // faces + + indices.push(a, b, d); + indices.push(b, c, d); + } + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); + } + + static fromJSON(data) { + return new TorusGeometry(data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc); + } + + } + + class TorusKnotGeometry extends BufferGeometry { + constructor(radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3) { + super(); + this.type = 'TorusKnotGeometry'; + this.parameters = { + radius: radius, + tube: tube, + tubularSegments: tubularSegments, + radialSegments: radialSegments, + p: p, + q: q + }; + tubularSegments = Math.floor(tubularSegments); + radialSegments = Math.floor(radialSegments); // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; // helper variables + + const vertex = new Vector3(); + const normal = new Vector3(); + const P1 = new Vector3(); + const P2 = new Vector3(); + const B = new Vector3(); + const T = new Vector3(); + const N = new Vector3(); // generate vertices, normals and uvs + + for (let i = 0; i <= tubularSegments; ++i) { + // the radian "u" is used to calculate the position on the torus curve of the current tubular segement + const u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. + // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions + + calculatePositionOnCurve(u, p, q, radius, P1); + calculatePositionOnCurve(u + 0.01, p, q, radius, P2); // calculate orthonormal basis + + T.subVectors(P2, P1); + N.addVectors(P2, P1); + B.crossVectors(T, N); + N.crossVectors(B, T); // normalize B, N. T can be ignored, we don't use it + + B.normalize(); + N.normalize(); + + for (let j = 0; j <= radialSegments; ++j) { + // now calculate the vertices. they are nothing more than an extrusion of the torus curve. + // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. + const v = j / radialSegments * Math.PI * 2; + const cx = -tube * Math.cos(v); + const cy = tube * Math.sin(v); // now calculate the final vertex position. + // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve + + vertex.x = P1.x + (cx * N.x + cy * B.x); + vertex.y = P1.y + (cx * N.y + cy * B.y); + vertex.z = P1.z + (cx * N.z + cy * B.z); + vertices.push(vertex.x, vertex.y, vertex.z); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) + + normal.subVectors(vertex, P1).normalize(); + normals.push(normal.x, normal.y, normal.z); // uv + + uvs.push(i / tubularSegments); + uvs.push(j / radialSegments); + } + } // generate indices + + + for (let j = 1; j <= tubularSegments; j++) { + for (let i = 1; i <= radialSegments; i++) { + // indices + const a = (radialSegments + 1) * (j - 1) + (i - 1); + const b = (radialSegments + 1) * j + (i - 1); + const c = (radialSegments + 1) * j + i; + const d = (radialSegments + 1) * (j - 1) + i; // faces + + indices.push(a, b, d); + indices.push(b, c, d); + } + } // build geometry + + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // this function calculates the current position on the torus curve + + function calculatePositionOnCurve(u, p, q, radius, position) { + const cu = Math.cos(u); + const su = Math.sin(u); + const quOverP = q / p * u; + const cs = Math.cos(quOverP); + position.x = radius * (2 + cs) * 0.5 * cu; + position.y = radius * (2 + cs) * su * 0.5; + position.z = radius * Math.sin(quOverP) * 0.5; + } + } + + static fromJSON(data) { + return new TorusKnotGeometry(data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q); + } + + } + + class TubeGeometry extends BufferGeometry { + constructor(path = new QuadraticBezierCurve3(new Vector3(-1, -1, 0), new Vector3(-1, 1, 0), new Vector3(1, 1, 0)), tubularSegments = 64, radius = 1, radialSegments = 8, closed = false) { + super(); + this.type = 'TubeGeometry'; + this.parameters = { + path: path, + tubularSegments: tubularSegments, + radius: radius, + radialSegments: radialSegments, + closed: closed + }; + const frames = path.computeFrenetFrames(tubularSegments, closed); // expose internals + + this.tangents = frames.tangents; + this.normals = frames.normals; + this.binormals = frames.binormals; // helper variables + + const vertex = new Vector3(); + const normal = new Vector3(); + const uv = new Vector2(); + let P = new Vector3(); // buffer + + const vertices = []; + const normals = []; + const uvs = []; + const indices = []; // create buffer data + + generateBufferData(); // build geometry + + this.setIndex(indices); + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); + this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // functions + + function generateBufferData() { + for (let i = 0; i < tubularSegments; i++) { + generateSegment(i); + } // if the geometry is not closed, generate the last row of vertices and normals + // at the regular position on the given path + // + // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ) + + + generateSegment(closed === false ? tubularSegments : 0); // uvs are generated in a separate function. + // this makes it easy compute correct values for closed geometries + + generateUVs(); // finally create faces + + generateIndices(); + } + + function generateSegment(i) { + // we use getPointAt to sample evenly distributed points from the given path + P = path.getPointAt(i / tubularSegments, P); // retrieve corresponding normal and binormal + + const N = frames.normals[i]; + const B = frames.binormals[i]; // generate normals and vertices for the current segment + + for (let j = 0; j <= radialSegments; j++) { + const v = j / radialSegments * Math.PI * 2; + const sin = Math.sin(v); + const cos = -Math.cos(v); // normal + + normal.x = cos * N.x + sin * B.x; + normal.y = cos * N.y + sin * B.y; + normal.z = cos * N.z + sin * B.z; + normal.normalize(); + normals.push(normal.x, normal.y, normal.z); // vertex + + vertex.x = P.x + radius * normal.x; + vertex.y = P.y + radius * normal.y; + vertex.z = P.z + radius * normal.z; + vertices.push(vertex.x, vertex.y, vertex.z); + } + } + + function generateIndices() { + for (let j = 1; j <= tubularSegments; j++) { + for (let i = 1; i <= radialSegments; i++) { + const a = (radialSegments + 1) * (j - 1) + (i - 1); + const b = (radialSegments + 1) * j + (i - 1); + const c = (radialSegments + 1) * j + i; + const d = (radialSegments + 1) * (j - 1) + i; // faces + + indices.push(a, b, d); + indices.push(b, c, d); + } + } + } + + function generateUVs() { + for (let i = 0; i <= tubularSegments; i++) { + for (let j = 0; j <= radialSegments; j++) { + uv.x = i / tubularSegments; + uv.y = j / radialSegments; + uvs.push(uv.x, uv.y); + } + } + } + } + + toJSON() { + const data = super.toJSON(); + data.path = this.parameters.path.toJSON(); + return data; + } + + static fromJSON(data) { + // This only works for built-in curves (e.g. CatmullRomCurve3). + // User defined curves or instances of CurvePath will not be deserialized. + return new TubeGeometry(new Curves[data.path.type]().fromJSON(data.path), data.tubularSegments, data.radius, data.radialSegments, data.closed); + } + + } + + class WireframeGeometry extends BufferGeometry { + constructor(geometry = null) { + super(); + this.type = 'WireframeGeometry'; + this.parameters = { + geometry: geometry + }; + + if (geometry !== null) { + // buffer + const vertices = []; + const edges = new Set(); // helper variables + + const start = new Vector3(); + const end = new Vector3(); + + if (geometry.index !== null) { + // indexed BufferGeometry + const position = geometry.attributes.position; + const indices = geometry.index; + let groups = geometry.groups; + + if (groups.length === 0) { + groups = [{ + start: 0, + count: indices.count, + materialIndex: 0 + }]; + } // create a data structure that contains all eges without duplicates + + + for (let o = 0, ol = groups.length; o < ol; ++o) { + const group = groups[o]; + const groupStart = group.start; + const groupCount = group.count; + + for (let i = groupStart, l = groupStart + groupCount; i < l; i += 3) { + for (let j = 0; j < 3; j++) { + const index1 = indices.getX(i + j); + const index2 = indices.getX(i + (j + 1) % 3); + start.fromBufferAttribute(position, index1); + end.fromBufferAttribute(position, index2); + + if (isUniqueEdge(start, end, edges) === true) { + vertices.push(start.x, start.y, start.z); + vertices.push(end.x, end.y, end.z); + } + } + } + } + } else { + // non-indexed BufferGeometry + const position = geometry.attributes.position; + + for (let i = 0, l = position.count / 3; i < l; i++) { + for (let j = 0; j < 3; j++) { + // three edges per triangle, an edge is represented as (index1, index2) + // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0) + const index1 = 3 * i + j; + const index2 = 3 * i + (j + 1) % 3; + start.fromBufferAttribute(position, index1); + end.fromBufferAttribute(position, index2); + + if (isUniqueEdge(start, end, edges) === true) { + vertices.push(start.x, start.y, start.z); + vertices.push(end.x, end.y, end.z); + } + } + } + } // build geometry + + + this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + } + } + + } + + function isUniqueEdge(start, end, edges) { + const hash1 = `${start.x},${start.y},${start.z}-${end.x},${end.y},${end.z}`; + const hash2 = `${end.x},${end.y},${end.z}-${start.x},${start.y},${start.z}`; // coincident edge + + if (edges.has(hash1) === true || edges.has(hash2) === true) { + return false; + } else { + edges.add(hash1, hash2); + return true; + } + } + + var Geometries = /*#__PURE__*/Object.freeze({ + __proto__: null, + BoxGeometry: BoxGeometry, + BoxBufferGeometry: BoxGeometry, + CircleGeometry: CircleGeometry, + CircleBufferGeometry: CircleGeometry, + ConeGeometry: ConeGeometry, + ConeBufferGeometry: ConeGeometry, + CylinderGeometry: CylinderGeometry, + CylinderBufferGeometry: CylinderGeometry, + DodecahedronGeometry: DodecahedronGeometry, + DodecahedronBufferGeometry: DodecahedronGeometry, + EdgesGeometry: EdgesGeometry, + ExtrudeGeometry: ExtrudeGeometry, + ExtrudeBufferGeometry: ExtrudeGeometry, + IcosahedronGeometry: IcosahedronGeometry, + IcosahedronBufferGeometry: IcosahedronGeometry, + LatheGeometry: LatheGeometry, + LatheBufferGeometry: LatheGeometry, + OctahedronGeometry: OctahedronGeometry, + OctahedronBufferGeometry: OctahedronGeometry, + PlaneGeometry: PlaneGeometry, + PlaneBufferGeometry: PlaneGeometry, + PolyhedronGeometry: PolyhedronGeometry, + PolyhedronBufferGeometry: PolyhedronGeometry, + RingGeometry: RingGeometry, + RingBufferGeometry: RingGeometry, + ShapeGeometry: ShapeGeometry, + ShapeBufferGeometry: ShapeGeometry, + SphereGeometry: SphereGeometry, + SphereBufferGeometry: SphereGeometry, + TetrahedronGeometry: TetrahedronGeometry, + TetrahedronBufferGeometry: TetrahedronGeometry, + TorusGeometry: TorusGeometry, + TorusBufferGeometry: TorusGeometry, + TorusKnotGeometry: TorusKnotGeometry, + TorusKnotBufferGeometry: TorusKnotGeometry, + TubeGeometry: TubeGeometry, + TubeBufferGeometry: TubeGeometry, + WireframeGeometry: WireframeGeometry + }); + + /** + * parameters = { + * color: + * } + */ + + class ShadowMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'ShadowMaterial'; + this.color = new Color(0x000000); + this.transparent = true; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + return this; + } + + } + + ShadowMaterial.prototype.isShadowMaterial = true; + + /** + * parameters = { + * color: , + * roughness: , + * metalness: , + * opacity: , + * + * map: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * emissive: , + * emissiveIntensity: + * emissiveMap: new THREE.Texture( ), + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * roughnessMap: new THREE.Texture( ), + * + * metalnessMap: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), + * envMapIntensity: + * + * refractionRatio: , + * + * wireframe: , + * wireframeLinewidth: , + * + * flatShading: + * } + */ + + class MeshStandardMaterial extends Material { + constructor(parameters) { + super(); + this.defines = { + 'STANDARD': '' + }; + this.type = 'MeshStandardMaterial'; + this.color = new Color(0xffffff); // diffuse + + this.roughness = 1.0; + this.metalness = 0.0; + this.map = null; + this.lightMap = null; + this.lightMapIntensity = 1.0; + this.aoMap = null; + this.aoMapIntensity = 1.0; + this.emissive = new Color(0x000000); + this.emissiveIntensity = 1.0; + this.emissiveMap = null; + this.bumpMap = null; + this.bumpScale = 1; + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2(1, 1); + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + this.roughnessMap = null; + this.metalnessMap = null; + this.alphaMap = null; + this.envMap = null; + this.envMapIntensity = 1.0; + this.refractionRatio = 0.98; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + this.flatShading = false; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.defines = { + 'STANDARD': '' + }; + this.color.copy(source.color); + this.roughness = source.roughness; + this.metalness = source.metalness; + this.map = source.map; + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + this.emissive.copy(source.emissive); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy(source.normalScale); + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + this.roughnessMap = source.roughnessMap; + this.metalnessMap = source.metalnessMap; + this.alphaMap = source.alphaMap; + this.envMap = source.envMap; + this.envMapIntensity = source.envMapIntensity; + this.refractionRatio = source.refractionRatio; + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + this.flatShading = source.flatShading; + return this; + } + + } + + MeshStandardMaterial.prototype.isMeshStandardMaterial = true; + + /** + * parameters = { + * clearcoat: , + * clearcoatMap: new THREE.Texture( ), + * clearcoatRoughness: , + * clearcoatRoughnessMap: new THREE.Texture( ), + * clearcoatNormalScale: , + * clearcoatNormalMap: new THREE.Texture( ), + * + * ior: , + * reflectivity: , + * + * sheen: , + * sheenTint: , + * sheenRoughness: , + * + * transmission: , + * transmissionMap: new THREE.Texture( ), + * + * thickness: , + * thicknessMap: new THREE.Texture( ), + * attenuationDistance: , + * attenuationTint: , + * + * specularIntensity: , + * specularIntensityhMap: new THREE.Texture( ), + * specularTint: , + * specularTintMap: new THREE.Texture( ) + * } + */ + + class MeshPhysicalMaterial extends MeshStandardMaterial { + constructor(parameters) { + super(); + this.defines = { + 'STANDARD': '', + 'PHYSICAL': '' + }; + this.type = 'MeshPhysicalMaterial'; + this.clearcoatMap = null; + this.clearcoatRoughness = 0.0; + this.clearcoatRoughnessMap = null; + this.clearcoatNormalScale = new Vector2(1, 1); + this.clearcoatNormalMap = null; + this.ior = 1.5; + Object.defineProperty(this, 'reflectivity', { + get: function () { + return clamp(2.5 * (this.ior - 1) / (this.ior + 1), 0, 1); + }, + set: function (reflectivity) { + this.ior = (1 + 0.4 * reflectivity) / (1 - 0.4 * reflectivity); + } + }); + this.sheenTint = new Color(0x000000); + this.sheenRoughness = 1.0; + this.transmissionMap = null; + this.thickness = 0.01; + this.thicknessMap = null; + this.attenuationDistance = 0.0; + this.attenuationTint = new Color(1, 1, 1); + this.specularIntensity = 1.0; + this.specularIntensityMap = null; + this.specularTint = new Color(1, 1, 1); + this.specularTintMap = null; + this._sheen = 0.0; + this._clearcoat = 0; + this._transmission = 0; + this.setValues(parameters); + } + + get sheen() { + return this._sheen; + } + + set sheen(value) { + if (this._sheen > 0 !== value > 0) { + this.version++; + } + + this._sheen = value; + } + + get clearcoat() { + return this._clearcoat; + } + + set clearcoat(value) { + if (this._clearcoat > 0 !== value > 0) { + this.version++; + } + + this._clearcoat = value; + } + + get transmission() { + return this._transmission; + } + + set transmission(value) { + if (this._transmission > 0 !== value > 0) { + this.version++; + } + + this._transmission = value; + } + + copy(source) { + super.copy(source); + this.defines = { + 'STANDARD': '', + 'PHYSICAL': '' + }; + this.clearcoat = source.clearcoat; + this.clearcoatMap = source.clearcoatMap; + this.clearcoatRoughness = source.clearcoatRoughness; + this.clearcoatRoughnessMap = source.clearcoatRoughnessMap; + this.clearcoatNormalMap = source.clearcoatNormalMap; + this.clearcoatNormalScale.copy(source.clearcoatNormalScale); + this.ior = source.ior; + this.sheen = source.sheen; + this.sheenTint.copy(source.sheenTint); + this.sheenRoughness = source.sheenRoughness; + this.transmission = source.transmission; + this.transmissionMap = source.transmissionMap; + this.thickness = source.thickness; + this.thicknessMap = source.thicknessMap; + this.attenuationDistance = source.attenuationDistance; + this.attenuationTint.copy(source.attenuationTint); + this.specularIntensity = source.specularIntensity; + this.specularIntensityMap = source.specularIntensityMap; + this.specularTint.copy(source.specularTint); + this.specularTintMap = source.specularTintMap; + return this; + } + + } + + MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true; + + /** + * parameters = { + * color: , + * specular: , + * shininess: , + * opacity: , + * + * map: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * emissive: , + * emissiveIntensity: + * emissiveMap: new THREE.Texture( ), + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * specularMap: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), + * combine: THREE.MultiplyOperation, + * reflectivity: , + * refractionRatio: , + * + * wireframe: , + * wireframeLinewidth: , + * + * flatShading: + * } + */ + + class MeshPhongMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'MeshPhongMaterial'; + this.color = new Color(0xffffff); // diffuse + + this.specular = new Color(0x111111); + this.shininess = 30; + this.map = null; + this.lightMap = null; + this.lightMapIntensity = 1.0; + this.aoMap = null; + this.aoMapIntensity = 1.0; + this.emissive = new Color(0x000000); + this.emissiveIntensity = 1.0; + this.emissiveMap = null; + this.bumpMap = null; + this.bumpScale = 1; + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2(1, 1); + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + this.specularMap = null; + this.alphaMap = null; + this.envMap = null; + this.combine = MultiplyOperation; + this.reflectivity = 1; + this.refractionRatio = 0.98; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + this.flatShading = false; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.specular.copy(source.specular); + this.shininess = source.shininess; + this.map = source.map; + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + this.emissive.copy(source.emissive); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy(source.normalScale); + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + this.specularMap = source.specularMap; + this.alphaMap = source.alphaMap; + this.envMap = source.envMap; + this.combine = source.combine; + this.reflectivity = source.reflectivity; + this.refractionRatio = source.refractionRatio; + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + this.flatShading = source.flatShading; + return this; + } + + } + + MeshPhongMaterial.prototype.isMeshPhongMaterial = true; + + /** + * parameters = { + * color: , + * + * map: new THREE.Texture( ), + * gradientMap: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * emissive: , + * emissiveIntensity: + * emissiveMap: new THREE.Texture( ), + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * alphaMap: new THREE.Texture( ), + * + * wireframe: , + * wireframeLinewidth: , + * + * } + */ + + class MeshToonMaterial extends Material { + constructor(parameters) { + super(); + this.defines = { + 'TOON': '' + }; + this.type = 'MeshToonMaterial'; + this.color = new Color(0xffffff); + this.map = null; + this.gradientMap = null; + this.lightMap = null; + this.lightMapIntensity = 1.0; + this.aoMap = null; + this.aoMapIntensity = 1.0; + this.emissive = new Color(0x000000); + this.emissiveIntensity = 1.0; + this.emissiveMap = null; + this.bumpMap = null; + this.bumpScale = 1; + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2(1, 1); + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + this.alphaMap = null; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.map = source.map; + this.gradientMap = source.gradientMap; + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + this.emissive.copy(source.emissive); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy(source.normalScale); + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + this.alphaMap = source.alphaMap; + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + return this; + } + + } + + MeshToonMaterial.prototype.isMeshToonMaterial = true; + + /** + * parameters = { + * opacity: , + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * wireframe: , + * wireframeLinewidth: + * + * flatShading: + * } + */ + + class MeshNormalMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'MeshNormalMaterial'; + this.bumpMap = null; + this.bumpScale = 1; + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2(1, 1); + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.fog = false; + this.flatShading = false; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy(source.normalScale); + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.flatShading = source.flatShading; + return this; + } + + } + + MeshNormalMaterial.prototype.isMeshNormalMaterial = true; + + /** + * parameters = { + * color: , + * opacity: , + * + * map: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * emissive: , + * emissiveIntensity: + * emissiveMap: new THREE.Texture( ), + * + * specularMap: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), + * combine: THREE.Multiply, + * reflectivity: , + * refractionRatio: , + * + * wireframe: , + * wireframeLinewidth: , + * + * } + */ + + class MeshLambertMaterial extends Material { + constructor(parameters) { + super(); + this.type = 'MeshLambertMaterial'; + this.color = new Color(0xffffff); // diffuse + + this.map = null; + this.lightMap = null; + this.lightMapIntensity = 1.0; + this.aoMap = null; + this.aoMapIntensity = 1.0; + this.emissive = new Color(0x000000); + this.emissiveIntensity = 1.0; + this.emissiveMap = null; + this.specularMap = null; + this.alphaMap = null; + this.envMap = null; + this.combine = MultiplyOperation; + this.reflectivity = 1; + this.refractionRatio = 0.98; + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.map = source.map; + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + this.emissive.copy(source.emissive); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + this.specularMap = source.specularMap; + this.alphaMap = source.alphaMap; + this.envMap = source.envMap; + this.combine = source.combine; + this.reflectivity = source.reflectivity; + this.refractionRatio = source.refractionRatio; + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + return this; + } + + } + + MeshLambertMaterial.prototype.isMeshLambertMaterial = true; + + /** + * parameters = { + * color: , + * opacity: , + * + * matcap: new THREE.Texture( ), + * + * map: new THREE.Texture( ), + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * alphaMap: new THREE.Texture( ), + * + * flatShading: + * } + */ + + class MeshMatcapMaterial extends Material { + constructor(parameters) { + super(); + this.defines = { + 'MATCAP': '' + }; + this.type = 'MeshMatcapMaterial'; + this.color = new Color(0xffffff); // diffuse + + this.matcap = null; + this.map = null; + this.bumpMap = null; + this.bumpScale = 1; + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2(1, 1); + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + this.alphaMap = null; + this.flatShading = false; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.defines = { + 'MATCAP': '' + }; + this.color.copy(source.color); + this.matcap = source.matcap; + this.map = source.map; + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy(source.normalScale); + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + this.alphaMap = source.alphaMap; + this.flatShading = source.flatShading; + return this; + } + + } + + MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true; + + /** + * parameters = { + * color: , + * opacity: , + * + * linewidth: , + * + * scale: , + * dashSize: , + * gapSize: + * } + */ + + class LineDashedMaterial extends LineBasicMaterial { + constructor(parameters) { + super(); + this.type = 'LineDashedMaterial'; + this.scale = 1; + this.dashSize = 3; + this.gapSize = 1; + this.setValues(parameters); + } + + copy(source) { + super.copy(source); + this.scale = source.scale; + this.dashSize = source.dashSize; + this.gapSize = source.gapSize; + return this; + } + + } + + LineDashedMaterial.prototype.isLineDashedMaterial = true; + + var Materials = /*#__PURE__*/Object.freeze({ + __proto__: null, + ShadowMaterial: ShadowMaterial, + SpriteMaterial: SpriteMaterial, + RawShaderMaterial: RawShaderMaterial, + ShaderMaterial: ShaderMaterial, + PointsMaterial: PointsMaterial, + MeshPhysicalMaterial: MeshPhysicalMaterial, + MeshStandardMaterial: MeshStandardMaterial, + MeshPhongMaterial: MeshPhongMaterial, + MeshToonMaterial: MeshToonMaterial, + MeshNormalMaterial: MeshNormalMaterial, + MeshLambertMaterial: MeshLambertMaterial, + MeshDepthMaterial: MeshDepthMaterial, + MeshDistanceMaterial: MeshDistanceMaterial, + MeshBasicMaterial: MeshBasicMaterial, + MeshMatcapMaterial: MeshMatcapMaterial, + LineDashedMaterial: LineDashedMaterial, + LineBasicMaterial: LineBasicMaterial, + Material: Material + }); + + const AnimationUtils = { + // same as Array.prototype.slice, but also works on typed arrays + arraySlice: function (array, from, to) { + if (AnimationUtils.isTypedArray(array)) { + // in ios9 array.subarray(from, undefined) will return empty array + // but array.subarray(from) or array.subarray(from, len) is correct + return new array.constructor(array.subarray(from, to !== undefined ? to : array.length)); + } + + return array.slice(from, to); + }, + // converts an array to a specific type + convertArray: function (array, type, forceClone) { + if (!array || // let 'undefined' and 'null' pass + !forceClone && array.constructor === type) return array; + + if (typeof type.BYTES_PER_ELEMENT === 'number') { + return new type(array); // create typed array + } + + return Array.prototype.slice.call(array); // create Array + }, + isTypedArray: function (object) { + return ArrayBuffer.isView(object) && !(object instanceof DataView); + }, + // returns an array by which times and values can be sorted + getKeyframeOrder: function (times) { + function compareTime(i, j) { + return times[i] - times[j]; + } + + const n = times.length; + const result = new Array(n); + + for (let i = 0; i !== n; ++i) result[i] = i; + + result.sort(compareTime); + return result; + }, + // uses the array previously returned by 'getKeyframeOrder' to sort data + sortedArray: function (values, stride, order) { + const nValues = values.length; + const result = new values.constructor(nValues); + + for (let i = 0, dstOffset = 0; dstOffset !== nValues; ++i) { + const srcOffset = order[i] * stride; + + for (let j = 0; j !== stride; ++j) { + result[dstOffset++] = values[srcOffset + j]; + } + } + + return result; + }, + // function for parsing AOS keyframe formats + flattenJSON: function (jsonKeys, times, values, valuePropertyName) { + let i = 1, + key = jsonKeys[0]; + + while (key !== undefined && key[valuePropertyName] === undefined) { + key = jsonKeys[i++]; + } + + if (key === undefined) return; // no data + + let value = key[valuePropertyName]; + if (value === undefined) return; // no data + + if (Array.isArray(value)) { + do { + value = key[valuePropertyName]; + + if (value !== undefined) { + times.push(key.time); + values.push.apply(values, value); // push all elements + } + + key = jsonKeys[i++]; + } while (key !== undefined); + } else if (value.toArray !== undefined) { + // ...assume THREE.Math-ish + do { + value = key[valuePropertyName]; + + if (value !== undefined) { + times.push(key.time); + value.toArray(values, values.length); + } + + key = jsonKeys[i++]; + } while (key !== undefined); + } else { + // otherwise push as-is + do { + value = key[valuePropertyName]; + + if (value !== undefined) { + times.push(key.time); + values.push(value); + } + + key = jsonKeys[i++]; + } while (key !== undefined); + } + }, + subclip: function (sourceClip, name, startFrame, endFrame, fps = 30) { + const clip = sourceClip.clone(); + clip.name = name; + const tracks = []; + + for (let i = 0; i < clip.tracks.length; ++i) { + const track = clip.tracks[i]; + const valueSize = track.getValueSize(); + const times = []; + const values = []; + + for (let j = 0; j < track.times.length; ++j) { + const frame = track.times[j] * fps; + if (frame < startFrame || frame >= endFrame) continue; + times.push(track.times[j]); + + for (let k = 0; k < valueSize; ++k) { + values.push(track.values[j * valueSize + k]); + } + } + + if (times.length === 0) continue; + track.times = AnimationUtils.convertArray(times, track.times.constructor); + track.values = AnimationUtils.convertArray(values, track.values.constructor); + tracks.push(track); + } + + clip.tracks = tracks; // find minimum .times value across all tracks in the trimmed clip + + let minStartTime = Infinity; + + for (let i = 0; i < clip.tracks.length; ++i) { + if (minStartTime > clip.tracks[i].times[0]) { + minStartTime = clip.tracks[i].times[0]; + } + } // shift all tracks such that clip begins at t=0 + + + for (let i = 0; i < clip.tracks.length; ++i) { + clip.tracks[i].shift(-1 * minStartTime); + } + + clip.resetDuration(); + return clip; + }, + makeClipAdditive: function (targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30) { + if (fps <= 0) fps = 30; + const numTracks = referenceClip.tracks.length; + const referenceTime = referenceFrame / fps; // Make each track's values relative to the values at the reference frame + + for (let i = 0; i < numTracks; ++i) { + const referenceTrack = referenceClip.tracks[i]; + const referenceTrackType = referenceTrack.ValueTypeName; // Skip this track if it's non-numeric + + if (referenceTrackType === 'bool' || referenceTrackType === 'string') continue; // Find the track in the target clip whose name and type matches the reference track + + const targetTrack = targetClip.tracks.find(function (track) { + return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType; + }); + if (targetTrack === undefined) continue; + let referenceOffset = 0; + const referenceValueSize = referenceTrack.getValueSize(); + + if (referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) { + referenceOffset = referenceValueSize / 3; + } + + let targetOffset = 0; + const targetValueSize = targetTrack.getValueSize(); + + if (targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) { + targetOffset = targetValueSize / 3; + } + + const lastIndex = referenceTrack.times.length - 1; + let referenceValue; // Find the value to subtract out of the track + + if (referenceTime <= referenceTrack.times[0]) { + // Reference frame is earlier than the first keyframe, so just use the first keyframe + const startIndex = referenceOffset; + const endIndex = referenceValueSize - referenceOffset; + referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex); + } else if (referenceTime >= referenceTrack.times[lastIndex]) { + // Reference frame is after the last keyframe, so just use the last keyframe + const startIndex = lastIndex * referenceValueSize + referenceOffset; + const endIndex = startIndex + referenceValueSize - referenceOffset; + referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex); + } else { + // Interpolate to the reference value + const interpolant = referenceTrack.createInterpolant(); + const startIndex = referenceOffset; + const endIndex = referenceValueSize - referenceOffset; + interpolant.evaluate(referenceTime); + referenceValue = AnimationUtils.arraySlice(interpolant.resultBuffer, startIndex, endIndex); + } // Conjugate the quaternion + + + if (referenceTrackType === 'quaternion') { + const referenceQuat = new Quaternion().fromArray(referenceValue).normalize().conjugate(); + referenceQuat.toArray(referenceValue); + } // Subtract the reference value from all of the track values + + + const numTimes = targetTrack.times.length; + + for (let j = 0; j < numTimes; ++j) { + const valueStart = j * targetValueSize + targetOffset; + + if (referenceTrackType === 'quaternion') { + // Multiply the conjugate for quaternion track types + Quaternion.multiplyQuaternionsFlat(targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart); + } else { + const valueEnd = targetValueSize - targetOffset * 2; // Subtract each value for all other numeric track types + + for (let k = 0; k < valueEnd; ++k) { + targetTrack.values[valueStart + k] -= referenceValue[k]; + } + } + } + } + + targetClip.blendMode = AdditiveAnimationBlendMode; + return targetClip; + } + }; + + /** + * Abstract base class of interpolants over parametric samples. + * + * The parameter domain is one dimensional, typically the time or a path + * along a curve defined by the data. + * + * The sample values can have any dimensionality and derived classes may + * apply special interpretations to the data. + * + * This class provides the interval seek in a Template Method, deferring + * the actual interpolation to derived classes. + * + * Time complexity is O(1) for linear access crossing at most two points + * and O(log N) for random access, where N is the number of positions. + * + * References: + * + * http://www.oodesign.com/template-method-pattern.html + * + */ + class Interpolant { + constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { + this.parameterPositions = parameterPositions; + this._cachedIndex = 0; + this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor(sampleSize); + this.sampleValues = sampleValues; + this.valueSize = sampleSize; + this.settings = null; + this.DefaultSettings_ = {}; + } + + evaluate(t) { + const pp = this.parameterPositions; + let i1 = this._cachedIndex, + t1 = pp[i1], + t0 = pp[i1 - 1]; + + validate_interval: { + seek: { + let right; + + linear_scan: { + //- See http://jsperf.com/comparison-to-undefined/3 + //- slower code: + //- + //- if ( t >= t1 || t1 === undefined ) { + forward_scan: if (!(t < t1)) { + for (let giveUpAt = i1 + 2;;) { + if (t1 === undefined) { + if (t < t0) break forward_scan; // after end + + i1 = pp.length; + this._cachedIndex = i1; + return this.afterEnd_(i1 - 1, t, t0); + } + + if (i1 === giveUpAt) break; // this loop + + t0 = t1; + t1 = pp[++i1]; + + if (t < t1) { + // we have arrived at the sought interval + break seek; + } + } // prepare binary search on the right side of the index + + + right = pp.length; + break linear_scan; + } //- slower code: + //- if ( t < t0 || t0 === undefined ) { + + + if (!(t >= t0)) { + // looping? + const t1global = pp[1]; + + if (t < t1global) { + i1 = 2; // + 1, using the scan for the details + + t0 = t1global; + } // linear reverse scan + + + for (let giveUpAt = i1 - 2;;) { + if (t0 === undefined) { + // before start + this._cachedIndex = 0; + return this.beforeStart_(0, t, t1); + } + + if (i1 === giveUpAt) break; // this loop + + t1 = t0; + t0 = pp[--i1 - 1]; + + if (t >= t0) { + // we have arrived at the sought interval + break seek; + } + } // prepare binary search on the left side of the index + + + right = i1; + i1 = 0; + break linear_scan; + } // the interval is valid + + + break validate_interval; + } // linear scan + // binary search + + + while (i1 < right) { + const mid = i1 + right >>> 1; + + if (t < pp[mid]) { + right = mid; + } else { + i1 = mid + 1; + } + } + + t1 = pp[i1]; + t0 = pp[i1 - 1]; // check boundary cases, again + + if (t0 === undefined) { + this._cachedIndex = 0; + return this.beforeStart_(0, t, t1); + } + + if (t1 === undefined) { + i1 = pp.length; + this._cachedIndex = i1; + return this.afterEnd_(i1 - 1, t0, t); + } + } // seek + + + this._cachedIndex = i1; + this.intervalChanged_(i1, t0, t1); + } // validate_interval + + + return this.interpolate_(i1, t0, t, t1); + } + + getSettings_() { + return this.settings || this.DefaultSettings_; + } + + copySampleValue_(index) { + // copies a sample value to the result buffer + const result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + offset = index * stride; + + for (let i = 0; i !== stride; ++i) { + result[i] = values[offset + i]; + } + + return result; + } // Template methods for derived classes: + + + interpolate_() { + throw new Error('call to abstract method'); // implementations shall return this.resultBuffer + } + + intervalChanged_() {// empty + } + + } // ALIAS DEFINITIONS + + + Interpolant.prototype.beforeStart_ = Interpolant.prototype.copySampleValue_; + Interpolant.prototype.afterEnd_ = Interpolant.prototype.copySampleValue_; + + /** + * Fast and simple cubic spline interpolant. + * + * It was derived from a Hermitian construction setting the first derivative + * at each sample position to the linear slope between neighboring positions + * over their parameter interval. + */ + + class CubicInterpolant extends Interpolant { + constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { + super(parameterPositions, sampleValues, sampleSize, resultBuffer); + this._weightPrev = -0; + this._offsetPrev = -0; + this._weightNext = -0; + this._offsetNext = -0; + this.DefaultSettings_ = { + endingStart: ZeroCurvatureEnding, + endingEnd: ZeroCurvatureEnding + }; + } + + intervalChanged_(i1, t0, t1) { + const pp = this.parameterPositions; + let iPrev = i1 - 2, + iNext = i1 + 1, + tPrev = pp[iPrev], + tNext = pp[iNext]; + + if (tPrev === undefined) { + switch (this.getSettings_().endingStart) { + case ZeroSlopeEnding: + // f'(t0) = 0 + iPrev = i1; + tPrev = 2 * t0 - t1; + break; + + case WrapAroundEnding: + // use the other end of the curve + iPrev = pp.length - 2; + tPrev = t0 + pp[iPrev] - pp[iPrev + 1]; + break; + + default: + // ZeroCurvatureEnding + // f''(t0) = 0 a.k.a. Natural Spline + iPrev = i1; + tPrev = t1; + } + } + + if (tNext === undefined) { + switch (this.getSettings_().endingEnd) { + case ZeroSlopeEnding: + // f'(tN) = 0 + iNext = i1; + tNext = 2 * t1 - t0; + break; + + case WrapAroundEnding: + // use the other end of the curve + iNext = 1; + tNext = t1 + pp[1] - pp[0]; + break; + + default: + // ZeroCurvatureEnding + // f''(tN) = 0, a.k.a. Natural Spline + iNext = i1 - 1; + tNext = t0; + } + } + + const halfDt = (t1 - t0) * 0.5, + stride = this.valueSize; + this._weightPrev = halfDt / (t0 - tPrev); + this._weightNext = halfDt / (tNext - t1); + this._offsetPrev = iPrev * stride; + this._offsetNext = iNext * stride; + } + + interpolate_(i1, t0, t, t1) { + const result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + o1 = i1 * stride, + o0 = o1 - stride, + oP = this._offsetPrev, + oN = this._offsetNext, + wP = this._weightPrev, + wN = this._weightNext, + p = (t - t0) / (t1 - t0), + pp = p * p, + ppp = pp * p; // evaluate polynomials + + const sP = -wP * ppp + 2 * wP * pp - wP * p; + const s0 = (1 + wP) * ppp + (-1.5 - 2 * wP) * pp + (-0.5 + wP) * p + 1; + const s1 = (-1 - wN) * ppp + (1.5 + wN) * pp + 0.5 * p; + const sN = wN * ppp - wN * pp; // combine data linearly + + for (let i = 0; i !== stride; ++i) { + result[i] = sP * values[oP + i] + s0 * values[o0 + i] + s1 * values[o1 + i] + sN * values[oN + i]; + } + + return result; + } + + } + + class LinearInterpolant extends Interpolant { + constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { + super(parameterPositions, sampleValues, sampleSize, resultBuffer); + } + + interpolate_(i1, t0, t, t1) { + const result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + offset1 = i1 * stride, + offset0 = offset1 - stride, + weight1 = (t - t0) / (t1 - t0), + weight0 = 1 - weight1; + + for (let i = 0; i !== stride; ++i) { + result[i] = values[offset0 + i] * weight0 + values[offset1 + i] * weight1; + } + + return result; + } + + } + + /** + * + * Interpolant that evaluates to the sample value at the position preceeding + * the parameter. + */ + + class DiscreteInterpolant extends Interpolant { + constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { + super(parameterPositions, sampleValues, sampleSize, resultBuffer); + } + + interpolate_(i1 + /*, t0, t, t1 */ + ) { + return this.copySampleValue_(i1 - 1); + } + + } + + class KeyframeTrack { + constructor(name, times, values, interpolation) { + if (name === undefined) throw new Error('THREE.KeyframeTrack: track name is undefined'); + if (times === undefined || times.length === 0) throw new Error('THREE.KeyframeTrack: no keyframes in track named ' + name); + this.name = name; + this.times = AnimationUtils.convertArray(times, this.TimeBufferType); + this.values = AnimationUtils.convertArray(values, this.ValueBufferType); + this.setInterpolation(interpolation || this.DefaultInterpolation); + } // Serialization (in static context, because of constructor invocation + // and automatic invocation of .toJSON): + + + static toJSON(track) { + const trackType = track.constructor; + let json; // derived classes can define a static toJSON method + + if (trackType.toJSON !== this.toJSON) { + json = trackType.toJSON(track); + } else { + // by default, we assume the data can be serialized as-is + json = { + 'name': track.name, + 'times': AnimationUtils.convertArray(track.times, Array), + 'values': AnimationUtils.convertArray(track.values, Array) + }; + const interpolation = track.getInterpolation(); + + if (interpolation !== track.DefaultInterpolation) { + json.interpolation = interpolation; + } + } + + json.type = track.ValueTypeName; // mandatory + + return json; + } + + InterpolantFactoryMethodDiscrete(result) { + return new DiscreteInterpolant(this.times, this.values, this.getValueSize(), result); + } + + InterpolantFactoryMethodLinear(result) { + return new LinearInterpolant(this.times, this.values, this.getValueSize(), result); + } + + InterpolantFactoryMethodSmooth(result) { + return new CubicInterpolant(this.times, this.values, this.getValueSize(), result); + } + + setInterpolation(interpolation) { + let factoryMethod; + + switch (interpolation) { + case InterpolateDiscrete: + factoryMethod = this.InterpolantFactoryMethodDiscrete; + break; + + case InterpolateLinear: + factoryMethod = this.InterpolantFactoryMethodLinear; + break; + + case InterpolateSmooth: + factoryMethod = this.InterpolantFactoryMethodSmooth; + break; + } + + if (factoryMethod === undefined) { + const message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name; + + if (this.createInterpolant === undefined) { + // fall back to default, unless the default itself is messed up + if (interpolation !== this.DefaultInterpolation) { + this.setInterpolation(this.DefaultInterpolation); + } else { + throw new Error(message); // fatal, in this case + } + } + + console.warn('THREE.KeyframeTrack:', message); + return this; + } + + this.createInterpolant = factoryMethod; + return this; + } + + getInterpolation() { + switch (this.createInterpolant) { + case this.InterpolantFactoryMethodDiscrete: + return InterpolateDiscrete; + + case this.InterpolantFactoryMethodLinear: + return InterpolateLinear; + + case this.InterpolantFactoryMethodSmooth: + return InterpolateSmooth; + } + } + + getValueSize() { + return this.values.length / this.times.length; + } // move all keyframes either forwards or backwards in time + + + shift(timeOffset) { + if (timeOffset !== 0.0) { + const times = this.times; + + for (let i = 0, n = times.length; i !== n; ++i) { + times[i] += timeOffset; + } + } + + return this; + } // scale all keyframe times by a factor (useful for frame <-> seconds conversions) + + + scale(timeScale) { + if (timeScale !== 1.0) { + const times = this.times; + + for (let i = 0, n = times.length; i !== n; ++i) { + times[i] *= timeScale; + } + } + + return this; + } // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. + // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values + + + trim(startTime, endTime) { + const times = this.times, + nKeys = times.length; + let from = 0, + to = nKeys - 1; + + while (from !== nKeys && times[from] < startTime) { + ++from; + } + + while (to !== -1 && times[to] > endTime) { + --to; + } + + ++to; // inclusive -> exclusive bound + + if (from !== 0 || to !== nKeys) { + // empty tracks are forbidden, so keep at least one keyframe + if (from >= to) { + to = Math.max(to, 1); + from = to - 1; + } + + const stride = this.getValueSize(); + this.times = AnimationUtils.arraySlice(times, from, to); + this.values = AnimationUtils.arraySlice(this.values, from * stride, to * stride); + } + + return this; + } // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable + + + validate() { + let valid = true; + const valueSize = this.getValueSize(); + + if (valueSize - Math.floor(valueSize) !== 0) { + console.error('THREE.KeyframeTrack: Invalid value size in track.', this); + valid = false; + } + + const times = this.times, + values = this.values, + nKeys = times.length; + + if (nKeys === 0) { + console.error('THREE.KeyframeTrack: Track is empty.', this); + valid = false; + } + + let prevTime = null; + + for (let i = 0; i !== nKeys; i++) { + const currTime = times[i]; + + if (typeof currTime === 'number' && isNaN(currTime)) { + console.error('THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime); + valid = false; + break; + } + + if (prevTime !== null && prevTime > currTime) { + console.error('THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime); + valid = false; + break; + } + + prevTime = currTime; + } + + if (values !== undefined) { + if (AnimationUtils.isTypedArray(values)) { + for (let i = 0, n = values.length; i !== n; ++i) { + const value = values[i]; + + if (isNaN(value)) { + console.error('THREE.KeyframeTrack: Value is not a valid number.', this, i, value); + valid = false; + break; + } + } + } + } + + return valid; + } // removes equivalent sequential keys as common in morph target sequences + // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) + + + optimize() { + // times or values may be shared with other tracks, so overwriting is unsafe + const times = AnimationUtils.arraySlice(this.times), + values = AnimationUtils.arraySlice(this.values), + stride = this.getValueSize(), + smoothInterpolation = this.getInterpolation() === InterpolateSmooth, + lastIndex = times.length - 1; + let writeIndex = 1; + + for (let i = 1; i < lastIndex; ++i) { + let keep = false; + const time = times[i]; + const timeNext = times[i + 1]; // remove adjacent keyframes scheduled at the same time + + if (time !== timeNext && (i !== 1 || time !== times[0])) { + if (!smoothInterpolation) { + // remove unnecessary keyframes same as their neighbors + const offset = i * stride, + offsetP = offset - stride, + offsetN = offset + stride; + + for (let j = 0; j !== stride; ++j) { + const value = values[offset + j]; + + if (value !== values[offsetP + j] || value !== values[offsetN + j]) { + keep = true; + break; + } + } + } else { + keep = true; + } + } // in-place compaction + + + if (keep) { + if (i !== writeIndex) { + times[writeIndex] = times[i]; + const readOffset = i * stride, + writeOffset = writeIndex * stride; + + for (let j = 0; j !== stride; ++j) { + values[writeOffset + j] = values[readOffset + j]; + } + } + + ++writeIndex; + } + } // flush last keyframe (compaction looks ahead) + + + if (lastIndex > 0) { + times[writeIndex] = times[lastIndex]; + + for (let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++j) { + values[writeOffset + j] = values[readOffset + j]; + } + + ++writeIndex; + } + + if (writeIndex !== times.length) { + this.times = AnimationUtils.arraySlice(times, 0, writeIndex); + this.values = AnimationUtils.arraySlice(values, 0, writeIndex * stride); + } else { + this.times = times; + this.values = values; + } + + return this; + } + + clone() { + const times = AnimationUtils.arraySlice(this.times, 0); + const values = AnimationUtils.arraySlice(this.values, 0); + const TypedKeyframeTrack = this.constructor; + const track = new TypedKeyframeTrack(this.name, times, values); // Interpolant argument to constructor is not saved, so copy the factory method directly. + + track.createInterpolant = this.createInterpolant; + return track; + } + + } + + KeyframeTrack.prototype.TimeBufferType = Float32Array; + KeyframeTrack.prototype.ValueBufferType = Float32Array; + KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear; + + /** + * A Track of Boolean keyframe values. + */ + + class BooleanKeyframeTrack extends KeyframeTrack {} + + BooleanKeyframeTrack.prototype.ValueTypeName = 'bool'; + BooleanKeyframeTrack.prototype.ValueBufferType = Array; + BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; + BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined; + BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; // Note: Actually this track could have a optimized / compressed + + /** + * A Track of keyframe values that represent color. + */ + + class ColorKeyframeTrack extends KeyframeTrack {} + + ColorKeyframeTrack.prototype.ValueTypeName = 'color'; // ValueBufferType is inherited + + /** + * A Track of numeric keyframe values. + */ + + class NumberKeyframeTrack extends KeyframeTrack {} + + NumberKeyframeTrack.prototype.ValueTypeName = 'number'; // ValueBufferType is inherited + + /** + * Spherical linear unit quaternion interpolant. + */ + + class QuaternionLinearInterpolant extends Interpolant { + constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { + super(parameterPositions, sampleValues, sampleSize, resultBuffer); + } + + interpolate_(i1, t0, t, t1) { + const result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + alpha = (t - t0) / (t1 - t0); + let offset = i1 * stride; + + for (let end = offset + stride; offset !== end; offset += 4) { + Quaternion.slerpFlat(result, 0, values, offset - stride, values, offset, alpha); + } + + return result; + } + + } + + /** + * A Track of quaternion keyframe values. + */ + + class QuaternionKeyframeTrack extends KeyframeTrack { + InterpolantFactoryMethodLinear(result) { + return new QuaternionLinearInterpolant(this.times, this.values, this.getValueSize(), result); + } + + } + + QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion'; // ValueBufferType is inherited + + QuaternionKeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear; + QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; + + /** + * A Track that interpolates Strings + */ + + class StringKeyframeTrack extends KeyframeTrack {} + + StringKeyframeTrack.prototype.ValueTypeName = 'string'; + StringKeyframeTrack.prototype.ValueBufferType = Array; + StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; + StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined; + StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; + + /** + * A Track of vectored keyframe values. + */ + + class VectorKeyframeTrack extends KeyframeTrack {} + + VectorKeyframeTrack.prototype.ValueTypeName = 'vector'; // ValueBufferType is inherited + + class AnimationClip { + constructor(name, duration = -1, tracks, blendMode = NormalAnimationBlendMode) { + this.name = name; + this.tracks = tracks; + this.duration = duration; + this.blendMode = blendMode; + this.uuid = generateUUID(); // this means it should figure out its duration by scanning the tracks + + if (this.duration < 0) { + this.resetDuration(); + } + } + + static parse(json) { + const tracks = [], + jsonTracks = json.tracks, + frameTime = 1.0 / (json.fps || 1.0); + + for (let i = 0, n = jsonTracks.length; i !== n; ++i) { + tracks.push(parseKeyframeTrack(jsonTracks[i]).scale(frameTime)); + } + + const clip = new this(json.name, json.duration, tracks, json.blendMode); + clip.uuid = json.uuid; + return clip; + } + + static toJSON(clip) { + const tracks = [], + clipTracks = clip.tracks; + const json = { + 'name': clip.name, + 'duration': clip.duration, + 'tracks': tracks, + 'uuid': clip.uuid, + 'blendMode': clip.blendMode + }; + + for (let i = 0, n = clipTracks.length; i !== n; ++i) { + tracks.push(KeyframeTrack.toJSON(clipTracks[i])); + } + + return json; + } + + static CreateFromMorphTargetSequence(name, morphTargetSequence, fps, noLoop) { + const numMorphTargets = morphTargetSequence.length; + const tracks = []; + + for (let i = 0; i < numMorphTargets; i++) { + let times = []; + let values = []; + times.push((i + numMorphTargets - 1) % numMorphTargets, i, (i + 1) % numMorphTargets); + values.push(0, 1, 0); + const order = AnimationUtils.getKeyframeOrder(times); + times = AnimationUtils.sortedArray(times, 1, order); + values = AnimationUtils.sortedArray(values, 1, order); // if there is a key at the first frame, duplicate it as the + // last frame as well for perfect loop. + + if (!noLoop && times[0] === 0) { + times.push(numMorphTargets); + values.push(values[0]); + } + + tracks.push(new NumberKeyframeTrack('.morphTargetInfluences[' + morphTargetSequence[i].name + ']', times, values).scale(1.0 / fps)); + } + + return new this(name, -1, tracks); + } + + static findByName(objectOrClipArray, name) { + let clipArray = objectOrClipArray; + + if (!Array.isArray(objectOrClipArray)) { + const o = objectOrClipArray; + clipArray = o.geometry && o.geometry.animations || o.animations; + } + + for (let i = 0; i < clipArray.length; i++) { + if (clipArray[i].name === name) { + return clipArray[i]; + } + } + + return null; + } + + static CreateClipsFromMorphTargetSequences(morphTargets, fps, noLoop) { + const animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences + // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 + + const pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based + // patterns like Walk_001, Walk_002, Run_001, Run_002 + + for (let i = 0, il = morphTargets.length; i < il; i++) { + const morphTarget = morphTargets[i]; + const parts = morphTarget.name.match(pattern); + + if (parts && parts.length > 1) { + const name = parts[1]; + let animationMorphTargets = animationToMorphTargets[name]; + + if (!animationMorphTargets) { + animationToMorphTargets[name] = animationMorphTargets = []; + } + + animationMorphTargets.push(morphTarget); + } + } + + const clips = []; + + for (const name in animationToMorphTargets) { + clips.push(this.CreateFromMorphTargetSequence(name, animationToMorphTargets[name], fps, noLoop)); + } + + return clips; + } // parse the animation.hierarchy format + + + static parseAnimation(animation, bones) { + if (!animation) { + console.error('THREE.AnimationClip: No animation in JSONLoader data.'); + return null; + } + + const addNonemptyTrack = function (trackType, trackName, animationKeys, propertyName, destTracks) { + // only return track if there are actually keys. + if (animationKeys.length !== 0) { + const times = []; + const values = []; + AnimationUtils.flattenJSON(animationKeys, times, values, propertyName); // empty keys are filtered out, so check again + + if (times.length !== 0) { + destTracks.push(new trackType(trackName, times, values)); + } + } + }; + + const tracks = []; + const clipName = animation.name || 'default'; + const fps = animation.fps || 30; + const blendMode = animation.blendMode; // automatic length determination in AnimationClip. + + let duration = animation.length || -1; + const hierarchyTracks = animation.hierarchy || []; + + for (let h = 0; h < hierarchyTracks.length; h++) { + const animationKeys = hierarchyTracks[h].keys; // skip empty tracks + + if (!animationKeys || animationKeys.length === 0) continue; // process morph targets + + if (animationKeys[0].morphTargets) { + // figure out all morph targets used in this track + const morphTargetNames = {}; + let k; + + for (k = 0; k < animationKeys.length; k++) { + if (animationKeys[k].morphTargets) { + for (let m = 0; m < animationKeys[k].morphTargets.length; m++) { + morphTargetNames[animationKeys[k].morphTargets[m]] = -1; + } + } + } // create a track for each morph target with all zero + // morphTargetInfluences except for the keys in which + // the morphTarget is named. + + + for (const morphTargetName in morphTargetNames) { + const times = []; + const values = []; + + for (let m = 0; m !== animationKeys[k].morphTargets.length; ++m) { + const animationKey = animationKeys[k]; + times.push(animationKey.time); + values.push(animationKey.morphTarget === morphTargetName ? 1 : 0); + } + + tracks.push(new NumberKeyframeTrack('.morphTargetInfluence[' + morphTargetName + ']', times, values)); + } + + duration = morphTargetNames.length * (fps || 1.0); + } else { + // ...assume skeletal animation + const boneName = '.bones[' + bones[h].name + ']'; + addNonemptyTrack(VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks); + addNonemptyTrack(QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks); + addNonemptyTrack(VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks); + } + } + + if (tracks.length === 0) { + return null; + } + + const clip = new this(clipName, duration, tracks, blendMode); + return clip; + } + + resetDuration() { + const tracks = this.tracks; + let duration = 0; + + for (let i = 0, n = tracks.length; i !== n; ++i) { + const track = this.tracks[i]; + duration = Math.max(duration, track.times[track.times.length - 1]); + } + + this.duration = duration; + return this; + } + + trim() { + for (let i = 0; i < this.tracks.length; i++) { + this.tracks[i].trim(0, this.duration); + } + + return this; + } + + validate() { + let valid = true; + + for (let i = 0; i < this.tracks.length; i++) { + valid = valid && this.tracks[i].validate(); + } + + return valid; + } + + optimize() { + for (let i = 0; i < this.tracks.length; i++) { + this.tracks[i].optimize(); + } + + return this; + } + + clone() { + const tracks = []; + + for (let i = 0; i < this.tracks.length; i++) { + tracks.push(this.tracks[i].clone()); + } + + return new this.constructor(this.name, this.duration, tracks, this.blendMode); + } + + toJSON() { + return this.constructor.toJSON(this); + } + + } + + function getTrackTypeForValueTypeName(typeName) { + switch (typeName.toLowerCase()) { + case 'scalar': + case 'double': + case 'float': + case 'number': + case 'integer': + return NumberKeyframeTrack; + + case 'vector': + case 'vector2': + case 'vector3': + case 'vector4': + return VectorKeyframeTrack; + + case 'color': + return ColorKeyframeTrack; + + case 'quaternion': + return QuaternionKeyframeTrack; + + case 'bool': + case 'boolean': + return BooleanKeyframeTrack; + + case 'string': + return StringKeyframeTrack; + } + + throw new Error('THREE.KeyframeTrack: Unsupported typeName: ' + typeName); + } + + function parseKeyframeTrack(json) { + if (json.type === undefined) { + throw new Error('THREE.KeyframeTrack: track type undefined, can not parse'); + } + + const trackType = getTrackTypeForValueTypeName(json.type); + + if (json.times === undefined) { + const times = [], + values = []; + AnimationUtils.flattenJSON(json.keys, times, values, 'value'); + json.times = times; + json.values = values; + } // derived classes can define a static parse method + + + if (trackType.parse !== undefined) { + return trackType.parse(json); + } else { + // by default, we assume a constructor compatible with the base + return new trackType(json.name, json.times, json.values, json.interpolation); + } + } + + const Cache = { + enabled: false, + files: {}, + add: function (key, file) { + if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Adding key:', key ); + + this.files[key] = file; + }, + get: function (key) { + if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Checking key:', key ); + + return this.files[key]; + }, + remove: function (key) { + delete this.files[key]; + }, + clear: function () { + this.files = {}; + } + }; + + class LoadingManager { + constructor(onLoad, onProgress, onError) { + const scope = this; + let isLoading = false; + let itemsLoaded = 0; + let itemsTotal = 0; + let urlModifier = undefined; + const handlers = []; // Refer to #5689 for the reason why we don't set .onStart + // in the constructor + + this.onStart = undefined; + this.onLoad = onLoad; + this.onProgress = onProgress; + this.onError = onError; + + this.itemStart = function (url) { + itemsTotal++; + + if (isLoading === false) { + if (scope.onStart !== undefined) { + scope.onStart(url, itemsLoaded, itemsTotal); + } + } + + isLoading = true; + }; + + this.itemEnd = function (url) { + itemsLoaded++; + + if (scope.onProgress !== undefined) { + scope.onProgress(url, itemsLoaded, itemsTotal); + } + + if (itemsLoaded === itemsTotal) { + isLoading = false; + + if (scope.onLoad !== undefined) { + scope.onLoad(); + } + } + }; + + this.itemError = function (url) { + if (scope.onError !== undefined) { + scope.onError(url); + } + }; + + this.resolveURL = function (url) { + if (urlModifier) { + return urlModifier(url); + } + + return url; + }; + + this.setURLModifier = function (transform) { + urlModifier = transform; + return this; + }; + + this.addHandler = function (regex, loader) { + handlers.push(regex, loader); + return this; + }; + + this.removeHandler = function (regex) { + const index = handlers.indexOf(regex); + + if (index !== -1) { + handlers.splice(index, 2); + } + + return this; + }; + + this.getHandler = function (file) { + for (let i = 0, l = handlers.length; i < l; i += 2) { + const regex = handlers[i]; + const loader = handlers[i + 1]; + if (regex.global) regex.lastIndex = 0; // see #17920 + + if (regex.test(file)) { + return loader; + } + } + + return null; + }; + } + + } + + const DefaultLoadingManager = new LoadingManager(); + + class Loader { + constructor(manager) { + this.manager = manager !== undefined ? manager : DefaultLoadingManager; + this.crossOrigin = 'anonymous'; + this.withCredentials = false; + this.path = ''; + this.resourcePath = ''; + this.requestHeader = {}; + } + + load() {} + + loadAsync(url, onProgress) { + const scope = this; + return new Promise(function (resolve, reject) { + scope.load(url, resolve, onProgress, reject); + }); + } + + parse() {} + + setCrossOrigin(crossOrigin) { + this.crossOrigin = crossOrigin; + return this; + } + + setWithCredentials(value) { + this.withCredentials = value; + return this; + } + + setPath(path) { + this.path = path; + return this; + } + + setResourcePath(resourcePath) { + this.resourcePath = resourcePath; + return this; + } + + setRequestHeader(requestHeader) { + this.requestHeader = requestHeader; + return this; + } + + } + + const loading = {}; + + class FileLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + if (url === undefined) url = ''; + if (this.path !== undefined) url = this.path + url; + url = this.manager.resolveURL(url); + const scope = this; + const cached = Cache.get(url); + + if (cached !== undefined) { + scope.manager.itemStart(url); + setTimeout(function () { + if (onLoad) onLoad(cached); + scope.manager.itemEnd(url); + }, 0); + return cached; + } // Check if request is duplicate + + + if (loading[url] !== undefined) { + loading[url].push({ + onLoad: onLoad, + onProgress: onProgress, + onError: onError + }); + return; + } // Check for data: URI + + + const dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/; + const dataUriRegexResult = url.match(dataUriRegex); + let request; // Safari can not handle Data URIs through XMLHttpRequest so process manually + + if (dataUriRegexResult) { + const mimeType = dataUriRegexResult[1]; + const isBase64 = !!dataUriRegexResult[2]; + let data = dataUriRegexResult[3]; + data = decodeURIComponent(data); + if (isBase64) data = atob(data); + + try { + let response; + const responseType = (this.responseType || '').toLowerCase(); + + switch (responseType) { + case 'arraybuffer': + case 'blob': + const view = new Uint8Array(data.length); + + for (let i = 0; i < data.length; i++) { + view[i] = data.charCodeAt(i); + } + + if (responseType === 'blob') { + response = new Blob([view.buffer], { + type: mimeType + }); + } else { + response = view.buffer; + } + + break; + + case 'document': + const parser = new DOMParser(); + response = parser.parseFromString(data, mimeType); + break; + + case 'json': + response = JSON.parse(data); + break; + + default: + // 'text' or other + response = data; + break; + } // Wait for next browser tick like standard XMLHttpRequest event dispatching does + + + setTimeout(function () { + if (onLoad) onLoad(response); + scope.manager.itemEnd(url); + }, 0); + } catch (error) { + // Wait for next browser tick like standard XMLHttpRequest event dispatching does + setTimeout(function () { + if (onError) onError(error); + scope.manager.itemError(url); + scope.manager.itemEnd(url); + }, 0); + } + } else { + // Initialise array for duplicate requests + loading[url] = []; + loading[url].push({ + onLoad: onLoad, + onProgress: onProgress, + onError: onError + }); + request = new XMLHttpRequest(); + request.open('GET', url, true); + request.addEventListener('load', function (event) { + const response = this.response; + const callbacks = loading[url]; + delete loading[url]; + + if (this.status === 200 || this.status === 0) { + // Some browsers return HTTP Status 0 when using non-http protocol + // e.g. 'file://' or 'data://'. Handle as success. + if (this.status === 0) console.warn('THREE.FileLoader: HTTP Status 0 received.'); // Add to cache only on HTTP success, so that we do not cache + // error response bodies as proper responses to requests. + + Cache.add(url, response); + + for (let i = 0, il = callbacks.length; i < il; i++) { + const callback = callbacks[i]; + if (callback.onLoad) callback.onLoad(response); + } + + scope.manager.itemEnd(url); + } else { + for (let i = 0, il = callbacks.length; i < il; i++) { + const callback = callbacks[i]; + if (callback.onError) callback.onError(event); + } + + scope.manager.itemError(url); + scope.manager.itemEnd(url); + } + }, false); + request.addEventListener('progress', function (event) { + const callbacks = loading[url]; + + for (let i = 0, il = callbacks.length; i < il; i++) { + const callback = callbacks[i]; + if (callback.onProgress) callback.onProgress(event); + } + }, false); + request.addEventListener('error', function (event) { + const callbacks = loading[url]; + delete loading[url]; + + for (let i = 0, il = callbacks.length; i < il; i++) { + const callback = callbacks[i]; + if (callback.onError) callback.onError(event); + } + + scope.manager.itemError(url); + scope.manager.itemEnd(url); + }, false); + request.addEventListener('abort', function (event) { + const callbacks = loading[url]; + delete loading[url]; + + for (let i = 0, il = callbacks.length; i < il; i++) { + const callback = callbacks[i]; + if (callback.onError) callback.onError(event); + } + + scope.manager.itemError(url); + scope.manager.itemEnd(url); + }, false); + if (this.responseType !== undefined) request.responseType = this.responseType; + if (this.withCredentials !== undefined) request.withCredentials = this.withCredentials; + if (request.overrideMimeType) request.overrideMimeType(this.mimeType !== undefined ? this.mimeType : 'text/plain'); + + for (const header in this.requestHeader) { + request.setRequestHeader(header, this.requestHeader[header]); + } + + request.send(null); + } + + scope.manager.itemStart(url); + return request; + } + + setResponseType(value) { + this.responseType = value; + return this; + } + + setMimeType(value) { + this.mimeType = value; + return this; + } + + } + + class AnimationLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + const scope = this; + const loader = new FileLoader(this.manager); + loader.setPath(this.path); + loader.setRequestHeader(this.requestHeader); + loader.setWithCredentials(this.withCredentials); + loader.load(url, function (text) { + try { + onLoad(scope.parse(JSON.parse(text))); + } catch (e) { + if (onError) { + onError(e); + } else { + console.error(e); + } + + scope.manager.itemError(url); + } + }, onProgress, onError); + } + + parse(json) { + const animations = []; + + for (let i = 0; i < json.length; i++) { + const clip = AnimationClip.parse(json[i]); + animations.push(clip); + } + + return animations; + } + + } + + /** + * Abstract Base class to block based textures loader (dds, pvr, ...) + * + * Sub classes have to implement the parse() method which will be used in load(). + */ + + class CompressedTextureLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + const scope = this; + const images = []; + const texture = new CompressedTexture(); + const loader = new FileLoader(this.manager); + loader.setPath(this.path); + loader.setResponseType('arraybuffer'); + loader.setRequestHeader(this.requestHeader); + loader.setWithCredentials(scope.withCredentials); + let loaded = 0; + + function loadTexture(i) { + loader.load(url[i], function (buffer) { + const texDatas = scope.parse(buffer, true); + images[i] = { + width: texDatas.width, + height: texDatas.height, + format: texDatas.format, + mipmaps: texDatas.mipmaps + }; + loaded += 1; + + if (loaded === 6) { + if (texDatas.mipmapCount === 1) texture.minFilter = LinearFilter; + texture.image = images; + texture.format = texDatas.format; + texture.needsUpdate = true; + if (onLoad) onLoad(texture); + } + }, onProgress, onError); + } + + if (Array.isArray(url)) { + for (let i = 0, il = url.length; i < il; ++i) { + loadTexture(i); + } + } else { + // compressed cubemap texture stored in a single DDS file + loader.load(url, function (buffer) { + const texDatas = scope.parse(buffer, true); + + if (texDatas.isCubemap) { + const faces = texDatas.mipmaps.length / texDatas.mipmapCount; + + for (let f = 0; f < faces; f++) { + images[f] = { + mipmaps: [] + }; + + for (let i = 0; i < texDatas.mipmapCount; i++) { + images[f].mipmaps.push(texDatas.mipmaps[f * texDatas.mipmapCount + i]); + images[f].format = texDatas.format; + images[f].width = texDatas.width; + images[f].height = texDatas.height; + } + } + + texture.image = images; + } else { + texture.image.width = texDatas.width; + texture.image.height = texDatas.height; + texture.mipmaps = texDatas.mipmaps; + } + + if (texDatas.mipmapCount === 1) { + texture.minFilter = LinearFilter; + } + + texture.format = texDatas.format; + texture.needsUpdate = true; + if (onLoad) onLoad(texture); + }, onProgress, onError); + } + + return texture; + } + + } + + class ImageLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + if (this.path !== undefined) url = this.path + url; + url = this.manager.resolveURL(url); + const scope = this; + const cached = Cache.get(url); + + if (cached !== undefined) { + scope.manager.itemStart(url); + setTimeout(function () { + if (onLoad) onLoad(cached); + scope.manager.itemEnd(url); + }, 0); + return cached; + } + + const image = createElementNS('img'); + + function onImageLoad() { + image.removeEventListener('load', onImageLoad, false); + image.removeEventListener('error', onImageError, false); + Cache.add(url, this); + if (onLoad) onLoad(this); + scope.manager.itemEnd(url); + } + + function onImageError(event) { + image.removeEventListener('load', onImageLoad, false); + image.removeEventListener('error', onImageError, false); + if (onError) onError(event); + scope.manager.itemError(url); + scope.manager.itemEnd(url); + } + + image.addEventListener('load', onImageLoad, false); + image.addEventListener('error', onImageError, false); + + if (url.substr(0, 5) !== 'data:') { + if (this.crossOrigin !== undefined) image.crossOrigin = this.crossOrigin; + } + + scope.manager.itemStart(url); + image.src = url; + return image; + } + + } + + class CubeTextureLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(urls, onLoad, onProgress, onError) { + const texture = new CubeTexture(); + const loader = new ImageLoader(this.manager); + loader.setCrossOrigin(this.crossOrigin); + loader.setPath(this.path); + let loaded = 0; + + function loadTexture(i) { + loader.load(urls[i], function (image) { + texture.images[i] = image; + loaded++; + + if (loaded === 6) { + texture.needsUpdate = true; + if (onLoad) onLoad(texture); + } + }, undefined, onError); + } + + for (let i = 0; i < urls.length; ++i) { + loadTexture(i); + } + + return texture; + } + + } + + /** + * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) + * + * Sub classes have to implement the parse() method which will be used in load(). + */ + + class DataTextureLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + const scope = this; + const texture = new DataTexture(); + const loader = new FileLoader(this.manager); + loader.setResponseType('arraybuffer'); + loader.setRequestHeader(this.requestHeader); + loader.setPath(this.path); + loader.setWithCredentials(scope.withCredentials); + loader.load(url, function (buffer) { + const texData = scope.parse(buffer); + if (!texData) return; + + if (texData.image !== undefined) { + texture.image = texData.image; + } else if (texData.data !== undefined) { + texture.image.width = texData.width; + texture.image.height = texData.height; + texture.image.data = texData.data; + } + + texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping; + texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping; + texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter; + texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter; + texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1; + + if (texData.encoding !== undefined) { + texture.encoding = texData.encoding; + } + + if (texData.flipY !== undefined) { + texture.flipY = texData.flipY; + } + + if (texData.format !== undefined) { + texture.format = texData.format; + } + + if (texData.type !== undefined) { + texture.type = texData.type; + } + + if (texData.mipmaps !== undefined) { + texture.mipmaps = texData.mipmaps; + texture.minFilter = LinearMipmapLinearFilter; // presumably... + } + + if (texData.mipmapCount === 1) { + texture.minFilter = LinearFilter; + } + + if (texData.generateMipmaps !== undefined) { + texture.generateMipmaps = texData.generateMipmaps; + } + + texture.needsUpdate = true; + if (onLoad) onLoad(texture, texData); + }, onProgress, onError); + return texture; + } + + } + + class TextureLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + const texture = new Texture(); + const loader = new ImageLoader(this.manager); + loader.setCrossOrigin(this.crossOrigin); + loader.setPath(this.path); + loader.load(url, function (image) { + texture.image = image; + texture.needsUpdate = true; + + if (onLoad !== undefined) { + onLoad(texture); + } + }, onProgress, onError); + return texture; + } + + } + + class Light extends Object3D { + constructor(color, intensity = 1) { + super(); + this.type = 'Light'; + this.color = new Color(color); + this.intensity = intensity; + } + + dispose() {// Empty here in base class; some subclasses override. + } + + copy(source) { + super.copy(source); + this.color.copy(source.color); + this.intensity = source.intensity; + return this; + } + + toJSON(meta) { + const data = super.toJSON(meta); + data.object.color = this.color.getHex(); + data.object.intensity = this.intensity; + if (this.groundColor !== undefined) data.object.groundColor = this.groundColor.getHex(); + if (this.distance !== undefined) data.object.distance = this.distance; + if (this.angle !== undefined) data.object.angle = this.angle; + if (this.decay !== undefined) data.object.decay = this.decay; + if (this.penumbra !== undefined) data.object.penumbra = this.penumbra; + if (this.shadow !== undefined) data.object.shadow = this.shadow.toJSON(); + return data; + } + + } + + Light.prototype.isLight = true; + + class HemisphereLight extends Light { + constructor(skyColor, groundColor, intensity) { + super(skyColor, intensity); + this.type = 'HemisphereLight'; + this.position.copy(Object3D.DefaultUp); + this.updateMatrix(); + this.groundColor = new Color(groundColor); + } + + copy(source) { + Light.prototype.copy.call(this, source); + this.groundColor.copy(source.groundColor); + return this; + } + + } + + HemisphereLight.prototype.isHemisphereLight = true; + + const _projScreenMatrix$1 = /*@__PURE__*/new Matrix4(); + + const _lightPositionWorld$1 = /*@__PURE__*/new Vector3(); + + const _lookTarget$1 = /*@__PURE__*/new Vector3(); + + class LightShadow { + constructor(camera) { + this.camera = camera; + this.bias = 0; + this.normalBias = 0; + this.radius = 1; + this.blurSamples = 8; + this.mapSize = new Vector2(512, 512); + this.map = null; + this.mapPass = null; + this.matrix = new Matrix4(); + this.autoUpdate = true; + this.needsUpdate = false; + this._frustum = new Frustum(); + this._frameExtents = new Vector2(1, 1); + this._viewportCount = 1; + this._viewports = [new Vector4(0, 0, 1, 1)]; + } + + getViewportCount() { + return this._viewportCount; + } + + getFrustum() { + return this._frustum; + } + + updateMatrices(light) { + const shadowCamera = this.camera; + const shadowMatrix = this.matrix; + + _lightPositionWorld$1.setFromMatrixPosition(light.matrixWorld); + + shadowCamera.position.copy(_lightPositionWorld$1); + + _lookTarget$1.setFromMatrixPosition(light.target.matrixWorld); + + shadowCamera.lookAt(_lookTarget$1); + shadowCamera.updateMatrixWorld(); + + _projScreenMatrix$1.multiplyMatrices(shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse); + + this._frustum.setFromProjectionMatrix(_projScreenMatrix$1); + + shadowMatrix.set(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0); + shadowMatrix.multiply(shadowCamera.projectionMatrix); + shadowMatrix.multiply(shadowCamera.matrixWorldInverse); + } + + getViewport(viewportIndex) { + return this._viewports[viewportIndex]; + } + + getFrameExtents() { + return this._frameExtents; + } + + dispose() { + if (this.map) { + this.map.dispose(); + } + + if (this.mapPass) { + this.mapPass.dispose(); + } + } + + copy(source) { + this.camera = source.camera.clone(); + this.bias = source.bias; + this.radius = source.radius; + this.mapSize.copy(source.mapSize); + return this; + } + + clone() { + return new this.constructor().copy(this); + } + + toJSON() { + const object = {}; + if (this.bias !== 0) object.bias = this.bias; + if (this.normalBias !== 0) object.normalBias = this.normalBias; + if (this.radius !== 1) object.radius = this.radius; + if (this.mapSize.x !== 512 || this.mapSize.y !== 512) object.mapSize = this.mapSize.toArray(); + object.camera = this.camera.toJSON(false).object; + delete object.camera.matrix; + return object; + } + + } + + class SpotLightShadow extends LightShadow { + constructor() { + super(new PerspectiveCamera(50, 1, 0.5, 500)); + this.focus = 1; + } + + updateMatrices(light) { + const camera = this.camera; + const fov = RAD2DEG * 2 * light.angle * this.focus; + const aspect = this.mapSize.width / this.mapSize.height; + const far = light.distance || camera.far; + + if (fov !== camera.fov || aspect !== camera.aspect || far !== camera.far) { + camera.fov = fov; + camera.aspect = aspect; + camera.far = far; + camera.updateProjectionMatrix(); + } + + super.updateMatrices(light); + } + + copy(source) { + super.copy(source); + this.focus = source.focus; + return this; + } + + } + + SpotLightShadow.prototype.isSpotLightShadow = true; + + class SpotLight extends Light { + constructor(color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 1) { + super(color, intensity); + this.type = 'SpotLight'; + this.position.copy(Object3D.DefaultUp); + this.updateMatrix(); + this.target = new Object3D(); + this.distance = distance; + this.angle = angle; + this.penumbra = penumbra; + this.decay = decay; // for physically correct lights, should be 2. + + this.shadow = new SpotLightShadow(); + } + + get power() { + // compute the light's luminous power (in lumens) from its intensity (in candela) + // by convention for a spotlight, luminous power (lm) = π * luminous intensity (cd) + return this.intensity * Math.PI; + } + + set power(power) { + // set the light's intensity (in candela) from the desired luminous power (in lumens) + this.intensity = power / Math.PI; + } + + dispose() { + this.shadow.dispose(); + } + + copy(source) { + super.copy(source); + this.distance = source.distance; + this.angle = source.angle; + this.penumbra = source.penumbra; + this.decay = source.decay; + this.target = source.target.clone(); + this.shadow = source.shadow.clone(); + return this; + } + + } + + SpotLight.prototype.isSpotLight = true; + + const _projScreenMatrix = /*@__PURE__*/new Matrix4(); + + const _lightPositionWorld = /*@__PURE__*/new Vector3(); + + const _lookTarget = /*@__PURE__*/new Vector3(); + + class PointLightShadow extends LightShadow { + constructor() { + super(new PerspectiveCamera(90, 1, 0.5, 500)); + this._frameExtents = new Vector2(4, 2); + this._viewportCount = 6; + this._viewports = [// These viewports map a cube-map onto a 2D texture with the + // following orientation: + // + // xzXZ + // y Y + // + // X - Positive x direction + // x - Negative x direction + // Y - Positive y direction + // y - Negative y direction + // Z - Positive z direction + // z - Negative z direction + // positive X + new Vector4(2, 1, 1, 1), // negative X + new Vector4(0, 1, 1, 1), // positive Z + new Vector4(3, 1, 1, 1), // negative Z + new Vector4(1, 1, 1, 1), // positive Y + new Vector4(3, 0, 1, 1), // negative Y + new Vector4(1, 0, 1, 1)]; + this._cubeDirections = [new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(0, 1, 0), new Vector3(0, -1, 0)]; + this._cubeUps = [new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1)]; + } + + updateMatrices(light, viewportIndex = 0) { + const camera = this.camera; + const shadowMatrix = this.matrix; + const far = light.distance || camera.far; + + if (far !== camera.far) { + camera.far = far; + camera.updateProjectionMatrix(); + } + + _lightPositionWorld.setFromMatrixPosition(light.matrixWorld); + + camera.position.copy(_lightPositionWorld); + + _lookTarget.copy(camera.position); + + _lookTarget.add(this._cubeDirections[viewportIndex]); + + camera.up.copy(this._cubeUps[viewportIndex]); + camera.lookAt(_lookTarget); + camera.updateMatrixWorld(); + shadowMatrix.makeTranslation(-_lightPositionWorld.x, -_lightPositionWorld.y, -_lightPositionWorld.z); + + _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse); + + this._frustum.setFromProjectionMatrix(_projScreenMatrix); + } + + } + + PointLightShadow.prototype.isPointLightShadow = true; + + class PointLight extends Light { + constructor(color, intensity, distance = 0, decay = 1) { + super(color, intensity); + this.type = 'PointLight'; + this.distance = distance; + this.decay = decay; // for physically correct lights, should be 2. + + this.shadow = new PointLightShadow(); + } + + get power() { + // compute the light's luminous power (in lumens) from its intensity (in candela) + // for an isotropic light source, luminous power (lm) = 4 π luminous intensity (cd) + return this.intensity * 4 * Math.PI; + } + + set power(power) { + // set the light's intensity (in candela) from the desired luminous power (in lumens) + this.intensity = power / (4 * Math.PI); + } + + dispose() { + this.shadow.dispose(); + } + + copy(source) { + super.copy(source); + this.distance = source.distance; + this.decay = source.decay; + this.shadow = source.shadow.clone(); + return this; + } + + } + + PointLight.prototype.isPointLight = true; + + class DirectionalLightShadow extends LightShadow { + constructor() { + super(new OrthographicCamera(-5, 5, 5, -5, 0.5, 500)); + } + + } + + DirectionalLightShadow.prototype.isDirectionalLightShadow = true; + + class DirectionalLight extends Light { + constructor(color, intensity) { + super(color, intensity); + this.type = 'DirectionalLight'; + this.position.copy(Object3D.DefaultUp); + this.updateMatrix(); + this.target = new Object3D(); + this.shadow = new DirectionalLightShadow(); + } + + dispose() { + this.shadow.dispose(); + } + + copy(source) { + super.copy(source); + this.target = source.target.clone(); + this.shadow = source.shadow.clone(); + return this; + } + + } + + DirectionalLight.prototype.isDirectionalLight = true; + + class AmbientLight extends Light { + constructor(color, intensity) { + super(color, intensity); + this.type = 'AmbientLight'; + } + + } + + AmbientLight.prototype.isAmbientLight = true; + + class RectAreaLight extends Light { + constructor(color, intensity, width = 10, height = 10) { + super(color, intensity); + this.type = 'RectAreaLight'; + this.width = width; + this.height = height; + } + + get power() { + // compute the light's luminous power (in lumens) from its intensity (in nits) + return this.intensity * this.width * this.height * Math.PI; + } + + set power(power) { + // set the light's intensity (in nits) from the desired luminous power (in lumens) + this.intensity = power / (this.width * this.height * Math.PI); + } + + copy(source) { + super.copy(source); + this.width = source.width; + this.height = source.height; + return this; + } + + toJSON(meta) { + const data = super.toJSON(meta); + data.object.width = this.width; + data.object.height = this.height; + return data; + } + + } + + RectAreaLight.prototype.isRectAreaLight = true; + + /** + * Primary reference: + * https://graphics.stanford.edu/papers/envmap/envmap.pdf + * + * Secondary reference: + * https://www.ppsloan.org/publications/StupidSH36.pdf + */ + // 3-band SH defined by 9 coefficients + + class SphericalHarmonics3 { + constructor() { + this.coefficients = []; + + for (let i = 0; i < 9; i++) { + this.coefficients.push(new Vector3()); + } + } + + set(coefficients) { + for (let i = 0; i < 9; i++) { + this.coefficients[i].copy(coefficients[i]); + } + + return this; + } + + zero() { + for (let i = 0; i < 9; i++) { + this.coefficients[i].set(0, 0, 0); + } + + return this; + } // get the radiance in the direction of the normal + // target is a Vector3 + + + getAt(normal, target) { + // normal is assumed to be unit length + const x = normal.x, + y = normal.y, + z = normal.z; + const coeff = this.coefficients; // band 0 + + target.copy(coeff[0]).multiplyScalar(0.282095); // band 1 + + target.addScaledVector(coeff[1], 0.488603 * y); + target.addScaledVector(coeff[2], 0.488603 * z); + target.addScaledVector(coeff[3], 0.488603 * x); // band 2 + + target.addScaledVector(coeff[4], 1.092548 * (x * y)); + target.addScaledVector(coeff[5], 1.092548 * (y * z)); + target.addScaledVector(coeff[6], 0.315392 * (3.0 * z * z - 1.0)); + target.addScaledVector(coeff[7], 1.092548 * (x * z)); + target.addScaledVector(coeff[8], 0.546274 * (x * x - y * y)); + return target; + } // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal + // target is a Vector3 + // https://graphics.stanford.edu/papers/envmap/envmap.pdf + + + getIrradianceAt(normal, target) { + // normal is assumed to be unit length + const x = normal.x, + y = normal.y, + z = normal.z; + const coeff = this.coefficients; // band 0 + + target.copy(coeff[0]).multiplyScalar(0.886227); // π * 0.282095 + // band 1 + + target.addScaledVector(coeff[1], 2.0 * 0.511664 * y); // ( 2 * π / 3 ) * 0.488603 + + target.addScaledVector(coeff[2], 2.0 * 0.511664 * z); + target.addScaledVector(coeff[3], 2.0 * 0.511664 * x); // band 2 + + target.addScaledVector(coeff[4], 2.0 * 0.429043 * x * y); // ( π / 4 ) * 1.092548 + + target.addScaledVector(coeff[5], 2.0 * 0.429043 * y * z); + target.addScaledVector(coeff[6], 0.743125 * z * z - 0.247708); // ( π / 4 ) * 0.315392 * 3 + + target.addScaledVector(coeff[7], 2.0 * 0.429043 * x * z); + target.addScaledVector(coeff[8], 0.429043 * (x * x - y * y)); // ( π / 4 ) * 0.546274 + + return target; + } + + add(sh) { + for (let i = 0; i < 9; i++) { + this.coefficients[i].add(sh.coefficients[i]); + } + + return this; + } + + addScaledSH(sh, s) { + for (let i = 0; i < 9; i++) { + this.coefficients[i].addScaledVector(sh.coefficients[i], s); + } + + return this; + } + + scale(s) { + for (let i = 0; i < 9; i++) { + this.coefficients[i].multiplyScalar(s); + } + + return this; + } + + lerp(sh, alpha) { + for (let i = 0; i < 9; i++) { + this.coefficients[i].lerp(sh.coefficients[i], alpha); + } + + return this; + } + + equals(sh) { + for (let i = 0; i < 9; i++) { + if (!this.coefficients[i].equals(sh.coefficients[i])) { + return false; + } + } + + return true; + } + + copy(sh) { + return this.set(sh.coefficients); + } + + clone() { + return new this.constructor().copy(this); + } + + fromArray(array, offset = 0) { + const coefficients = this.coefficients; + + for (let i = 0; i < 9; i++) { + coefficients[i].fromArray(array, offset + i * 3); + } + + return this; + } + + toArray(array = [], offset = 0) { + const coefficients = this.coefficients; + + for (let i = 0; i < 9; i++) { + coefficients[i].toArray(array, offset + i * 3); + } + + return array; + } // evaluate the basis functions + // shBasis is an Array[ 9 ] + + + static getBasisAt(normal, shBasis) { + // normal is assumed to be unit length + const x = normal.x, + y = normal.y, + z = normal.z; // band 0 + + shBasis[0] = 0.282095; // band 1 + + shBasis[1] = 0.488603 * y; + shBasis[2] = 0.488603 * z; + shBasis[3] = 0.488603 * x; // band 2 + + shBasis[4] = 1.092548 * x * y; + shBasis[5] = 1.092548 * y * z; + shBasis[6] = 0.315392 * (3 * z * z - 1); + shBasis[7] = 1.092548 * x * z; + shBasis[8] = 0.546274 * (x * x - y * y); + } + + } + + SphericalHarmonics3.prototype.isSphericalHarmonics3 = true; + + class LightProbe extends Light { + constructor(sh = new SphericalHarmonics3(), intensity = 1) { + super(undefined, intensity); + this.sh = sh; + } + + copy(source) { + super.copy(source); + this.sh.copy(source.sh); + return this; + } + + fromJSON(json) { + this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON(); + + this.sh.fromArray(json.sh); + return this; + } + + toJSON(meta) { + const data = super.toJSON(meta); + data.object.sh = this.sh.toArray(); + return data; + } + + } + + LightProbe.prototype.isLightProbe = true; + + class MaterialLoader extends Loader { + constructor(manager) { + super(manager); + this.textures = {}; + } + + load(url, onLoad, onProgress, onError) { + const scope = this; + const loader = new FileLoader(scope.manager); + loader.setPath(scope.path); + loader.setRequestHeader(scope.requestHeader); + loader.setWithCredentials(scope.withCredentials); + loader.load(url, function (text) { + try { + onLoad(scope.parse(JSON.parse(text))); + } catch (e) { + if (onError) { + onError(e); + } else { + console.error(e); + } + + scope.manager.itemError(url); + } + }, onProgress, onError); + } + + parse(json) { + const textures = this.textures; + + function getTexture(name) { + if (textures[name] === undefined) { + console.warn('THREE.MaterialLoader: Undefined texture', name); + } + + return textures[name]; + } + + const material = new Materials[json.type](); + if (json.uuid !== undefined) material.uuid = json.uuid; + if (json.name !== undefined) material.name = json.name; + if (json.color !== undefined && material.color !== undefined) material.color.setHex(json.color); + if (json.roughness !== undefined) material.roughness = json.roughness; + if (json.metalness !== undefined) material.metalness = json.metalness; + if (json.sheen !== undefined) material.sheen = json.sheen; + if (json.sheenTint !== undefined) material.sheenTint = new Color().setHex(json.sheenTint); + if (json.sheenRoughness !== undefined) material.sheenRoughness = json.sheenRoughness; + if (json.emissive !== undefined && material.emissive !== undefined) material.emissive.setHex(json.emissive); + if (json.specular !== undefined && material.specular !== undefined) material.specular.setHex(json.specular); + if (json.specularIntensity !== undefined) material.specularIntensity = json.specularIntensity; + if (json.specularTint !== undefined && material.specularTint !== undefined) material.specularTint.setHex(json.specularTint); + if (json.shininess !== undefined) material.shininess = json.shininess; + if (json.clearcoat !== undefined) material.clearcoat = json.clearcoat; + if (json.clearcoatRoughness !== undefined) material.clearcoatRoughness = json.clearcoatRoughness; + if (json.transmission !== undefined) material.transmission = json.transmission; + if (json.thickness !== undefined) material.thickness = json.thickness; + if (json.attenuationDistance !== undefined) material.attenuationDistance = json.attenuationDistance; + if (json.attenuationTint !== undefined && material.attenuationTint !== undefined) material.attenuationTint.setHex(json.attenuationTint); + if (json.fog !== undefined) material.fog = json.fog; + if (json.flatShading !== undefined) material.flatShading = json.flatShading; + if (json.blending !== undefined) material.blending = json.blending; + if (json.combine !== undefined) material.combine = json.combine; + if (json.side !== undefined) material.side = json.side; + if (json.shadowSide !== undefined) material.shadowSide = json.shadowSide; + if (json.opacity !== undefined) material.opacity = json.opacity; + if (json.format !== undefined) material.format = json.format; + if (json.transparent !== undefined) material.transparent = json.transparent; + if (json.alphaTest !== undefined) material.alphaTest = json.alphaTest; + if (json.depthTest !== undefined) material.depthTest = json.depthTest; + if (json.depthWrite !== undefined) material.depthWrite = json.depthWrite; + if (json.colorWrite !== undefined) material.colorWrite = json.colorWrite; + if (json.stencilWrite !== undefined) material.stencilWrite = json.stencilWrite; + if (json.stencilWriteMask !== undefined) material.stencilWriteMask = json.stencilWriteMask; + if (json.stencilFunc !== undefined) material.stencilFunc = json.stencilFunc; + if (json.stencilRef !== undefined) material.stencilRef = json.stencilRef; + if (json.stencilFuncMask !== undefined) material.stencilFuncMask = json.stencilFuncMask; + if (json.stencilFail !== undefined) material.stencilFail = json.stencilFail; + if (json.stencilZFail !== undefined) material.stencilZFail = json.stencilZFail; + if (json.stencilZPass !== undefined) material.stencilZPass = json.stencilZPass; + if (json.wireframe !== undefined) material.wireframe = json.wireframe; + if (json.wireframeLinewidth !== undefined) material.wireframeLinewidth = json.wireframeLinewidth; + if (json.wireframeLinecap !== undefined) material.wireframeLinecap = json.wireframeLinecap; + if (json.wireframeLinejoin !== undefined) material.wireframeLinejoin = json.wireframeLinejoin; + if (json.rotation !== undefined) material.rotation = json.rotation; + if (json.linewidth !== 1) material.linewidth = json.linewidth; + if (json.dashSize !== undefined) material.dashSize = json.dashSize; + if (json.gapSize !== undefined) material.gapSize = json.gapSize; + if (json.scale !== undefined) material.scale = json.scale; + if (json.polygonOffset !== undefined) material.polygonOffset = json.polygonOffset; + if (json.polygonOffsetFactor !== undefined) material.polygonOffsetFactor = json.polygonOffsetFactor; + if (json.polygonOffsetUnits !== undefined) material.polygonOffsetUnits = json.polygonOffsetUnits; + if (json.dithering !== undefined) material.dithering = json.dithering; + if (json.alphaToCoverage !== undefined) material.alphaToCoverage = json.alphaToCoverage; + if (json.premultipliedAlpha !== undefined) material.premultipliedAlpha = json.premultipliedAlpha; + if (json.visible !== undefined) material.visible = json.visible; + if (json.toneMapped !== undefined) material.toneMapped = json.toneMapped; + if (json.userData !== undefined) material.userData = json.userData; + + if (json.vertexColors !== undefined) { + if (typeof json.vertexColors === 'number') { + material.vertexColors = json.vertexColors > 0 ? true : false; + } else { + material.vertexColors = json.vertexColors; + } + } // Shader Material + + + if (json.uniforms !== undefined) { + for (const name in json.uniforms) { + const uniform = json.uniforms[name]; + material.uniforms[name] = {}; + + switch (uniform.type) { + case 't': + material.uniforms[name].value = getTexture(uniform.value); + break; + + case 'c': + material.uniforms[name].value = new Color().setHex(uniform.value); + break; + + case 'v2': + material.uniforms[name].value = new Vector2().fromArray(uniform.value); + break; + + case 'v3': + material.uniforms[name].value = new Vector3().fromArray(uniform.value); + break; + + case 'v4': + material.uniforms[name].value = new Vector4().fromArray(uniform.value); + break; + + case 'm3': + material.uniforms[name].value = new Matrix3().fromArray(uniform.value); + break; + + case 'm4': + material.uniforms[name].value = new Matrix4().fromArray(uniform.value); + break; + + default: + material.uniforms[name].value = uniform.value; + } + } + } + + if (json.defines !== undefined) material.defines = json.defines; + if (json.vertexShader !== undefined) material.vertexShader = json.vertexShader; + if (json.fragmentShader !== undefined) material.fragmentShader = json.fragmentShader; + + if (json.extensions !== undefined) { + for (const key in json.extensions) { + material.extensions[key] = json.extensions[key]; + } + } // Deprecated + + + if (json.shading !== undefined) material.flatShading = json.shading === 1; // THREE.FlatShading + // for PointsMaterial + + if (json.size !== undefined) material.size = json.size; + if (json.sizeAttenuation !== undefined) material.sizeAttenuation = json.sizeAttenuation; // maps + + if (json.map !== undefined) material.map = getTexture(json.map); + if (json.matcap !== undefined) material.matcap = getTexture(json.matcap); + if (json.alphaMap !== undefined) material.alphaMap = getTexture(json.alphaMap); + if (json.bumpMap !== undefined) material.bumpMap = getTexture(json.bumpMap); + if (json.bumpScale !== undefined) material.bumpScale = json.bumpScale; + if (json.normalMap !== undefined) material.normalMap = getTexture(json.normalMap); + if (json.normalMapType !== undefined) material.normalMapType = json.normalMapType; + + if (json.normalScale !== undefined) { + let normalScale = json.normalScale; + + if (Array.isArray(normalScale) === false) { + // Blender exporter used to export a scalar. See #7459 + normalScale = [normalScale, normalScale]; + } + + material.normalScale = new Vector2().fromArray(normalScale); + } + + if (json.displacementMap !== undefined) material.displacementMap = getTexture(json.displacementMap); + if (json.displacementScale !== undefined) material.displacementScale = json.displacementScale; + if (json.displacementBias !== undefined) material.displacementBias = json.displacementBias; + if (json.roughnessMap !== undefined) material.roughnessMap = getTexture(json.roughnessMap); + if (json.metalnessMap !== undefined) material.metalnessMap = getTexture(json.metalnessMap); + if (json.emissiveMap !== undefined) material.emissiveMap = getTexture(json.emissiveMap); + if (json.emissiveIntensity !== undefined) material.emissiveIntensity = json.emissiveIntensity; + if (json.specularMap !== undefined) material.specularMap = getTexture(json.specularMap); + if (json.specularIntensityMap !== undefined) material.specularIntensityMap = getTexture(json.specularIntensityMap); + if (json.specularTintMap !== undefined) material.specularTintMap = getTexture(json.specularTintMap); + if (json.envMap !== undefined) material.envMap = getTexture(json.envMap); + if (json.envMapIntensity !== undefined) material.envMapIntensity = json.envMapIntensity; + if (json.reflectivity !== undefined) material.reflectivity = json.reflectivity; + if (json.refractionRatio !== undefined) material.refractionRatio = json.refractionRatio; + if (json.lightMap !== undefined) material.lightMap = getTexture(json.lightMap); + if (json.lightMapIntensity !== undefined) material.lightMapIntensity = json.lightMapIntensity; + if (json.aoMap !== undefined) material.aoMap = getTexture(json.aoMap); + if (json.aoMapIntensity !== undefined) material.aoMapIntensity = json.aoMapIntensity; + if (json.gradientMap !== undefined) material.gradientMap = getTexture(json.gradientMap); + if (json.clearcoatMap !== undefined) material.clearcoatMap = getTexture(json.clearcoatMap); + if (json.clearcoatRoughnessMap !== undefined) material.clearcoatRoughnessMap = getTexture(json.clearcoatRoughnessMap); + if (json.clearcoatNormalMap !== undefined) material.clearcoatNormalMap = getTexture(json.clearcoatNormalMap); + if (json.clearcoatNormalScale !== undefined) material.clearcoatNormalScale = new Vector2().fromArray(json.clearcoatNormalScale); + if (json.transmissionMap !== undefined) material.transmissionMap = getTexture(json.transmissionMap); + if (json.thicknessMap !== undefined) material.thicknessMap = getTexture(json.thicknessMap); + return material; + } + + setTextures(value) { + this.textures = value; + return this; + } + + } + + class LoaderUtils { + static decodeText(array) { + if (typeof TextDecoder !== 'undefined') { + return new TextDecoder().decode(array); + } // Avoid the String.fromCharCode.apply(null, array) shortcut, which + // throws a "maximum call stack size exceeded" error for large arrays. + + + let s = ''; + + for (let i = 0, il = array.length; i < il; i++) { + // Implicitly assumes little-endian. + s += String.fromCharCode(array[i]); + } + + try { + // merges multi-byte utf-8 characters. + return decodeURIComponent(escape(s)); + } catch (e) { + // see #16358 + return s; + } + } + + static extractUrlBase(url) { + const index = url.lastIndexOf('/'); + if (index === -1) return './'; + return url.substr(0, index + 1); + } + + } + + class InstancedBufferGeometry extends BufferGeometry { + constructor() { + super(); + this.type = 'InstancedBufferGeometry'; + this.instanceCount = Infinity; + } + + copy(source) { + super.copy(source); + this.instanceCount = source.instanceCount; + return this; + } + + clone() { + return new this.constructor().copy(this); + } + + toJSON() { + const data = super.toJSON(this); + data.instanceCount = this.instanceCount; + data.isInstancedBufferGeometry = true; + return data; + } + + } + + InstancedBufferGeometry.prototype.isInstancedBufferGeometry = true; + + class BufferGeometryLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + const scope = this; + const loader = new FileLoader(scope.manager); + loader.setPath(scope.path); + loader.setRequestHeader(scope.requestHeader); + loader.setWithCredentials(scope.withCredentials); + loader.load(url, function (text) { + try { + onLoad(scope.parse(JSON.parse(text))); + } catch (e) { + if (onError) { + onError(e); + } else { + console.error(e); + } + + scope.manager.itemError(url); + } + }, onProgress, onError); + } + + parse(json) { + const interleavedBufferMap = {}; + const arrayBufferMap = {}; + + function getInterleavedBuffer(json, uuid) { + if (interleavedBufferMap[uuid] !== undefined) return interleavedBufferMap[uuid]; + const interleavedBuffers = json.interleavedBuffers; + const interleavedBuffer = interleavedBuffers[uuid]; + const buffer = getArrayBuffer(json, interleavedBuffer.buffer); + const array = getTypedArray(interleavedBuffer.type, buffer); + const ib = new InterleavedBuffer(array, interleavedBuffer.stride); + ib.uuid = interleavedBuffer.uuid; + interleavedBufferMap[uuid] = ib; + return ib; + } + + function getArrayBuffer(json, uuid) { + if (arrayBufferMap[uuid] !== undefined) return arrayBufferMap[uuid]; + const arrayBuffers = json.arrayBuffers; + const arrayBuffer = arrayBuffers[uuid]; + const ab = new Uint32Array(arrayBuffer).buffer; + arrayBufferMap[uuid] = ab; + return ab; + } + + const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry(); + const index = json.data.index; + + if (index !== undefined) { + const typedArray = getTypedArray(index.type, index.array); + geometry.setIndex(new BufferAttribute(typedArray, 1)); + } + + const attributes = json.data.attributes; + + for (const key in attributes) { + const attribute = attributes[key]; + let bufferAttribute; + + if (attribute.isInterleavedBufferAttribute) { + const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data); + bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized); + } else { + const typedArray = getTypedArray(attribute.type, attribute.array); + const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute; + bufferAttribute = new bufferAttributeConstr(typedArray, attribute.itemSize, attribute.normalized); + } + + if (attribute.name !== undefined) bufferAttribute.name = attribute.name; + if (attribute.usage !== undefined) bufferAttribute.setUsage(attribute.usage); + + if (attribute.updateRange !== undefined) { + bufferAttribute.updateRange.offset = attribute.updateRange.offset; + bufferAttribute.updateRange.count = attribute.updateRange.count; + } + + geometry.setAttribute(key, bufferAttribute); + } + + const morphAttributes = json.data.morphAttributes; + + if (morphAttributes) { + for (const key in morphAttributes) { + const attributeArray = morphAttributes[key]; + const array = []; + + for (let i = 0, il = attributeArray.length; i < il; i++) { + const attribute = attributeArray[i]; + let bufferAttribute; + + if (attribute.isInterleavedBufferAttribute) { + const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data); + bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized); + } else { + const typedArray = getTypedArray(attribute.type, attribute.array); + bufferAttribute = new BufferAttribute(typedArray, attribute.itemSize, attribute.normalized); + } + + if (attribute.name !== undefined) bufferAttribute.name = attribute.name; + array.push(bufferAttribute); + } + + geometry.morphAttributes[key] = array; + } + } + + const morphTargetsRelative = json.data.morphTargetsRelative; + + if (morphTargetsRelative) { + geometry.morphTargetsRelative = true; + } + + const groups = json.data.groups || json.data.drawcalls || json.data.offsets; + + if (groups !== undefined) { + for (let i = 0, n = groups.length; i !== n; ++i) { + const group = groups[i]; + geometry.addGroup(group.start, group.count, group.materialIndex); + } + } + + const boundingSphere = json.data.boundingSphere; + + if (boundingSphere !== undefined) { + const center = new Vector3(); + + if (boundingSphere.center !== undefined) { + center.fromArray(boundingSphere.center); + } + + geometry.boundingSphere = new Sphere(center, boundingSphere.radius); + } + + if (json.name) geometry.name = json.name; + if (json.userData) geometry.userData = json.userData; + return geometry; + } + + } + + class ObjectLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + const scope = this; + const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path; + this.resourcePath = this.resourcePath || path; + const loader = new FileLoader(this.manager); + loader.setPath(this.path); + loader.setRequestHeader(this.requestHeader); + loader.setWithCredentials(this.withCredentials); + loader.load(url, function (text) { + let json = null; + + try { + json = JSON.parse(text); + } catch (error) { + if (onError !== undefined) onError(error); + console.error('THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message); + return; + } + + const metadata = json.metadata; + + if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') { + console.error('THREE.ObjectLoader: Can\'t load ' + url); + return; + } + + scope.parse(json, onLoad); + }, onProgress, onError); + } + + async loadAsync(url, onProgress) { + const scope = this; + const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path; + this.resourcePath = this.resourcePath || path; + const loader = new FileLoader(this.manager); + loader.setPath(this.path); + loader.setRequestHeader(this.requestHeader); + loader.setWithCredentials(this.withCredentials); + const text = await loader.loadAsync(url, onProgress); + const json = JSON.parse(text); + const metadata = json.metadata; + + if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') { + throw new Error('THREE.ObjectLoader: Can\'t load ' + url); + } + + return await scope.parseAsync(json); + } + + parse(json, onLoad) { + const animations = this.parseAnimations(json.animations); + const shapes = this.parseShapes(json.shapes); + const geometries = this.parseGeometries(json.geometries, shapes); + const images = this.parseImages(json.images, function () { + if (onLoad !== undefined) onLoad(object); + }); + const textures = this.parseTextures(json.textures, images); + const materials = this.parseMaterials(json.materials, textures); + const object = this.parseObject(json.object, geometries, materials, textures, animations); + const skeletons = this.parseSkeletons(json.skeletons, object); + this.bindSkeletons(object, skeletons); // + + if (onLoad !== undefined) { + let hasImages = false; + + for (const uuid in images) { + if (images[uuid] instanceof HTMLImageElement) { + hasImages = true; + break; + } + } + + if (hasImages === false) onLoad(object); + } + + return object; + } + + async parseAsync(json) { + const animations = this.parseAnimations(json.animations); + const shapes = this.parseShapes(json.shapes); + const geometries = this.parseGeometries(json.geometries, shapes); + const images = await this.parseImagesAsync(json.images); + const textures = this.parseTextures(json.textures, images); + const materials = this.parseMaterials(json.materials, textures); + const object = this.parseObject(json.object, geometries, materials, textures, animations); + const skeletons = this.parseSkeletons(json.skeletons, object); + this.bindSkeletons(object, skeletons); + return object; + } + + parseShapes(json) { + const shapes = {}; + + if (json !== undefined) { + for (let i = 0, l = json.length; i < l; i++) { + const shape = new Shape().fromJSON(json[i]); + shapes[shape.uuid] = shape; + } + } + + return shapes; + } + + parseSkeletons(json, object) { + const skeletons = {}; + const bones = {}; // generate bone lookup table + + object.traverse(function (child) { + if (child.isBone) bones[child.uuid] = child; + }); // create skeletons + + if (json !== undefined) { + for (let i = 0, l = json.length; i < l; i++) { + const skeleton = new Skeleton().fromJSON(json[i], bones); + skeletons[skeleton.uuid] = skeleton; + } + } + + return skeletons; + } + + parseGeometries(json, shapes) { + const geometries = {}; + + if (json !== undefined) { + const bufferGeometryLoader = new BufferGeometryLoader(); + + for (let i = 0, l = json.length; i < l; i++) { + let geometry; + const data = json[i]; + + switch (data.type) { + case 'BufferGeometry': + case 'InstancedBufferGeometry': + geometry = bufferGeometryLoader.parse(data); + break; + + case 'Geometry': + console.error('THREE.ObjectLoader: The legacy Geometry type is no longer supported.'); + break; + + default: + if (data.type in Geometries) { + geometry = Geometries[data.type].fromJSON(data, shapes); + } else { + console.warn(`THREE.ObjectLoader: Unsupported geometry type "${data.type}"`); + } + + } + + geometry.uuid = data.uuid; + if (data.name !== undefined) geometry.name = data.name; + if (geometry.isBufferGeometry === true && data.userData !== undefined) geometry.userData = data.userData; + geometries[data.uuid] = geometry; + } + } + + return geometries; + } + + parseMaterials(json, textures) { + const cache = {}; // MultiMaterial + + const materials = {}; + + if (json !== undefined) { + const loader = new MaterialLoader(); + loader.setTextures(textures); + + for (let i = 0, l = json.length; i < l; i++) { + const data = json[i]; + + if (data.type === 'MultiMaterial') { + // Deprecated + const array = []; + + for (let j = 0; j < data.materials.length; j++) { + const material = data.materials[j]; + + if (cache[material.uuid] === undefined) { + cache[material.uuid] = loader.parse(material); + } + + array.push(cache[material.uuid]); + } + + materials[data.uuid] = array; + } else { + if (cache[data.uuid] === undefined) { + cache[data.uuid] = loader.parse(data); + } + + materials[data.uuid] = cache[data.uuid]; + } + } + } + + return materials; + } + + parseAnimations(json) { + const animations = {}; + + if (json !== undefined) { + for (let i = 0; i < json.length; i++) { + const data = json[i]; + const clip = AnimationClip.parse(data); + animations[clip.uuid] = clip; + } + } + + return animations; + } + + parseImages(json, onLoad) { + const scope = this; + const images = {}; + let loader; + + function loadImage(url) { + scope.manager.itemStart(url); + return loader.load(url, function () { + scope.manager.itemEnd(url); + }, undefined, function () { + scope.manager.itemError(url); + scope.manager.itemEnd(url); + }); + } + + function deserializeImage(image) { + if (typeof image === 'string') { + const url = image; + const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url; + return loadImage(path); + } else { + if (image.data) { + return { + data: getTypedArray(image.type, image.data), + width: image.width, + height: image.height + }; + } else { + return null; + } + } + } + + if (json !== undefined && json.length > 0) { + const manager = new LoadingManager(onLoad); + loader = new ImageLoader(manager); + loader.setCrossOrigin(this.crossOrigin); + + for (let i = 0, il = json.length; i < il; i++) { + const image = json[i]; + const url = image.url; + + if (Array.isArray(url)) { + // load array of images e.g CubeTexture + images[image.uuid] = []; + + for (let j = 0, jl = url.length; j < jl; j++) { + const currentUrl = url[j]; + const deserializedImage = deserializeImage(currentUrl); + + if (deserializedImage !== null) { + if (deserializedImage instanceof HTMLImageElement) { + images[image.uuid].push(deserializedImage); + } else { + // special case: handle array of data textures for cube textures + images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height)); + } + } + } + } else { + // load single image + const deserializedImage = deserializeImage(image.url); + + if (deserializedImage !== null) { + images[image.uuid] = deserializedImage; + } + } + } + } + + return images; + } + + async parseImagesAsync(json) { + const scope = this; + const images = {}; + let loader; + + async function deserializeImage(image) { + if (typeof image === 'string') { + const url = image; + const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url; + return await loader.loadAsync(path); + } else { + if (image.data) { + return { + data: getTypedArray(image.type, image.data), + width: image.width, + height: image.height + }; + } else { + return null; + } + } + } + + if (json !== undefined && json.length > 0) { + loader = new ImageLoader(this.manager); + loader.setCrossOrigin(this.crossOrigin); + + for (let i = 0, il = json.length; i < il; i++) { + const image = json[i]; + const url = image.url; + + if (Array.isArray(url)) { + // load array of images e.g CubeTexture + images[image.uuid] = []; + + for (let j = 0, jl = url.length; j < jl; j++) { + const currentUrl = url[j]; + const deserializedImage = await deserializeImage(currentUrl); + + if (deserializedImage !== null) { + if (deserializedImage instanceof HTMLImageElement) { + images[image.uuid].push(deserializedImage); + } else { + // special case: handle array of data textures for cube textures + images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height)); + } + } + } + } else { + // load single image + const deserializedImage = await deserializeImage(image.url); + + if (deserializedImage !== null) { + images[image.uuid] = deserializedImage; + } + } + } + } + + return images; + } + + parseTextures(json, images) { + function parseConstant(value, type) { + if (typeof value === 'number') return value; + console.warn('THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value); + return type[value]; + } + + const textures = {}; + + if (json !== undefined) { + for (let i = 0, l = json.length; i < l; i++) { + const data = json[i]; + + if (data.image === undefined) { + console.warn('THREE.ObjectLoader: No "image" specified for', data.uuid); + } + + if (images[data.image] === undefined) { + console.warn('THREE.ObjectLoader: Undefined image', data.image); + } + + let texture; + const image = images[data.image]; + + if (Array.isArray(image)) { + texture = new CubeTexture(image); + if (image.length === 6) texture.needsUpdate = true; + } else { + if (image && image.data) { + texture = new DataTexture(image.data, image.width, image.height); + } else { + texture = new Texture(image); + } + + if (image) texture.needsUpdate = true; // textures can have undefined image data + } + + texture.uuid = data.uuid; + if (data.name !== undefined) texture.name = data.name; + if (data.mapping !== undefined) texture.mapping = parseConstant(data.mapping, TEXTURE_MAPPING); + if (data.offset !== undefined) texture.offset.fromArray(data.offset); + if (data.repeat !== undefined) texture.repeat.fromArray(data.repeat); + if (data.center !== undefined) texture.center.fromArray(data.center); + if (data.rotation !== undefined) texture.rotation = data.rotation; + + if (data.wrap !== undefined) { + texture.wrapS = parseConstant(data.wrap[0], TEXTURE_WRAPPING); + texture.wrapT = parseConstant(data.wrap[1], TEXTURE_WRAPPING); + } + + if (data.format !== undefined) texture.format = data.format; + if (data.type !== undefined) texture.type = data.type; + if (data.encoding !== undefined) texture.encoding = data.encoding; + if (data.minFilter !== undefined) texture.minFilter = parseConstant(data.minFilter, TEXTURE_FILTER); + if (data.magFilter !== undefined) texture.magFilter = parseConstant(data.magFilter, TEXTURE_FILTER); + if (data.anisotropy !== undefined) texture.anisotropy = data.anisotropy; + if (data.flipY !== undefined) texture.flipY = data.flipY; + if (data.premultiplyAlpha !== undefined) texture.premultiplyAlpha = data.premultiplyAlpha; + if (data.unpackAlignment !== undefined) texture.unpackAlignment = data.unpackAlignment; + textures[data.uuid] = texture; + } + } + + return textures; + } + + parseObject(data, geometries, materials, textures, animations) { + let object; + + function getGeometry(name) { + if (geometries[name] === undefined) { + console.warn('THREE.ObjectLoader: Undefined geometry', name); + } + + return geometries[name]; + } + + function getMaterial(name) { + if (name === undefined) return undefined; + + if (Array.isArray(name)) { + const array = []; + + for (let i = 0, l = name.length; i < l; i++) { + const uuid = name[i]; + + if (materials[uuid] === undefined) { + console.warn('THREE.ObjectLoader: Undefined material', uuid); + } + + array.push(materials[uuid]); + } + + return array; + } + + if (materials[name] === undefined) { + console.warn('THREE.ObjectLoader: Undefined material', name); + } + + return materials[name]; + } + + function getTexture(uuid) { + if (textures[uuid] === undefined) { + console.warn('THREE.ObjectLoader: Undefined texture', uuid); + } + + return textures[uuid]; + } + + let geometry, material; + + switch (data.type) { + case 'Scene': + object = new Scene(); + + if (data.background !== undefined) { + if (Number.isInteger(data.background)) { + object.background = new Color(data.background); + } else { + object.background = getTexture(data.background); + } + } + + if (data.environment !== undefined) { + object.environment = getTexture(data.environment); + } + + if (data.fog !== undefined) { + if (data.fog.type === 'Fog') { + object.fog = new Fog(data.fog.color, data.fog.near, data.fog.far); + } else if (data.fog.type === 'FogExp2') { + object.fog = new FogExp2(data.fog.color, data.fog.density); + } + } + + break; + + case 'PerspectiveCamera': + object = new PerspectiveCamera(data.fov, data.aspect, data.near, data.far); + if (data.focus !== undefined) object.focus = data.focus; + if (data.zoom !== undefined) object.zoom = data.zoom; + if (data.filmGauge !== undefined) object.filmGauge = data.filmGauge; + if (data.filmOffset !== undefined) object.filmOffset = data.filmOffset; + if (data.view !== undefined) object.view = Object.assign({}, data.view); + break; + + case 'OrthographicCamera': + object = new OrthographicCamera(data.left, data.right, data.top, data.bottom, data.near, data.far); + if (data.zoom !== undefined) object.zoom = data.zoom; + if (data.view !== undefined) object.view = Object.assign({}, data.view); + break; + + case 'AmbientLight': + object = new AmbientLight(data.color, data.intensity); + break; + + case 'DirectionalLight': + object = new DirectionalLight(data.color, data.intensity); + break; + + case 'PointLight': + object = new PointLight(data.color, data.intensity, data.distance, data.decay); + break; + + case 'RectAreaLight': + object = new RectAreaLight(data.color, data.intensity, data.width, data.height); + break; + + case 'SpotLight': + object = new SpotLight(data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay); + break; + + case 'HemisphereLight': + object = new HemisphereLight(data.color, data.groundColor, data.intensity); + break; + + case 'LightProbe': + object = new LightProbe().fromJSON(data); + break; + + case 'SkinnedMesh': + geometry = getGeometry(data.geometry); + material = getMaterial(data.material); + object = new SkinnedMesh(geometry, material); + if (data.bindMode !== undefined) object.bindMode = data.bindMode; + if (data.bindMatrix !== undefined) object.bindMatrix.fromArray(data.bindMatrix); + if (data.skeleton !== undefined) object.skeleton = data.skeleton; + break; + + case 'Mesh': + geometry = getGeometry(data.geometry); + material = getMaterial(data.material); + object = new Mesh(geometry, material); + break; + + case 'InstancedMesh': + geometry = getGeometry(data.geometry); + material = getMaterial(data.material); + const count = data.count; + const instanceMatrix = data.instanceMatrix; + const instanceColor = data.instanceColor; + object = new InstancedMesh(geometry, material, count); + object.instanceMatrix = new InstancedBufferAttribute(new Float32Array(instanceMatrix.array), 16); + if (instanceColor !== undefined) object.instanceColor = new InstancedBufferAttribute(new Float32Array(instanceColor.array), instanceColor.itemSize); + break; + + case 'LOD': + object = new LOD(); + break; + + case 'Line': + object = new Line(getGeometry(data.geometry), getMaterial(data.material)); + break; + + case 'LineLoop': + object = new LineLoop(getGeometry(data.geometry), getMaterial(data.material)); + break; + + case 'LineSegments': + object = new LineSegments(getGeometry(data.geometry), getMaterial(data.material)); + break; + + case 'PointCloud': + case 'Points': + object = new Points(getGeometry(data.geometry), getMaterial(data.material)); + break; + + case 'Sprite': + object = new Sprite(getMaterial(data.material)); + break; + + case 'Group': + object = new Group(); + break; + + case 'Bone': + object = new Bone(); + break; + + default: + object = new Object3D(); + } + + object.uuid = data.uuid; + if (data.name !== undefined) object.name = data.name; + + if (data.matrix !== undefined) { + object.matrix.fromArray(data.matrix); + if (data.matrixAutoUpdate !== undefined) object.matrixAutoUpdate = data.matrixAutoUpdate; + if (object.matrixAutoUpdate) object.matrix.decompose(object.position, object.quaternion, object.scale); + } else { + if (data.position !== undefined) object.position.fromArray(data.position); + if (data.rotation !== undefined) object.rotation.fromArray(data.rotation); + if (data.quaternion !== undefined) object.quaternion.fromArray(data.quaternion); + if (data.scale !== undefined) object.scale.fromArray(data.scale); + } + + if (data.castShadow !== undefined) object.castShadow = data.castShadow; + if (data.receiveShadow !== undefined) object.receiveShadow = data.receiveShadow; + + if (data.shadow) { + if (data.shadow.bias !== undefined) object.shadow.bias = data.shadow.bias; + if (data.shadow.normalBias !== undefined) object.shadow.normalBias = data.shadow.normalBias; + if (data.shadow.radius !== undefined) object.shadow.radius = data.shadow.radius; + if (data.shadow.mapSize !== undefined) object.shadow.mapSize.fromArray(data.shadow.mapSize); + if (data.shadow.camera !== undefined) object.shadow.camera = this.parseObject(data.shadow.camera); + } + + if (data.visible !== undefined) object.visible = data.visible; + if (data.frustumCulled !== undefined) object.frustumCulled = data.frustumCulled; + if (data.renderOrder !== undefined) object.renderOrder = data.renderOrder; + if (data.userData !== undefined) object.userData = data.userData; + if (data.layers !== undefined) object.layers.mask = data.layers; + + if (data.children !== undefined) { + const children = data.children; + + for (let i = 0; i < children.length; i++) { + object.add(this.parseObject(children[i], geometries, materials, textures, animations)); + } + } + + if (data.animations !== undefined) { + const objectAnimations = data.animations; + + for (let i = 0; i < objectAnimations.length; i++) { + const uuid = objectAnimations[i]; + object.animations.push(animations[uuid]); + } + } + + if (data.type === 'LOD') { + if (data.autoUpdate !== undefined) object.autoUpdate = data.autoUpdate; + const levels = data.levels; + + for (let l = 0; l < levels.length; l++) { + const level = levels[l]; + const child = object.getObjectByProperty('uuid', level.object); + + if (child !== undefined) { + object.addLevel(child, level.distance); + } + } + } + + return object; + } + + bindSkeletons(object, skeletons) { + if (Object.keys(skeletons).length === 0) return; + object.traverse(function (child) { + if (child.isSkinnedMesh === true && child.skeleton !== undefined) { + const skeleton = skeletons[child.skeleton]; + + if (skeleton === undefined) { + console.warn('THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton); + } else { + child.bind(skeleton, child.bindMatrix); + } + } + }); + } + /* DEPRECATED */ + + + setTexturePath(value) { + console.warn('THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().'); + return this.setResourcePath(value); + } + + } + + const TEXTURE_MAPPING = { + UVMapping: UVMapping, + CubeReflectionMapping: CubeReflectionMapping, + CubeRefractionMapping: CubeRefractionMapping, + EquirectangularReflectionMapping: EquirectangularReflectionMapping, + EquirectangularRefractionMapping: EquirectangularRefractionMapping, + CubeUVReflectionMapping: CubeUVReflectionMapping, + CubeUVRefractionMapping: CubeUVRefractionMapping + }; + const TEXTURE_WRAPPING = { + RepeatWrapping: RepeatWrapping, + ClampToEdgeWrapping: ClampToEdgeWrapping, + MirroredRepeatWrapping: MirroredRepeatWrapping + }; + const TEXTURE_FILTER = { + NearestFilter: NearestFilter, + NearestMipmapNearestFilter: NearestMipmapNearestFilter, + NearestMipmapLinearFilter: NearestMipmapLinearFilter, + LinearFilter: LinearFilter, + LinearMipmapNearestFilter: LinearMipmapNearestFilter, + LinearMipmapLinearFilter: LinearMipmapLinearFilter + }; + + class ImageBitmapLoader extends Loader { + constructor(manager) { + super(manager); + + if (typeof createImageBitmap === 'undefined') { + console.warn('THREE.ImageBitmapLoader: createImageBitmap() not supported.'); + } + + if (typeof fetch === 'undefined') { + console.warn('THREE.ImageBitmapLoader: fetch() not supported.'); + } + + this.options = { + premultiplyAlpha: 'none' + }; + } + + setOptions(options) { + this.options = options; + return this; + } + + load(url, onLoad, onProgress, onError) { + if (url === undefined) url = ''; + if (this.path !== undefined) url = this.path + url; + url = this.manager.resolveURL(url); + const scope = this; + const cached = Cache.get(url); + + if (cached !== undefined) { + scope.manager.itemStart(url); + setTimeout(function () { + if (onLoad) onLoad(cached); + scope.manager.itemEnd(url); + }, 0); + return cached; + } + + const fetchOptions = {}; + fetchOptions.credentials = this.crossOrigin === 'anonymous' ? 'same-origin' : 'include'; + fetchOptions.headers = this.requestHeader; + fetch(url, fetchOptions).then(function (res) { + return res.blob(); + }).then(function (blob) { + return createImageBitmap(blob, Object.assign(scope.options, { + colorSpaceConversion: 'none' + })); + }).then(function (imageBitmap) { + Cache.add(url, imageBitmap); + if (onLoad) onLoad(imageBitmap); + scope.manager.itemEnd(url); + }).catch(function (e) { + if (onError) onError(e); + scope.manager.itemError(url); + scope.manager.itemEnd(url); + }); + scope.manager.itemStart(url); + } + + } + + ImageBitmapLoader.prototype.isImageBitmapLoader = true; + + let _context; + + const AudioContext = { + getContext: function () { + if (_context === undefined) { + _context = new (window.AudioContext || window.webkitAudioContext)(); + } + + return _context; + }, + setContext: function (value) { + _context = value; + } + }; + + class AudioLoader extends Loader { + constructor(manager) { + super(manager); + } + + load(url, onLoad, onProgress, onError) { + const scope = this; + const loader = new FileLoader(this.manager); + loader.setResponseType('arraybuffer'); + loader.setPath(this.path); + loader.setRequestHeader(this.requestHeader); + loader.setWithCredentials(this.withCredentials); + loader.load(url, function (buffer) { + try { + // Create a copy of the buffer. The `decodeAudioData` method + // detaches the buffer when complete, preventing reuse. + const bufferCopy = buffer.slice(0); + const context = AudioContext.getContext(); + context.decodeAudioData(bufferCopy, function (audioBuffer) { + onLoad(audioBuffer); + }); + } catch (e) { + if (onError) { + onError(e); + } else { + console.error(e); + } + + scope.manager.itemError(url); + } + }, onProgress, onError); + } + + } + + class HemisphereLightProbe extends LightProbe { + constructor(skyColor, groundColor, intensity = 1) { + super(undefined, intensity); + const color1 = new Color().set(skyColor); + const color2 = new Color().set(groundColor); + const sky = new Vector3(color1.r, color1.g, color1.b); + const ground = new Vector3(color2.r, color2.g, color2.b); // without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI ); + + const c0 = Math.sqrt(Math.PI); + const c1 = c0 * Math.sqrt(0.75); + this.sh.coefficients[0].copy(sky).add(ground).multiplyScalar(c0); + this.sh.coefficients[1].copy(sky).sub(ground).multiplyScalar(c1); + } + + } + + HemisphereLightProbe.prototype.isHemisphereLightProbe = true; + + class AmbientLightProbe extends LightProbe { + constructor(color, intensity = 1) { + super(undefined, intensity); + const color1 = new Color().set(color); // without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI ); + + this.sh.coefficients[0].set(color1.r, color1.g, color1.b).multiplyScalar(2 * Math.sqrt(Math.PI)); + } + + } + + AmbientLightProbe.prototype.isAmbientLightProbe = true; + + const _eyeRight = /*@__PURE__*/new Matrix4(); + + const _eyeLeft = /*@__PURE__*/new Matrix4(); + + class StereoCamera { + constructor() { + this.type = 'StereoCamera'; + this.aspect = 1; + this.eyeSep = 0.064; + this.cameraL = new PerspectiveCamera(); + this.cameraL.layers.enable(1); + this.cameraL.matrixAutoUpdate = false; + this.cameraR = new PerspectiveCamera(); + this.cameraR.layers.enable(2); + this.cameraR.matrixAutoUpdate = false; + this._cache = { + focus: null, + fov: null, + aspect: null, + near: null, + far: null, + zoom: null, + eyeSep: null + }; + } + + update(camera) { + const cache = this._cache; + const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep; + + if (needsUpdate) { + cache.focus = camera.focus; + cache.fov = camera.fov; + cache.aspect = camera.aspect * this.aspect; + cache.near = camera.near; + cache.far = camera.far; + cache.zoom = camera.zoom; + cache.eyeSep = this.eyeSep; // Off-axis stereoscopic effect based on + // http://paulbourke.net/stereographics/stereorender/ + + const projectionMatrix = camera.projectionMatrix.clone(); + const eyeSepHalf = cache.eyeSep / 2; + const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus; + const ymax = cache.near * Math.tan(DEG2RAD * cache.fov * 0.5) / cache.zoom; + let xmin, xmax; // translate xOffset + + _eyeLeft.elements[12] = -eyeSepHalf; + _eyeRight.elements[12] = eyeSepHalf; // for left eye + + xmin = -ymax * cache.aspect + eyeSepOnProjection; + xmax = ymax * cache.aspect + eyeSepOnProjection; + projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin); + projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin); + this.cameraL.projectionMatrix.copy(projectionMatrix); // for right eye + + xmin = -ymax * cache.aspect - eyeSepOnProjection; + xmax = ymax * cache.aspect - eyeSepOnProjection; + projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin); + projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin); + this.cameraR.projectionMatrix.copy(projectionMatrix); + } + + this.cameraL.matrixWorld.copy(camera.matrixWorld).multiply(_eyeLeft); + this.cameraR.matrixWorld.copy(camera.matrixWorld).multiply(_eyeRight); + } + + } + + class Clock { + constructor(autoStart = true) { + this.autoStart = autoStart; + this.startTime = 0; + this.oldTime = 0; + this.elapsedTime = 0; + this.running = false; + } + + start() { + this.startTime = now(); + this.oldTime = this.startTime; + this.elapsedTime = 0; + this.running = true; + } + + stop() { + this.getElapsedTime(); + this.running = false; + this.autoStart = false; + } + + getElapsedTime() { + this.getDelta(); + return this.elapsedTime; + } + + getDelta() { + let diff = 0; + + if (this.autoStart && !this.running) { + this.start(); + return 0; + } + + if (this.running) { + const newTime = now(); + diff = (newTime - this.oldTime) / 1000; + this.oldTime = newTime; + this.elapsedTime += diff; + } + + return diff; + } + + } + + function now() { + return (typeof performance === 'undefined' ? Date : performance).now(); // see #10732 + } + + const _position$1 = /*@__PURE__*/new Vector3(); + + const _quaternion$1 = /*@__PURE__*/new Quaternion(); + + const _scale$1 = /*@__PURE__*/new Vector3(); + + const _orientation$1 = /*@__PURE__*/new Vector3(); + + class AudioListener extends Object3D { + constructor() { + super(); + this.type = 'AudioListener'; + this.context = AudioContext.getContext(); + this.gain = this.context.createGain(); + this.gain.connect(this.context.destination); + this.filter = null; + this.timeDelta = 0; // private + + this._clock = new Clock(); + } + + getInput() { + return this.gain; + } + + removeFilter() { + if (this.filter !== null) { + this.gain.disconnect(this.filter); + this.filter.disconnect(this.context.destination); + this.gain.connect(this.context.destination); + this.filter = null; + } + + return this; + } + + getFilter() { + return this.filter; + } + + setFilter(value) { + if (this.filter !== null) { + this.gain.disconnect(this.filter); + this.filter.disconnect(this.context.destination); + } else { + this.gain.disconnect(this.context.destination); + } + + this.filter = value; + this.gain.connect(this.filter); + this.filter.connect(this.context.destination); + return this; + } + + getMasterVolume() { + return this.gain.gain.value; + } + + setMasterVolume(value) { + this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01); + return this; + } + + updateMatrixWorld(force) { + super.updateMatrixWorld(force); + const listener = this.context.listener; + const up = this.up; + this.timeDelta = this._clock.getDelta(); + this.matrixWorld.decompose(_position$1, _quaternion$1, _scale$1); + + _orientation$1.set(0, 0, -1).applyQuaternion(_quaternion$1); + + if (listener.positionX) { + // code path for Chrome (see #14393) + const endTime = this.context.currentTime + this.timeDelta; + listener.positionX.linearRampToValueAtTime(_position$1.x, endTime); + listener.positionY.linearRampToValueAtTime(_position$1.y, endTime); + listener.positionZ.linearRampToValueAtTime(_position$1.z, endTime); + listener.forwardX.linearRampToValueAtTime(_orientation$1.x, endTime); + listener.forwardY.linearRampToValueAtTime(_orientation$1.y, endTime); + listener.forwardZ.linearRampToValueAtTime(_orientation$1.z, endTime); + listener.upX.linearRampToValueAtTime(up.x, endTime); + listener.upY.linearRampToValueAtTime(up.y, endTime); + listener.upZ.linearRampToValueAtTime(up.z, endTime); + } else { + listener.setPosition(_position$1.x, _position$1.y, _position$1.z); + listener.setOrientation(_orientation$1.x, _orientation$1.y, _orientation$1.z, up.x, up.y, up.z); + } + } + + } + + class Audio extends Object3D { + constructor(listener) { + super(); + this.type = 'Audio'; + this.listener = listener; + this.context = listener.context; + this.gain = this.context.createGain(); + this.gain.connect(listener.getInput()); + this.autoplay = false; + this.buffer = null; + this.detune = 0; + this.loop = false; + this.loopStart = 0; + this.loopEnd = 0; + this.offset = 0; + this.duration = undefined; + this.playbackRate = 1; + this.isPlaying = false; + this.hasPlaybackControl = true; + this.source = null; + this.sourceType = 'empty'; + this._startedAt = 0; + this._progress = 0; + this._connected = false; + this.filters = []; + } + + getOutput() { + return this.gain; + } + + setNodeSource(audioNode) { + this.hasPlaybackControl = false; + this.sourceType = 'audioNode'; + this.source = audioNode; + this.connect(); + return this; + } + + setMediaElementSource(mediaElement) { + this.hasPlaybackControl = false; + this.sourceType = 'mediaNode'; + this.source = this.context.createMediaElementSource(mediaElement); + this.connect(); + return this; + } + + setMediaStreamSource(mediaStream) { + this.hasPlaybackControl = false; + this.sourceType = 'mediaStreamNode'; + this.source = this.context.createMediaStreamSource(mediaStream); + this.connect(); + return this; + } + + setBuffer(audioBuffer) { + this.buffer = audioBuffer; + this.sourceType = 'buffer'; + if (this.autoplay) this.play(); + return this; + } + + play(delay = 0) { + if (this.isPlaying === true) { + console.warn('THREE.Audio: Audio is already playing.'); + return; + } + + if (this.hasPlaybackControl === false) { + console.warn('THREE.Audio: this Audio has no playback control.'); + return; + } + + this._startedAt = this.context.currentTime + delay; + const source = this.context.createBufferSource(); + source.buffer = this.buffer; + source.loop = this.loop; + source.loopStart = this.loopStart; + source.loopEnd = this.loopEnd; + source.onended = this.onEnded.bind(this); + source.start(this._startedAt, this._progress + this.offset, this.duration); + this.isPlaying = true; + this.source = source; + this.setDetune(this.detune); + this.setPlaybackRate(this.playbackRate); + return this.connect(); + } + + pause() { + if (this.hasPlaybackControl === false) { + console.warn('THREE.Audio: this Audio has no playback control.'); + return; + } + + if (this.isPlaying === true) { + // update current progress + this._progress += Math.max(this.context.currentTime - this._startedAt, 0) * this.playbackRate; + + if (this.loop === true) { + // ensure _progress does not exceed duration with looped audios + this._progress = this._progress % (this.duration || this.buffer.duration); + } + + this.source.stop(); + this.source.onended = null; + this.isPlaying = false; + } + + return this; + } + + stop() { + if (this.hasPlaybackControl === false) { + console.warn('THREE.Audio: this Audio has no playback control.'); + return; + } + + this._progress = 0; + this.source.stop(); + this.source.onended = null; + this.isPlaying = false; + return this; + } + + connect() { + if (this.filters.length > 0) { + this.source.connect(this.filters[0]); + + for (let i = 1, l = this.filters.length; i < l; i++) { + this.filters[i - 1].connect(this.filters[i]); + } + + this.filters[this.filters.length - 1].connect(this.getOutput()); + } else { + this.source.connect(this.getOutput()); + } + + this._connected = true; + return this; + } + + disconnect() { + if (this.filters.length > 0) { + this.source.disconnect(this.filters[0]); + + for (let i = 1, l = this.filters.length; i < l; i++) { + this.filters[i - 1].disconnect(this.filters[i]); + } + + this.filters[this.filters.length - 1].disconnect(this.getOutput()); + } else { + this.source.disconnect(this.getOutput()); + } + + this._connected = false; + return this; + } + + getFilters() { + return this.filters; + } + + setFilters(value) { + if (!value) value = []; + + if (this._connected === true) { + this.disconnect(); + this.filters = value.slice(); + this.connect(); + } else { + this.filters = value.slice(); + } + + return this; + } + + setDetune(value) { + this.detune = value; + if (this.source.detune === undefined) return; // only set detune when available + + if (this.isPlaying === true) { + this.source.detune.setTargetAtTime(this.detune, this.context.currentTime, 0.01); + } + + return this; + } + + getDetune() { + return this.detune; + } + + getFilter() { + return this.getFilters()[0]; + } + + setFilter(filter) { + return this.setFilters(filter ? [filter] : []); + } + + setPlaybackRate(value) { + if (this.hasPlaybackControl === false) { + console.warn('THREE.Audio: this Audio has no playback control.'); + return; + } + + this.playbackRate = value; + + if (this.isPlaying === true) { + this.source.playbackRate.setTargetAtTime(this.playbackRate, this.context.currentTime, 0.01); + } + + return this; + } + + getPlaybackRate() { + return this.playbackRate; + } + + onEnded() { + this.isPlaying = false; + } + + getLoop() { + if (this.hasPlaybackControl === false) { + console.warn('THREE.Audio: this Audio has no playback control.'); + return false; + } + + return this.loop; + } + + setLoop(value) { + if (this.hasPlaybackControl === false) { + console.warn('THREE.Audio: this Audio has no playback control.'); + return; + } + + this.loop = value; + + if (this.isPlaying === true) { + this.source.loop = this.loop; + } + + return this; + } + + setLoopStart(value) { + this.loopStart = value; + return this; + } + + setLoopEnd(value) { + this.loopEnd = value; + return this; + } + + getVolume() { + return this.gain.gain.value; + } + + setVolume(value) { + this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01); + return this; + } + + } + + const _position = /*@__PURE__*/new Vector3(); + + const _quaternion = /*@__PURE__*/new Quaternion(); + + const _scale = /*@__PURE__*/new Vector3(); + + const _orientation = /*@__PURE__*/new Vector3(); + + class PositionalAudio extends Audio { + constructor(listener) { + super(listener); + this.panner = this.context.createPanner(); + this.panner.panningModel = 'HRTF'; + this.panner.connect(this.gain); + } + + getOutput() { + return this.panner; + } + + getRefDistance() { + return this.panner.refDistance; + } + + setRefDistance(value) { + this.panner.refDistance = value; + return this; + } + + getRolloffFactor() { + return this.panner.rolloffFactor; + } + + setRolloffFactor(value) { + this.panner.rolloffFactor = value; + return this; + } + + getDistanceModel() { + return this.panner.distanceModel; + } + + setDistanceModel(value) { + this.panner.distanceModel = value; + return this; + } + + getMaxDistance() { + return this.panner.maxDistance; + } + + setMaxDistance(value) { + this.panner.maxDistance = value; + return this; + } + + setDirectionalCone(coneInnerAngle, coneOuterAngle, coneOuterGain) { + this.panner.coneInnerAngle = coneInnerAngle; + this.panner.coneOuterAngle = coneOuterAngle; + this.panner.coneOuterGain = coneOuterGain; + return this; + } + + updateMatrixWorld(force) { + super.updateMatrixWorld(force); + if (this.hasPlaybackControl === true && this.isPlaying === false) return; + this.matrixWorld.decompose(_position, _quaternion, _scale); + + _orientation.set(0, 0, 1).applyQuaternion(_quaternion); + + const panner = this.panner; + + if (panner.positionX) { + // code path for Chrome and Firefox (see #14393) + const endTime = this.context.currentTime + this.listener.timeDelta; + panner.positionX.linearRampToValueAtTime(_position.x, endTime); + panner.positionY.linearRampToValueAtTime(_position.y, endTime); + panner.positionZ.linearRampToValueAtTime(_position.z, endTime); + panner.orientationX.linearRampToValueAtTime(_orientation.x, endTime); + panner.orientationY.linearRampToValueAtTime(_orientation.y, endTime); + panner.orientationZ.linearRampToValueAtTime(_orientation.z, endTime); + } else { + panner.setPosition(_position.x, _position.y, _position.z); + panner.setOrientation(_orientation.x, _orientation.y, _orientation.z); + } + } + + } + + class AudioAnalyser { + constructor(audio, fftSize = 2048) { + this.analyser = audio.context.createAnalyser(); + this.analyser.fftSize = fftSize; + this.data = new Uint8Array(this.analyser.frequencyBinCount); + audio.getOutput().connect(this.analyser); + } + + getFrequencyData() { + this.analyser.getByteFrequencyData(this.data); + return this.data; + } + + getAverageFrequency() { + let value = 0; + const data = this.getFrequencyData(); + + for (let i = 0; i < data.length; i++) { + value += data[i]; + } + + return value / data.length; + } + + } + + class PropertyMixer { + constructor(binding, typeName, valueSize) { + this.binding = binding; + this.valueSize = valueSize; + let mixFunction, mixFunctionAdditive, setIdentity; // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ] + // + // interpolators can use .buffer as their .result + // the data then goes to 'incoming' + // + // 'accu0' and 'accu1' are used frame-interleaved for + // the cumulative result and are compared to detect + // changes + // + // 'orig' stores the original state of the property + // + // 'add' is used for additive cumulative results + // + // 'work' is optional and is only present for quaternion types. It is used + // to store intermediate quaternion multiplication results + + switch (typeName) { + case 'quaternion': + mixFunction = this._slerp; + mixFunctionAdditive = this._slerpAdditive; + setIdentity = this._setAdditiveIdentityQuaternion; + this.buffer = new Float64Array(valueSize * 6); + this._workIndex = 5; + break; + + case 'string': + case 'bool': + mixFunction = this._select; // Use the regular mix function and for additive on these types, + // additive is not relevant for non-numeric types + + mixFunctionAdditive = this._select; + setIdentity = this._setAdditiveIdentityOther; + this.buffer = new Array(valueSize * 5); + break; + + default: + mixFunction = this._lerp; + mixFunctionAdditive = this._lerpAdditive; + setIdentity = this._setAdditiveIdentityNumeric; + this.buffer = new Float64Array(valueSize * 5); + } + + this._mixBufferRegion = mixFunction; + this._mixBufferRegionAdditive = mixFunctionAdditive; + this._setIdentity = setIdentity; + this._origIndex = 3; + this._addIndex = 4; + this.cumulativeWeight = 0; + this.cumulativeWeightAdditive = 0; + this.useCount = 0; + this.referenceCount = 0; + } // accumulate data in the 'incoming' region into 'accu' + + + accumulate(accuIndex, weight) { + // note: happily accumulating nothing when weight = 0, the caller knows + // the weight and shouldn't have made the call in the first place + const buffer = this.buffer, + stride = this.valueSize, + offset = accuIndex * stride + stride; + let currentWeight = this.cumulativeWeight; + + if (currentWeight === 0) { + // accuN := incoming * weight + for (let i = 0; i !== stride; ++i) { + buffer[offset + i] = buffer[i]; + } + + currentWeight = weight; + } else { + // accuN := accuN + incoming * weight + currentWeight += weight; + const mix = weight / currentWeight; + + this._mixBufferRegion(buffer, offset, 0, mix, stride); + } + + this.cumulativeWeight = currentWeight; + } // accumulate data in the 'incoming' region into 'add' + + + accumulateAdditive(weight) { + const buffer = this.buffer, + stride = this.valueSize, + offset = stride * this._addIndex; + + if (this.cumulativeWeightAdditive === 0) { + // add = identity + this._setIdentity(); + } // add := add + incoming * weight + + + this._mixBufferRegionAdditive(buffer, offset, 0, weight, stride); + + this.cumulativeWeightAdditive += weight; + } // apply the state of 'accu' to the binding when accus differ + + + apply(accuIndex) { + const stride = this.valueSize, + buffer = this.buffer, + offset = accuIndex * stride + stride, + weight = this.cumulativeWeight, + weightAdditive = this.cumulativeWeightAdditive, + binding = this.binding; + this.cumulativeWeight = 0; + this.cumulativeWeightAdditive = 0; + + if (weight < 1) { + // accuN := accuN + original * ( 1 - cumulativeWeight ) + const originalValueOffset = stride * this._origIndex; + + this._mixBufferRegion(buffer, offset, originalValueOffset, 1 - weight, stride); + } + + if (weightAdditive > 0) { + // accuN := accuN + additive accuN + this._mixBufferRegionAdditive(buffer, offset, this._addIndex * stride, 1, stride); + } + + for (let i = stride, e = stride + stride; i !== e; ++i) { + if (buffer[i] !== buffer[i + stride]) { + // value has changed -> update scene graph + binding.setValue(buffer, offset); + break; + } + } + } // remember the state of the bound property and copy it to both accus + + + saveOriginalState() { + const binding = this.binding; + const buffer = this.buffer, + stride = this.valueSize, + originalValueOffset = stride * this._origIndex; + binding.getValue(buffer, originalValueOffset); // accu[0..1] := orig -- initially detect changes against the original + + for (let i = stride, e = originalValueOffset; i !== e; ++i) { + buffer[i] = buffer[originalValueOffset + i % stride]; + } // Add to identity for additive + + + this._setIdentity(); + + this.cumulativeWeight = 0; + this.cumulativeWeightAdditive = 0; + } // apply the state previously taken via 'saveOriginalState' to the binding + + + restoreOriginalState() { + const originalValueOffset = this.valueSize * 3; + this.binding.setValue(this.buffer, originalValueOffset); + } + + _setAdditiveIdentityNumeric() { + const startIndex = this._addIndex * this.valueSize; + const endIndex = startIndex + this.valueSize; + + for (let i = startIndex; i < endIndex; i++) { + this.buffer[i] = 0; + } + } + + _setAdditiveIdentityQuaternion() { + this._setAdditiveIdentityNumeric(); + + this.buffer[this._addIndex * this.valueSize + 3] = 1; + } + + _setAdditiveIdentityOther() { + const startIndex = this._origIndex * this.valueSize; + const targetIndex = this._addIndex * this.valueSize; + + for (let i = 0; i < this.valueSize; i++) { + this.buffer[targetIndex + i] = this.buffer[startIndex + i]; + } + } // mix functions + + + _select(buffer, dstOffset, srcOffset, t, stride) { + if (t >= 0.5) { + for (let i = 0; i !== stride; ++i) { + buffer[dstOffset + i] = buffer[srcOffset + i]; + } + } + } + + _slerp(buffer, dstOffset, srcOffset, t) { + Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t); + } + + _slerpAdditive(buffer, dstOffset, srcOffset, t, stride) { + const workOffset = this._workIndex * stride; // Store result in intermediate buffer offset + + Quaternion.multiplyQuaternionsFlat(buffer, workOffset, buffer, dstOffset, buffer, srcOffset); // Slerp to the intermediate result + + Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t); + } + + _lerp(buffer, dstOffset, srcOffset, t, stride) { + const s = 1 - t; + + for (let i = 0; i !== stride; ++i) { + const j = dstOffset + i; + buffer[j] = buffer[j] * s + buffer[srcOffset + i] * t; + } + } + + _lerpAdditive(buffer, dstOffset, srcOffset, t, stride) { + for (let i = 0; i !== stride; ++i) { + const j = dstOffset + i; + buffer[j] = buffer[j] + buffer[srcOffset + i] * t; + } + } + + } + + // Characters [].:/ are reserved for track binding syntax. + const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/'; + + const _reservedRe = new RegExp('[' + _RESERVED_CHARS_RE + ']', 'g'); // Attempts to allow node names from any language. ES5's `\w` regexp matches + // only latin characters, and the unicode \p{L} is not yet supported. So + // instead, we exclude reserved characters and match everything else. + + + const _wordChar = '[^' + _RESERVED_CHARS_RE + ']'; + + const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace('\\.', '') + ']'; // Parent directories, delimited by '/' or ':'. Currently unused, but must + // be matched to parse the rest of the track name. + + + const _directoryRe = /((?:WC+[\/:])*)/.source.replace('WC', _wordChar); // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'. + + + const _nodeRe = /(WCOD+)?/.source.replace('WCOD', _wordCharOrDot); // Object on target node, and accessor. May not contain reserved + // characters. Accessor may contain any character except closing bracket. + + + const _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace('WC', _wordChar); // Property and accessor. May not contain reserved characters. Accessor may + // contain any non-bracket characters. + + + const _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace('WC', _wordChar); + + const _trackRe = new RegExp('' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$'); + + const _supportedObjectNames = ['material', 'materials', 'bones']; + + class Composite { + constructor(targetGroup, path, optionalParsedPath) { + const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName(path); + this._targetGroup = targetGroup; + this._bindings = targetGroup.subscribe_(path, parsedPath); + } + + getValue(array, offset) { + this.bind(); // bind all binding + + const firstValidIndex = this._targetGroup.nCachedObjects_, + binding = this._bindings[firstValidIndex]; // and only call .getValue on the first + + if (binding !== undefined) binding.getValue(array, offset); + } + + setValue(array, offset) { + const bindings = this._bindings; + + for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { + bindings[i].setValue(array, offset); + } + } + + bind() { + const bindings = this._bindings; + + for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { + bindings[i].bind(); + } + } + + unbind() { + const bindings = this._bindings; + + for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { + bindings[i].unbind(); + } + } + + } // Note: This class uses a State pattern on a per-method basis: + // 'bind' sets 'this.getValue' / 'setValue' and shadows the + // prototype version of these methods with one that represents + // the bound state. When the property is not found, the methods + // become no-ops. + + + class PropertyBinding { + constructor(rootNode, path, parsedPath) { + this.path = path; + this.parsedPath = parsedPath || PropertyBinding.parseTrackName(path); + this.node = PropertyBinding.findNode(rootNode, this.parsedPath.nodeName) || rootNode; + this.rootNode = rootNode; // initial state of these methods that calls 'bind' + + this.getValue = this._getValue_unbound; + this.setValue = this._setValue_unbound; + } + + static create(root, path, parsedPath) { + if (!(root && root.isAnimationObjectGroup)) { + return new PropertyBinding(root, path, parsedPath); + } else { + return new PropertyBinding.Composite(root, path, parsedPath); + } + } + /** + * Replaces spaces with underscores and removes unsupported characters from + * node names, to ensure compatibility with parseTrackName(). + * + * @param {string} name Node name to be sanitized. + * @return {string} + */ + + + static sanitizeNodeName(name) { + return name.replace(/\s/g, '_').replace(_reservedRe, ''); + } + + static parseTrackName(trackName) { + const matches = _trackRe.exec(trackName); + + if (!matches) { + throw new Error('PropertyBinding: Cannot parse trackName: ' + trackName); + } + + const results = { + // directoryName: matches[ 1 ], // (tschw) currently unused + nodeName: matches[2], + objectName: matches[3], + objectIndex: matches[4], + propertyName: matches[5], + // required + propertyIndex: matches[6] + }; + const lastDot = results.nodeName && results.nodeName.lastIndexOf('.'); + + if (lastDot !== undefined && lastDot !== -1) { + const objectName = results.nodeName.substring(lastDot + 1); // Object names must be checked against an allowlist. Otherwise, there + // is no way to parse 'foo.bar.baz': 'baz' must be a property, but + // 'bar' could be the objectName, or part of a nodeName (which can + // include '.' characters). + + if (_supportedObjectNames.indexOf(objectName) !== -1) { + results.nodeName = results.nodeName.substring(0, lastDot); + results.objectName = objectName; + } + } + + if (results.propertyName === null || results.propertyName.length === 0) { + throw new Error('PropertyBinding: can not parse propertyName from trackName: ' + trackName); + } + + return results; + } + + static findNode(root, nodeName) { + if (!nodeName || nodeName === '' || nodeName === '.' || nodeName === -1 || nodeName === root.name || nodeName === root.uuid) { + return root; + } // search into skeleton bones. + + + if (root.skeleton) { + const bone = root.skeleton.getBoneByName(nodeName); + + if (bone !== undefined) { + return bone; + } + } // search into node subtree. + + + if (root.children) { + const searchNodeSubtree = function (children) { + for (let i = 0; i < children.length; i++) { + const childNode = children[i]; + + if (childNode.name === nodeName || childNode.uuid === nodeName) { + return childNode; + } + + const result = searchNodeSubtree(childNode.children); + if (result) return result; + } + + return null; + }; + + const subTreeNode = searchNodeSubtree(root.children); + + if (subTreeNode) { + return subTreeNode; + } + } + + return null; + } // these are used to "bind" a nonexistent property + + + _getValue_unavailable() {} + + _setValue_unavailable() {} // Getters + + + _getValue_direct(buffer, offset) { + buffer[offset] = this.targetObject[this.propertyName]; + } + + _getValue_array(buffer, offset) { + const source = this.resolvedProperty; + + for (let i = 0, n = source.length; i !== n; ++i) { + buffer[offset++] = source[i]; + } + } + + _getValue_arrayElement(buffer, offset) { + buffer[offset] = this.resolvedProperty[this.propertyIndex]; + } + + _getValue_toArray(buffer, offset) { + this.resolvedProperty.toArray(buffer, offset); + } // Direct + + + _setValue_direct(buffer, offset) { + this.targetObject[this.propertyName] = buffer[offset]; + } + + _setValue_direct_setNeedsUpdate(buffer, offset) { + this.targetObject[this.propertyName] = buffer[offset]; + this.targetObject.needsUpdate = true; + } + + _setValue_direct_setMatrixWorldNeedsUpdate(buffer, offset) { + this.targetObject[this.propertyName] = buffer[offset]; + this.targetObject.matrixWorldNeedsUpdate = true; + } // EntireArray + + + _setValue_array(buffer, offset) { + const dest = this.resolvedProperty; + + for (let i = 0, n = dest.length; i !== n; ++i) { + dest[i] = buffer[offset++]; + } + } + + _setValue_array_setNeedsUpdate(buffer, offset) { + const dest = this.resolvedProperty; + + for (let i = 0, n = dest.length; i !== n; ++i) { + dest[i] = buffer[offset++]; + } + + this.targetObject.needsUpdate = true; + } + + _setValue_array_setMatrixWorldNeedsUpdate(buffer, offset) { + const dest = this.resolvedProperty; + + for (let i = 0, n = dest.length; i !== n; ++i) { + dest[i] = buffer[offset++]; + } + + this.targetObject.matrixWorldNeedsUpdate = true; + } // ArrayElement + + + _setValue_arrayElement(buffer, offset) { + this.resolvedProperty[this.propertyIndex] = buffer[offset]; + } + + _setValue_arrayElement_setNeedsUpdate(buffer, offset) { + this.resolvedProperty[this.propertyIndex] = buffer[offset]; + this.targetObject.needsUpdate = true; + } + + _setValue_arrayElement_setMatrixWorldNeedsUpdate(buffer, offset) { + this.resolvedProperty[this.propertyIndex] = buffer[offset]; + this.targetObject.matrixWorldNeedsUpdate = true; + } // HasToFromArray + + + _setValue_fromArray(buffer, offset) { + this.resolvedProperty.fromArray(buffer, offset); + } + + _setValue_fromArray_setNeedsUpdate(buffer, offset) { + this.resolvedProperty.fromArray(buffer, offset); + this.targetObject.needsUpdate = true; + } + + _setValue_fromArray_setMatrixWorldNeedsUpdate(buffer, offset) { + this.resolvedProperty.fromArray(buffer, offset); + this.targetObject.matrixWorldNeedsUpdate = true; + } + + _getValue_unbound(targetArray, offset) { + this.bind(); + this.getValue(targetArray, offset); + } + + _setValue_unbound(sourceArray, offset) { + this.bind(); + this.setValue(sourceArray, offset); + } // create getter / setter pair for a property in the scene graph + + + bind() { + let targetObject = this.node; + const parsedPath = this.parsedPath; + const objectName = parsedPath.objectName; + const propertyName = parsedPath.propertyName; + let propertyIndex = parsedPath.propertyIndex; + + if (!targetObject) { + targetObject = PropertyBinding.findNode(this.rootNode, parsedPath.nodeName) || this.rootNode; + this.node = targetObject; + } // set fail state so we can just 'return' on error + + + this.getValue = this._getValue_unavailable; + this.setValue = this._setValue_unavailable; // ensure there is a value node + + if (!targetObject) { + console.error('THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.'); + return; + } + + if (objectName) { + let objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials.... + + switch (objectName) { + case 'materials': + if (!targetObject.material) { + console.error('THREE.PropertyBinding: Can not bind to material as node does not have a material.', this); + return; + } + + if (!targetObject.material.materials) { + console.error('THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this); + return; + } + + targetObject = targetObject.material.materials; + break; + + case 'bones': + if (!targetObject.skeleton) { + console.error('THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this); + return; + } // potential future optimization: skip this if propertyIndex is already an integer + // and convert the integer string to a true integer. + + + targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices. + + for (let i = 0; i < targetObject.length; i++) { + if (targetObject[i].name === objectIndex) { + objectIndex = i; + break; + } + } + + break; + + default: + if (targetObject[objectName] === undefined) { + console.error('THREE.PropertyBinding: Can not bind to objectName of node undefined.', this); + return; + } + + targetObject = targetObject[objectName]; + } + + if (objectIndex !== undefined) { + if (targetObject[objectIndex] === undefined) { + console.error('THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject); + return; + } + + targetObject = targetObject[objectIndex]; + } + } // resolve property + + + const nodeProperty = targetObject[propertyName]; + + if (nodeProperty === undefined) { + const nodeName = parsedPath.nodeName; + console.error('THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject); + return; + } // determine versioning scheme + + + let versioning = this.Versioning.None; + this.targetObject = targetObject; + + if (targetObject.needsUpdate !== undefined) { + // material + versioning = this.Versioning.NeedsUpdate; + } else if (targetObject.matrixWorldNeedsUpdate !== undefined) { + // node transform + versioning = this.Versioning.MatrixWorldNeedsUpdate; + } // determine how the property gets bound + + + let bindingType = this.BindingType.Direct; + + if (propertyIndex !== undefined) { + // access a sub element of the property array (only primitives are supported right now) + if (propertyName === 'morphTargetInfluences') { + // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. + // support resolving morphTarget names into indices. + if (!targetObject.geometry) { + console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this); + return; + } + + if (targetObject.geometry.isBufferGeometry) { + if (!targetObject.geometry.morphAttributes) { + console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this); + return; + } + + if (targetObject.morphTargetDictionary[propertyIndex] !== undefined) { + propertyIndex = targetObject.morphTargetDictionary[propertyIndex]; + } + } else { + console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this); + return; + } + } + + bindingType = this.BindingType.ArrayElement; + this.resolvedProperty = nodeProperty; + this.propertyIndex = propertyIndex; + } else if (nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined) { + // must use copy for Object3D.Euler/Quaternion + bindingType = this.BindingType.HasFromToArray; + this.resolvedProperty = nodeProperty; + } else if (Array.isArray(nodeProperty)) { + bindingType = this.BindingType.EntireArray; + this.resolvedProperty = nodeProperty; + } else { + this.propertyName = propertyName; + } // select getter / setter + + + this.getValue = this.GetterByBindingType[bindingType]; + this.setValue = this.SetterByBindingTypeAndVersioning[bindingType][versioning]; + } + + unbind() { + this.node = null; // back to the prototype version of getValue / setValue + // note: avoiding to mutate the shape of 'this' via 'delete' + + this.getValue = this._getValue_unbound; + this.setValue = this._setValue_unbound; + } + + } + + PropertyBinding.Composite = Composite; + PropertyBinding.prototype.BindingType = { + Direct: 0, + EntireArray: 1, + ArrayElement: 2, + HasFromToArray: 3 + }; + PropertyBinding.prototype.Versioning = { + None: 0, + NeedsUpdate: 1, + MatrixWorldNeedsUpdate: 2 + }; + PropertyBinding.prototype.GetterByBindingType = [PropertyBinding.prototype._getValue_direct, PropertyBinding.prototype._getValue_array, PropertyBinding.prototype._getValue_arrayElement, PropertyBinding.prototype._getValue_toArray]; + PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [[// Direct + PropertyBinding.prototype._setValue_direct, PropertyBinding.prototype._setValue_direct_setNeedsUpdate, PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate], [// EntireArray + PropertyBinding.prototype._setValue_array, PropertyBinding.prototype._setValue_array_setNeedsUpdate, PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate], [// ArrayElement + PropertyBinding.prototype._setValue_arrayElement, PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate], [// HasToFromArray + PropertyBinding.prototype._setValue_fromArray, PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate]]; + + /** + * + * A group of objects that receives a shared animation state. + * + * Usage: + * + * - Add objects you would otherwise pass as 'root' to the + * constructor or the .clipAction method of AnimationMixer. + * + * - Instead pass this object as 'root'. + * + * - You can also add and remove objects later when the mixer + * is running. + * + * Note: + * + * Objects of this class appear as one object to the mixer, + * so cache control of the individual objects must be done + * on the group. + * + * Limitation: + * + * - The animated properties must be compatible among the + * all objects in the group. + * + * - A single property can either be controlled through a + * target group or directly, but not both. + */ + + class AnimationObjectGroup { + constructor() { + this.uuid = generateUUID(); // cached objects followed by the active ones + + this._objects = Array.prototype.slice.call(arguments); + this.nCachedObjects_ = 0; // threshold + // note: read by PropertyBinding.Composite + + const indices = {}; + this._indicesByUUID = indices; // for bookkeeping + + for (let i = 0, n = arguments.length; i !== n; ++i) { + indices[arguments[i].uuid] = i; + } + + this._paths = []; // inside: string + + this._parsedPaths = []; // inside: { we don't care, here } + + this._bindings = []; // inside: Array< PropertyBinding > + + this._bindingsIndicesByPath = {}; // inside: indices in these arrays + + const scope = this; + this.stats = { + objects: { + get total() { + return scope._objects.length; + }, + + get inUse() { + return this.total - scope.nCachedObjects_; + } + + }, + + get bindingsPerObject() { + return scope._bindings.length; + } + + }; + } + + add() { + const objects = this._objects, + indicesByUUID = this._indicesByUUID, + paths = this._paths, + parsedPaths = this._parsedPaths, + bindings = this._bindings, + nBindings = bindings.length; + let knownObject = undefined, + nObjects = objects.length, + nCachedObjects = this.nCachedObjects_; + + for (let i = 0, n = arguments.length; i !== n; ++i) { + const object = arguments[i], + uuid = object.uuid; + let index = indicesByUUID[uuid]; + + if (index === undefined) { + // unknown object -> add it to the ACTIVE region + index = nObjects++; + indicesByUUID[uuid] = index; + objects.push(object); // accounting is done, now do the same for all bindings + + for (let j = 0, m = nBindings; j !== m; ++j) { + bindings[j].push(new PropertyBinding(object, paths[j], parsedPaths[j])); + } + } else if (index < nCachedObjects) { + knownObject = objects[index]; // move existing object to the ACTIVE region + + const firstActiveIndex = --nCachedObjects, + lastCachedObject = objects[firstActiveIndex]; + indicesByUUID[lastCachedObject.uuid] = index; + objects[index] = lastCachedObject; + indicesByUUID[uuid] = firstActiveIndex; + objects[firstActiveIndex] = object; // accounting is done, now do the same for all bindings + + for (let j = 0, m = nBindings; j !== m; ++j) { + const bindingsForPath = bindings[j], + lastCached = bindingsForPath[firstActiveIndex]; + let binding = bindingsForPath[index]; + bindingsForPath[index] = lastCached; + + if (binding === undefined) { + // since we do not bother to create new bindings + // for objects that are cached, the binding may + // or may not exist + binding = new PropertyBinding(object, paths[j], parsedPaths[j]); + } + + bindingsForPath[firstActiveIndex] = binding; + } + } else if (objects[index] !== knownObject) { + console.error('THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.'); + } // else the object is already where we want it to be + + } // for arguments + + + this.nCachedObjects_ = nCachedObjects; + } + + remove() { + const objects = this._objects, + indicesByUUID = this._indicesByUUID, + bindings = this._bindings, + nBindings = bindings.length; + let nCachedObjects = this.nCachedObjects_; + + for (let i = 0, n = arguments.length; i !== n; ++i) { + const object = arguments[i], + uuid = object.uuid, + index = indicesByUUID[uuid]; + + if (index !== undefined && index >= nCachedObjects) { + // move existing object into the CACHED region + const lastCachedIndex = nCachedObjects++, + firstActiveObject = objects[lastCachedIndex]; + indicesByUUID[firstActiveObject.uuid] = index; + objects[index] = firstActiveObject; + indicesByUUID[uuid] = lastCachedIndex; + objects[lastCachedIndex] = object; // accounting is done, now do the same for all bindings + + for (let j = 0, m = nBindings; j !== m; ++j) { + const bindingsForPath = bindings[j], + firstActive = bindingsForPath[lastCachedIndex], + binding = bindingsForPath[index]; + bindingsForPath[index] = firstActive; + bindingsForPath[lastCachedIndex] = binding; + } + } + } // for arguments + + + this.nCachedObjects_ = nCachedObjects; + } // remove & forget + + + uncache() { + const objects = this._objects, + indicesByUUID = this._indicesByUUID, + bindings = this._bindings, + nBindings = bindings.length; + let nCachedObjects = this.nCachedObjects_, + nObjects = objects.length; + + for (let i = 0, n = arguments.length; i !== n; ++i) { + const object = arguments[i], + uuid = object.uuid, + index = indicesByUUID[uuid]; + + if (index !== undefined) { + delete indicesByUUID[uuid]; + + if (index < nCachedObjects) { + // object is cached, shrink the CACHED region + const firstActiveIndex = --nCachedObjects, + lastCachedObject = objects[firstActiveIndex], + lastIndex = --nObjects, + lastObject = objects[lastIndex]; // last cached object takes this object's place + + indicesByUUID[lastCachedObject.uuid] = index; + objects[index] = lastCachedObject; // last object goes to the activated slot and pop + + indicesByUUID[lastObject.uuid] = firstActiveIndex; + objects[firstActiveIndex] = lastObject; + objects.pop(); // accounting is done, now do the same for all bindings + + for (let j = 0, m = nBindings; j !== m; ++j) { + const bindingsForPath = bindings[j], + lastCached = bindingsForPath[firstActiveIndex], + last = bindingsForPath[lastIndex]; + bindingsForPath[index] = lastCached; + bindingsForPath[firstActiveIndex] = last; + bindingsForPath.pop(); + } + } else { + // object is active, just swap with the last and pop + const lastIndex = --nObjects, + lastObject = objects[lastIndex]; + + if (lastIndex > 0) { + indicesByUUID[lastObject.uuid] = index; + } + + objects[index] = lastObject; + objects.pop(); // accounting is done, now do the same for all bindings + + for (let j = 0, m = nBindings; j !== m; ++j) { + const bindingsForPath = bindings[j]; + bindingsForPath[index] = bindingsForPath[lastIndex]; + bindingsForPath.pop(); + } + } // cached or active + + } // if object is known + + } // for arguments + + + this.nCachedObjects_ = nCachedObjects; + } // Internal interface used by befriended PropertyBinding.Composite: + + + subscribe_(path, parsedPath) { + // returns an array of bindings for the given path that is changed + // according to the contained objects in the group + const indicesByPath = this._bindingsIndicesByPath; + let index = indicesByPath[path]; + const bindings = this._bindings; + if (index !== undefined) return bindings[index]; + const paths = this._paths, + parsedPaths = this._parsedPaths, + objects = this._objects, + nObjects = objects.length, + nCachedObjects = this.nCachedObjects_, + bindingsForPath = new Array(nObjects); + index = bindings.length; + indicesByPath[path] = index; + paths.push(path); + parsedPaths.push(parsedPath); + bindings.push(bindingsForPath); + + for (let i = nCachedObjects, n = objects.length; i !== n; ++i) { + const object = objects[i]; + bindingsForPath[i] = new PropertyBinding(object, path, parsedPath); + } + + return bindingsForPath; + } + + unsubscribe_(path) { + // tells the group to forget about a property path and no longer + // update the array previously obtained with 'subscribe_' + const indicesByPath = this._bindingsIndicesByPath, + index = indicesByPath[path]; + + if (index !== undefined) { + const paths = this._paths, + parsedPaths = this._parsedPaths, + bindings = this._bindings, + lastBindingsIndex = bindings.length - 1, + lastBindings = bindings[lastBindingsIndex], + lastBindingsPath = path[lastBindingsIndex]; + indicesByPath[lastBindingsPath] = index; + bindings[index] = lastBindings; + bindings.pop(); + parsedPaths[index] = parsedPaths[lastBindingsIndex]; + parsedPaths.pop(); + paths[index] = paths[lastBindingsIndex]; + paths.pop(); + } + } + + } + + AnimationObjectGroup.prototype.isAnimationObjectGroup = true; + + class AnimationAction { + constructor(mixer, clip, localRoot = null, blendMode = clip.blendMode) { + this._mixer = mixer; + this._clip = clip; + this._localRoot = localRoot; + this.blendMode = blendMode; + const tracks = clip.tracks, + nTracks = tracks.length, + interpolants = new Array(nTracks); + const interpolantSettings = { + endingStart: ZeroCurvatureEnding, + endingEnd: ZeroCurvatureEnding + }; + + for (let i = 0; i !== nTracks; ++i) { + const interpolant = tracks[i].createInterpolant(null); + interpolants[i] = interpolant; + interpolant.settings = interpolantSettings; + } + + this._interpolantSettings = interpolantSettings; + this._interpolants = interpolants; // bound by the mixer + // inside: PropertyMixer (managed by the mixer) + + this._propertyBindings = new Array(nTracks); + this._cacheIndex = null; // for the memory manager + + this._byClipCacheIndex = null; // for the memory manager + + this._timeScaleInterpolant = null; + this._weightInterpolant = null; + this.loop = LoopRepeat; + this._loopCount = -1; // global mixer time when the action is to be started + // it's set back to 'null' upon start of the action + + this._startTime = null; // scaled local time of the action + // gets clamped or wrapped to 0..clip.duration according to loop + + this.time = 0; + this.timeScale = 1; + this._effectiveTimeScale = 1; + this.weight = 1; + this._effectiveWeight = 1; + this.repetitions = Infinity; // no. of repetitions when looping + + this.paused = false; // true -> zero effective time scale + + this.enabled = true; // false -> zero effective weight + + this.clampWhenFinished = false; // keep feeding the last frame? + + this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate + + this.zeroSlopeAtEnd = true; // clips for start, loop and end + } // State & Scheduling + + + play() { + this._mixer._activateAction(this); + + return this; + } + + stop() { + this._mixer._deactivateAction(this); + + return this.reset(); + } + + reset() { + this.paused = false; + this.enabled = true; + this.time = 0; // restart clip + + this._loopCount = -1; // forget previous loops + + this._startTime = null; // forget scheduling + + return this.stopFading().stopWarping(); + } + + isRunning() { + return this.enabled && !this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction(this); + } // return true when play has been called + + + isScheduled() { + return this._mixer._isActiveAction(this); + } + + startAt(time) { + this._startTime = time; + return this; + } + + setLoop(mode, repetitions) { + this.loop = mode; + this.repetitions = repetitions; + return this; + } // Weight + // set the weight stopping any scheduled fading + // although .enabled = false yields an effective weight of zero, this + // method does *not* change .enabled, because it would be confusing + + + setEffectiveWeight(weight) { + this.weight = weight; // note: same logic as when updated at runtime + + this._effectiveWeight = this.enabled ? weight : 0; + return this.stopFading(); + } // return the weight considering fading and .enabled + + + getEffectiveWeight() { + return this._effectiveWeight; + } + + fadeIn(duration) { + return this._scheduleFading(duration, 0, 1); + } + + fadeOut(duration) { + return this._scheduleFading(duration, 1, 0); + } + + crossFadeFrom(fadeOutAction, duration, warp) { + fadeOutAction.fadeOut(duration); + this.fadeIn(duration); + + if (warp) { + const fadeInDuration = this._clip.duration, + fadeOutDuration = fadeOutAction._clip.duration, + startEndRatio = fadeOutDuration / fadeInDuration, + endStartRatio = fadeInDuration / fadeOutDuration; + fadeOutAction.warp(1.0, startEndRatio, duration); + this.warp(endStartRatio, 1.0, duration); + } + + return this; + } + + crossFadeTo(fadeInAction, duration, warp) { + return fadeInAction.crossFadeFrom(this, duration, warp); + } + + stopFading() { + const weightInterpolant = this._weightInterpolant; + + if (weightInterpolant !== null) { + this._weightInterpolant = null; + + this._mixer._takeBackControlInterpolant(weightInterpolant); + } + + return this; + } // Time Scale Control + // set the time scale stopping any scheduled warping + // although .paused = true yields an effective time scale of zero, this + // method does *not* change .paused, because it would be confusing + + + setEffectiveTimeScale(timeScale) { + this.timeScale = timeScale; + this._effectiveTimeScale = this.paused ? 0 : timeScale; + return this.stopWarping(); + } // return the time scale considering warping and .paused + + + getEffectiveTimeScale() { + return this._effectiveTimeScale; + } + + setDuration(duration) { + this.timeScale = this._clip.duration / duration; + return this.stopWarping(); + } + + syncWith(action) { + this.time = action.time; + this.timeScale = action.timeScale; + return this.stopWarping(); + } + + halt(duration) { + return this.warp(this._effectiveTimeScale, 0, duration); + } + + warp(startTimeScale, endTimeScale, duration) { + const mixer = this._mixer, + now = mixer.time, + timeScale = this.timeScale; + let interpolant = this._timeScaleInterpolant; + + if (interpolant === null) { + interpolant = mixer._lendControlInterpolant(); + this._timeScaleInterpolant = interpolant; + } + + const times = interpolant.parameterPositions, + values = interpolant.sampleValues; + times[0] = now; + times[1] = now + duration; + values[0] = startTimeScale / timeScale; + values[1] = endTimeScale / timeScale; + return this; + } + + stopWarping() { + const timeScaleInterpolant = this._timeScaleInterpolant; + + if (timeScaleInterpolant !== null) { + this._timeScaleInterpolant = null; + + this._mixer._takeBackControlInterpolant(timeScaleInterpolant); + } + + return this; + } // Object Accessors + + + getMixer() { + return this._mixer; + } + + getClip() { + return this._clip; + } + + getRoot() { + return this._localRoot || this._mixer._root; + } // Interna + + + _update(time, deltaTime, timeDirection, accuIndex) { + // called by the mixer + if (!this.enabled) { + // call ._updateWeight() to update ._effectiveWeight + this._updateWeight(time); + + return; + } + + const startTime = this._startTime; + + if (startTime !== null) { + // check for scheduled start of action + const timeRunning = (time - startTime) * timeDirection; + + if (timeRunning < 0 || timeDirection === 0) { + return; // yet to come / don't decide when delta = 0 + } // start + + + this._startTime = null; // unschedule + + deltaTime = timeDirection * timeRunning; + } // apply time scale and advance time + + + deltaTime *= this._updateTimeScale(time); + + const clipTime = this._updateTime(deltaTime); // note: _updateTime may disable the action resulting in + // an effective weight of 0 + + + const weight = this._updateWeight(time); + + if (weight > 0) { + const interpolants = this._interpolants; + const propertyMixers = this._propertyBindings; + + switch (this.blendMode) { + case AdditiveAnimationBlendMode: + for (let j = 0, m = interpolants.length; j !== m; ++j) { + interpolants[j].evaluate(clipTime); + propertyMixers[j].accumulateAdditive(weight); + } + + break; + + case NormalAnimationBlendMode: + default: + for (let j = 0, m = interpolants.length; j !== m; ++j) { + interpolants[j].evaluate(clipTime); + propertyMixers[j].accumulate(accuIndex, weight); + } + + } + } + } + + _updateWeight(time) { + let weight = 0; + + if (this.enabled) { + weight = this.weight; + const interpolant = this._weightInterpolant; + + if (interpolant !== null) { + const interpolantValue = interpolant.evaluate(time)[0]; + weight *= interpolantValue; + + if (time > interpolant.parameterPositions[1]) { + this.stopFading(); + + if (interpolantValue === 0) { + // faded out, disable + this.enabled = false; + } + } + } + } + + this._effectiveWeight = weight; + return weight; + } + + _updateTimeScale(time) { + let timeScale = 0; + + if (!this.paused) { + timeScale = this.timeScale; + const interpolant = this._timeScaleInterpolant; + + if (interpolant !== null) { + const interpolantValue = interpolant.evaluate(time)[0]; + timeScale *= interpolantValue; + + if (time > interpolant.parameterPositions[1]) { + this.stopWarping(); + + if (timeScale === 0) { + // motion has halted, pause + this.paused = true; + } else { + // warp done - apply final time scale + this.timeScale = timeScale; + } + } + } + } + + this._effectiveTimeScale = timeScale; + return timeScale; + } + + _updateTime(deltaTime) { + const duration = this._clip.duration; + const loop = this.loop; + let time = this.time + deltaTime; + let loopCount = this._loopCount; + const pingPong = loop === LoopPingPong; + + if (deltaTime === 0) { + if (loopCount === -1) return time; + return pingPong && (loopCount & 1) === 1 ? duration - time : time; + } + + if (loop === LoopOnce) { + if (loopCount === -1) { + // just started + this._loopCount = 0; + + this._setEndings(true, true, false); + } + + handle_stop: { + if (time >= duration) { + time = duration; + } else if (time < 0) { + time = 0; + } else { + this.time = time; + break handle_stop; + } + + if (this.clampWhenFinished) this.paused = true;else this.enabled = false; + this.time = time; + + this._mixer.dispatchEvent({ + type: 'finished', + action: this, + direction: deltaTime < 0 ? -1 : 1 + }); + } + } else { + // repetitive Repeat or PingPong + if (loopCount === -1) { + // just started + if (deltaTime >= 0) { + loopCount = 0; + + this._setEndings(true, this.repetitions === 0, pingPong); + } else { + // when looping in reverse direction, the initial + // transition through zero counts as a repetition, + // so leave loopCount at -1 + this._setEndings(this.repetitions === 0, true, pingPong); + } + } + + if (time >= duration || time < 0) { + // wrap around + const loopDelta = Math.floor(time / duration); // signed + + time -= duration * loopDelta; + loopCount += Math.abs(loopDelta); + const pending = this.repetitions - loopCount; + + if (pending <= 0) { + // have to stop (switch state, clamp time, fire event) + if (this.clampWhenFinished) this.paused = true;else this.enabled = false; + time = deltaTime > 0 ? duration : 0; + this.time = time; + + this._mixer.dispatchEvent({ + type: 'finished', + action: this, + direction: deltaTime > 0 ? 1 : -1 + }); + } else { + // keep running + if (pending === 1) { + // entering the last round + const atStart = deltaTime < 0; + + this._setEndings(atStart, !atStart, pingPong); + } else { + this._setEndings(false, false, pingPong); + } + + this._loopCount = loopCount; + this.time = time; + + this._mixer.dispatchEvent({ + type: 'loop', + action: this, + loopDelta: loopDelta + }); + } + } else { + this.time = time; + } + + if (pingPong && (loopCount & 1) === 1) { + // invert time for the "pong round" + return duration - time; + } + } + + return time; + } + + _setEndings(atStart, atEnd, pingPong) { + const settings = this._interpolantSettings; + + if (pingPong) { + settings.endingStart = ZeroSlopeEnding; + settings.endingEnd = ZeroSlopeEnding; + } else { + // assuming for LoopOnce atStart == atEnd == true + if (atStart) { + settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding; + } else { + settings.endingStart = WrapAroundEnding; + } + + if (atEnd) { + settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding; + } else { + settings.endingEnd = WrapAroundEnding; + } + } + } + + _scheduleFading(duration, weightNow, weightThen) { + const mixer = this._mixer, + now = mixer.time; + let interpolant = this._weightInterpolant; + + if (interpolant === null) { + interpolant = mixer._lendControlInterpolant(); + this._weightInterpolant = interpolant; + } + + const times = interpolant.parameterPositions, + values = interpolant.sampleValues; + times[0] = now; + values[0] = weightNow; + times[1] = now + duration; + values[1] = weightThen; + return this; + } + + } + + class AnimationMixer extends EventDispatcher { + constructor(root) { + super(); + this._root = root; + + this._initMemoryManager(); + + this._accuIndex = 0; + this.time = 0; + this.timeScale = 1.0; + } + + _bindAction(action, prototypeAction) { + const root = action._localRoot || this._root, + tracks = action._clip.tracks, + nTracks = tracks.length, + bindings = action._propertyBindings, + interpolants = action._interpolants, + rootUuid = root.uuid, + bindingsByRoot = this._bindingsByRootAndName; + let bindingsByName = bindingsByRoot[rootUuid]; + + if (bindingsByName === undefined) { + bindingsByName = {}; + bindingsByRoot[rootUuid] = bindingsByName; + } + + for (let i = 0; i !== nTracks; ++i) { + const track = tracks[i], + trackName = track.name; + let binding = bindingsByName[trackName]; + + if (binding !== undefined) { + bindings[i] = binding; + } else { + binding = bindings[i]; + + if (binding !== undefined) { + // existing binding, make sure the cache knows + if (binding._cacheIndex === null) { + ++binding.referenceCount; + + this._addInactiveBinding(binding, rootUuid, trackName); + } + + continue; + } + + const path = prototypeAction && prototypeAction._propertyBindings[i].binding.parsedPath; + binding = new PropertyMixer(PropertyBinding.create(root, trackName, path), track.ValueTypeName, track.getValueSize()); + ++binding.referenceCount; + + this._addInactiveBinding(binding, rootUuid, trackName); + + bindings[i] = binding; + } + + interpolants[i].resultBuffer = binding.buffer; + } + } + + _activateAction(action) { + if (!this._isActiveAction(action)) { + if (action._cacheIndex === null) { + // this action has been forgotten by the cache, but the user + // appears to be still using it -> rebind + const rootUuid = (action._localRoot || this._root).uuid, + clipUuid = action._clip.uuid, + actionsForClip = this._actionsByClip[clipUuid]; + + this._bindAction(action, actionsForClip && actionsForClip.knownActions[0]); + + this._addInactiveAction(action, clipUuid, rootUuid); + } + + const bindings = action._propertyBindings; // increment reference counts / sort out state + + for (let i = 0, n = bindings.length; i !== n; ++i) { + const binding = bindings[i]; + + if (binding.useCount++ === 0) { + this._lendBinding(binding); + + binding.saveOriginalState(); + } + } + + this._lendAction(action); + } + } + + _deactivateAction(action) { + if (this._isActiveAction(action)) { + const bindings = action._propertyBindings; // decrement reference counts / sort out state + + for (let i = 0, n = bindings.length; i !== n; ++i) { + const binding = bindings[i]; + + if (--binding.useCount === 0) { + binding.restoreOriginalState(); + + this._takeBackBinding(binding); + } + } + + this._takeBackAction(action); + } + } // Memory manager + + + _initMemoryManager() { + this._actions = []; // 'nActiveActions' followed by inactive ones + + this._nActiveActions = 0; + this._actionsByClip = {}; // inside: + // { + // knownActions: Array< AnimationAction > - used as prototypes + // actionByRoot: AnimationAction - lookup + // } + + this._bindings = []; // 'nActiveBindings' followed by inactive ones + + this._nActiveBindings = 0; + this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer > + + this._controlInterpolants = []; // same game as above + + this._nActiveControlInterpolants = 0; + const scope = this; + this.stats = { + actions: { + get total() { + return scope._actions.length; + }, + + get inUse() { + return scope._nActiveActions; + } + + }, + bindings: { + get total() { + return scope._bindings.length; + }, + + get inUse() { + return scope._nActiveBindings; + } + + }, + controlInterpolants: { + get total() { + return scope._controlInterpolants.length; + }, + + get inUse() { + return scope._nActiveControlInterpolants; + } + + } + }; + } // Memory management for AnimationAction objects + + + _isActiveAction(action) { + const index = action._cacheIndex; + return index !== null && index < this._nActiveActions; + } + + _addInactiveAction(action, clipUuid, rootUuid) { + const actions = this._actions, + actionsByClip = this._actionsByClip; + let actionsForClip = actionsByClip[clipUuid]; + + if (actionsForClip === undefined) { + actionsForClip = { + knownActions: [action], + actionByRoot: {} + }; + action._byClipCacheIndex = 0; + actionsByClip[clipUuid] = actionsForClip; + } else { + const knownActions = actionsForClip.knownActions; + action._byClipCacheIndex = knownActions.length; + knownActions.push(action); + } + + action._cacheIndex = actions.length; + actions.push(action); + actionsForClip.actionByRoot[rootUuid] = action; + } + + _removeInactiveAction(action) { + const actions = this._actions, + lastInactiveAction = actions[actions.length - 1], + cacheIndex = action._cacheIndex; + lastInactiveAction._cacheIndex = cacheIndex; + actions[cacheIndex] = lastInactiveAction; + actions.pop(); + action._cacheIndex = null; + const clipUuid = action._clip.uuid, + actionsByClip = this._actionsByClip, + actionsForClip = actionsByClip[clipUuid], + knownActionsForClip = actionsForClip.knownActions, + lastKnownAction = knownActionsForClip[knownActionsForClip.length - 1], + byClipCacheIndex = action._byClipCacheIndex; + lastKnownAction._byClipCacheIndex = byClipCacheIndex; + knownActionsForClip[byClipCacheIndex] = lastKnownAction; + knownActionsForClip.pop(); + action._byClipCacheIndex = null; + const actionByRoot = actionsForClip.actionByRoot, + rootUuid = (action._localRoot || this._root).uuid; + delete actionByRoot[rootUuid]; + + if (knownActionsForClip.length === 0) { + delete actionsByClip[clipUuid]; + } + + this._removeInactiveBindingsForAction(action); + } + + _removeInactiveBindingsForAction(action) { + const bindings = action._propertyBindings; + + for (let i = 0, n = bindings.length; i !== n; ++i) { + const binding = bindings[i]; + + if (--binding.referenceCount === 0) { + this._removeInactiveBinding(binding); + } + } + } + + _lendAction(action) { + // [ active actions | inactive actions ] + // [ active actions >| inactive actions ] + // s a + // <-swap-> + // a s + const actions = this._actions, + prevIndex = action._cacheIndex, + lastActiveIndex = this._nActiveActions++, + firstInactiveAction = actions[lastActiveIndex]; + action._cacheIndex = lastActiveIndex; + actions[lastActiveIndex] = action; + firstInactiveAction._cacheIndex = prevIndex; + actions[prevIndex] = firstInactiveAction; + } + + _takeBackAction(action) { + // [ active actions | inactive actions ] + // [ active actions |< inactive actions ] + // a s + // <-swap-> + // s a + const actions = this._actions, + prevIndex = action._cacheIndex, + firstInactiveIndex = --this._nActiveActions, + lastActiveAction = actions[firstInactiveIndex]; + action._cacheIndex = firstInactiveIndex; + actions[firstInactiveIndex] = action; + lastActiveAction._cacheIndex = prevIndex; + actions[prevIndex] = lastActiveAction; + } // Memory management for PropertyMixer objects + + + _addInactiveBinding(binding, rootUuid, trackName) { + const bindingsByRoot = this._bindingsByRootAndName, + bindings = this._bindings; + let bindingByName = bindingsByRoot[rootUuid]; + + if (bindingByName === undefined) { + bindingByName = {}; + bindingsByRoot[rootUuid] = bindingByName; + } + + bindingByName[trackName] = binding; + binding._cacheIndex = bindings.length; + bindings.push(binding); + } + + _removeInactiveBinding(binding) { + const bindings = this._bindings, + propBinding = binding.binding, + rootUuid = propBinding.rootNode.uuid, + trackName = propBinding.path, + bindingsByRoot = this._bindingsByRootAndName, + bindingByName = bindingsByRoot[rootUuid], + lastInactiveBinding = bindings[bindings.length - 1], + cacheIndex = binding._cacheIndex; + lastInactiveBinding._cacheIndex = cacheIndex; + bindings[cacheIndex] = lastInactiveBinding; + bindings.pop(); + delete bindingByName[trackName]; + + if (Object.keys(bindingByName).length === 0) { + delete bindingsByRoot[rootUuid]; + } + } + + _lendBinding(binding) { + const bindings = this._bindings, + prevIndex = binding._cacheIndex, + lastActiveIndex = this._nActiveBindings++, + firstInactiveBinding = bindings[lastActiveIndex]; + binding._cacheIndex = lastActiveIndex; + bindings[lastActiveIndex] = binding; + firstInactiveBinding._cacheIndex = prevIndex; + bindings[prevIndex] = firstInactiveBinding; + } + + _takeBackBinding(binding) { + const bindings = this._bindings, + prevIndex = binding._cacheIndex, + firstInactiveIndex = --this._nActiveBindings, + lastActiveBinding = bindings[firstInactiveIndex]; + binding._cacheIndex = firstInactiveIndex; + bindings[firstInactiveIndex] = binding; + lastActiveBinding._cacheIndex = prevIndex; + bindings[prevIndex] = lastActiveBinding; + } // Memory management of Interpolants for weight and time scale + + + _lendControlInterpolant() { + const interpolants = this._controlInterpolants, + lastActiveIndex = this._nActiveControlInterpolants++; + let interpolant = interpolants[lastActiveIndex]; + + if (interpolant === undefined) { + interpolant = new LinearInterpolant(new Float32Array(2), new Float32Array(2), 1, this._controlInterpolantsResultBuffer); + interpolant.__cacheIndex = lastActiveIndex; + interpolants[lastActiveIndex] = interpolant; + } + + return interpolant; + } + + _takeBackControlInterpolant(interpolant) { + const interpolants = this._controlInterpolants, + prevIndex = interpolant.__cacheIndex, + firstInactiveIndex = --this._nActiveControlInterpolants, + lastActiveInterpolant = interpolants[firstInactiveIndex]; + interpolant.__cacheIndex = firstInactiveIndex; + interpolants[firstInactiveIndex] = interpolant; + lastActiveInterpolant.__cacheIndex = prevIndex; + interpolants[prevIndex] = lastActiveInterpolant; + } // return an action for a clip optionally using a custom root target + // object (this method allocates a lot of dynamic memory in case a + // previously unknown clip/root combination is specified) + + + clipAction(clip, optionalRoot, blendMode) { + const root = optionalRoot || this._root, + rootUuid = root.uuid; + let clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip; + const clipUuid = clipObject !== null ? clipObject.uuid : clip; + const actionsForClip = this._actionsByClip[clipUuid]; + let prototypeAction = null; + + if (blendMode === undefined) { + if (clipObject !== null) { + blendMode = clipObject.blendMode; + } else { + blendMode = NormalAnimationBlendMode; + } + } + + if (actionsForClip !== undefined) { + const existingAction = actionsForClip.actionByRoot[rootUuid]; + + if (existingAction !== undefined && existingAction.blendMode === blendMode) { + return existingAction; + } // we know the clip, so we don't have to parse all + // the bindings again but can just copy + + + prototypeAction = actionsForClip.knownActions[0]; // also, take the clip from the prototype action + + if (clipObject === null) clipObject = prototypeAction._clip; + } // clip must be known when specified via string + + + if (clipObject === null) return null; // allocate all resources required to run it + + const newAction = new AnimationAction(this, clipObject, optionalRoot, blendMode); + + this._bindAction(newAction, prototypeAction); // and make the action known to the memory manager + + + this._addInactiveAction(newAction, clipUuid, rootUuid); + + return newAction; + } // get an existing action + + + existingAction(clip, optionalRoot) { + const root = optionalRoot || this._root, + rootUuid = root.uuid, + clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip, + clipUuid = clipObject ? clipObject.uuid : clip, + actionsForClip = this._actionsByClip[clipUuid]; + + if (actionsForClip !== undefined) { + return actionsForClip.actionByRoot[rootUuid] || null; + } + + return null; + } // deactivates all previously scheduled actions + + + stopAllAction() { + const actions = this._actions, + nActions = this._nActiveActions; + + for (let i = nActions - 1; i >= 0; --i) { + actions[i].stop(); + } + + return this; + } // advance the time and update apply the animation + + + update(deltaTime) { + deltaTime *= this.timeScale; + const actions = this._actions, + nActions = this._nActiveActions, + time = this.time += deltaTime, + timeDirection = Math.sign(deltaTime), + accuIndex = this._accuIndex ^= 1; // run active actions + + for (let i = 0; i !== nActions; ++i) { + const action = actions[i]; + + action._update(time, deltaTime, timeDirection, accuIndex); + } // update scene graph + + + const bindings = this._bindings, + nBindings = this._nActiveBindings; + + for (let i = 0; i !== nBindings; ++i) { + bindings[i].apply(accuIndex); + } + + return this; + } // Allows you to seek to a specific time in an animation. + + + setTime(timeInSeconds) { + this.time = 0; // Zero out time attribute for AnimationMixer object; + + for (let i = 0; i < this._actions.length; i++) { + this._actions[i].time = 0; // Zero out time attribute for all associated AnimationAction objects. + } + + return this.update(timeInSeconds); // Update used to set exact time. Returns "this" AnimationMixer object. + } // return this mixer's root target object + + + getRoot() { + return this._root; + } // free all resources specific to a particular clip + + + uncacheClip(clip) { + const actions = this._actions, + clipUuid = clip.uuid, + actionsByClip = this._actionsByClip, + actionsForClip = actionsByClip[clipUuid]; + + if (actionsForClip !== undefined) { + // note: just calling _removeInactiveAction would mess up the + // iteration state and also require updating the state we can + // just throw away + const actionsToRemove = actionsForClip.knownActions; + + for (let i = 0, n = actionsToRemove.length; i !== n; ++i) { + const action = actionsToRemove[i]; + + this._deactivateAction(action); + + const cacheIndex = action._cacheIndex, + lastInactiveAction = actions[actions.length - 1]; + action._cacheIndex = null; + action._byClipCacheIndex = null; + lastInactiveAction._cacheIndex = cacheIndex; + actions[cacheIndex] = lastInactiveAction; + actions.pop(); + + this._removeInactiveBindingsForAction(action); + } + + delete actionsByClip[clipUuid]; + } + } // free all resources specific to a particular root target object + + + uncacheRoot(root) { + const rootUuid = root.uuid, + actionsByClip = this._actionsByClip; + + for (const clipUuid in actionsByClip) { + const actionByRoot = actionsByClip[clipUuid].actionByRoot, + action = actionByRoot[rootUuid]; + + if (action !== undefined) { + this._deactivateAction(action); + + this._removeInactiveAction(action); + } + } + + const bindingsByRoot = this._bindingsByRootAndName, + bindingByName = bindingsByRoot[rootUuid]; + + if (bindingByName !== undefined) { + for (const trackName in bindingByName) { + const binding = bindingByName[trackName]; + binding.restoreOriginalState(); + + this._removeInactiveBinding(binding); + } + } + } // remove a targeted clip from the cache + + + uncacheAction(clip, optionalRoot) { + const action = this.existingAction(clip, optionalRoot); + + if (action !== null) { + this._deactivateAction(action); + + this._removeInactiveAction(action); + } + } + + } + + AnimationMixer.prototype._controlInterpolantsResultBuffer = new Float32Array(1); + + class Uniform { + constructor(value) { + if (typeof value === 'string') { + console.warn('THREE.Uniform: Type parameter is no longer needed.'); + value = arguments[1]; + } + + this.value = value; + } + + clone() { + return new Uniform(this.value.clone === undefined ? this.value : this.value.clone()); + } + + } + + class InstancedInterleavedBuffer extends InterleavedBuffer { + constructor(array, stride, meshPerAttribute = 1) { + super(array, stride); + this.meshPerAttribute = meshPerAttribute; + } + + copy(source) { + super.copy(source); + this.meshPerAttribute = source.meshPerAttribute; + return this; + } + + clone(data) { + const ib = super.clone(data); + ib.meshPerAttribute = this.meshPerAttribute; + return ib; + } + + toJSON(data) { + const json = super.toJSON(data); + json.isInstancedInterleavedBuffer = true; + json.meshPerAttribute = this.meshPerAttribute; + return json; + } + + } + + InstancedInterleavedBuffer.prototype.isInstancedInterleavedBuffer = true; + + class GLBufferAttribute { + constructor(buffer, type, itemSize, elementSize, count) { + this.buffer = buffer; + this.type = type; + this.itemSize = itemSize; + this.elementSize = elementSize; + this.count = count; + this.version = 0; + } + + set needsUpdate(value) { + if (value === true) this.version++; + } + + setBuffer(buffer) { + this.buffer = buffer; + return this; + } + + setType(type, elementSize) { + this.type = type; + this.elementSize = elementSize; + return this; + } + + setItemSize(itemSize) { + this.itemSize = itemSize; + return this; + } + + setCount(count) { + this.count = count; + return this; + } + + } + + GLBufferAttribute.prototype.isGLBufferAttribute = true; + + class Raycaster { + constructor(origin, direction, near = 0, far = Infinity) { + this.ray = new Ray(origin, direction); // direction is assumed to be normalized (for accurate distance calculations) + + this.near = near; + this.far = far; + this.camera = null; + this.layers = new Layers(); + this.params = { + Mesh: {}, + Line: { + threshold: 1 + }, + LOD: {}, + Points: { + threshold: 1 + }, + Sprite: {} + }; + } + + set(origin, direction) { + // direction is assumed to be normalized (for accurate distance calculations) + this.ray.set(origin, direction); + } + + setFromCamera(coords, camera) { + if (camera && camera.isPerspectiveCamera) { + this.ray.origin.setFromMatrixPosition(camera.matrixWorld); + this.ray.direction.set(coords.x, coords.y, 0.5).unproject(camera).sub(this.ray.origin).normalize(); + this.camera = camera; + } else if (camera && camera.isOrthographicCamera) { + this.ray.origin.set(coords.x, coords.y, (camera.near + camera.far) / (camera.near - camera.far)).unproject(camera); // set origin in plane of camera + + this.ray.direction.set(0, 0, -1).transformDirection(camera.matrixWorld); + this.camera = camera; + } else { + console.error('THREE.Raycaster: Unsupported camera type: ' + camera.type); + } + } + + intersectObject(object, recursive = true, intersects = []) { + intersectObject(object, this, intersects, recursive); + intersects.sort(ascSort); + return intersects; + } + + intersectObjects(objects, recursive = true, intersects = []) { + for (let i = 0, l = objects.length; i < l; i++) { + intersectObject(objects[i], this, intersects, recursive); + } + + intersects.sort(ascSort); + return intersects; + } + + } + + function ascSort(a, b) { + return a.distance - b.distance; + } + + function intersectObject(object, raycaster, intersects, recursive) { + if (object.layers.test(raycaster.layers)) { + object.raycast(raycaster, intersects); + } + + if (recursive === true) { + const children = object.children; + + for (let i = 0, l = children.length; i < l; i++) { + intersectObject(children[i], raycaster, intersects, true); + } + } + } + + /** + * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system + * + * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up. + * The azimuthal angle (theta) is measured from the positive z-axis. + */ + + class Spherical { + constructor(radius = 1, phi = 0, theta = 0) { + this.radius = radius; + this.phi = phi; // polar angle + + this.theta = theta; // azimuthal angle + + return this; + } + + set(radius, phi, theta) { + this.radius = radius; + this.phi = phi; + this.theta = theta; + return this; + } + + copy(other) { + this.radius = other.radius; + this.phi = other.phi; + this.theta = other.theta; + return this; + } // restrict phi to be betwee EPS and PI-EPS + + + makeSafe() { + const EPS = 0.000001; + this.phi = Math.max(EPS, Math.min(Math.PI - EPS, this.phi)); + return this; + } + + setFromVector3(v) { + return this.setFromCartesianCoords(v.x, v.y, v.z); + } + + setFromCartesianCoords(x, y, z) { + this.radius = Math.sqrt(x * x + y * y + z * z); + + if (this.radius === 0) { + this.theta = 0; + this.phi = 0; + } else { + this.theta = Math.atan2(x, z); + this.phi = Math.acos(clamp(y / this.radius, -1, 1)); + } + + return this; + } + + clone() { + return new this.constructor().copy(this); + } + + } + + /** + * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system + */ + class Cylindrical { + constructor(radius = 1, theta = 0, y = 0) { + this.radius = radius; // distance from the origin to a point in the x-z plane + + this.theta = theta; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis + + this.y = y; // height above the x-z plane + + return this; + } + + set(radius, theta, y) { + this.radius = radius; + this.theta = theta; + this.y = y; + return this; + } + + copy(other) { + this.radius = other.radius; + this.theta = other.theta; + this.y = other.y; + return this; + } + + setFromVector3(v) { + return this.setFromCartesianCoords(v.x, v.y, v.z); + } + + setFromCartesianCoords(x, y, z) { + this.radius = Math.sqrt(x * x + z * z); + this.theta = Math.atan2(x, z); + this.y = y; + return this; + } + + clone() { + return new this.constructor().copy(this); + } + + } + + const _vector$4 = /*@__PURE__*/new Vector2(); + + class Box2 { + constructor(min = new Vector2(+Infinity, +Infinity), max = new Vector2(-Infinity, -Infinity)) { + this.min = min; + this.max = max; + } + + set(min, max) { + this.min.copy(min); + this.max.copy(max); + return this; + } + + setFromPoints(points) { + this.makeEmpty(); + + for (let i = 0, il = points.length; i < il; i++) { + this.expandByPoint(points[i]); + } + + return this; + } + + setFromCenterAndSize(center, size) { + const halfSize = _vector$4.copy(size).multiplyScalar(0.5); + + this.min.copy(center).sub(halfSize); + this.max.copy(center).add(halfSize); + return this; + } + + clone() { + return new this.constructor().copy(this); + } + + copy(box) { + this.min.copy(box.min); + this.max.copy(box.max); + return this; + } + + makeEmpty() { + this.min.x = this.min.y = +Infinity; + this.max.x = this.max.y = -Infinity; + return this; + } + + isEmpty() { + // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes + return this.max.x < this.min.x || this.max.y < this.min.y; + } + + getCenter(target) { + return this.isEmpty() ? target.set(0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5); + } + + getSize(target) { + return this.isEmpty() ? target.set(0, 0) : target.subVectors(this.max, this.min); + } + + expandByPoint(point) { + this.min.min(point); + this.max.max(point); + return this; + } + + expandByVector(vector) { + this.min.sub(vector); + this.max.add(vector); + return this; + } + + expandByScalar(scalar) { + this.min.addScalar(-scalar); + this.max.addScalar(scalar); + return this; + } + + containsPoint(point) { + return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true; + } + + containsBox(box) { + return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y; + } + + getParameter(point, target) { + // This can potentially have a divide by zero if the box + // has a size dimension of 0. + return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y)); + } + + intersectsBox(box) { + // using 4 splitting planes to rule out intersections + return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true; + } + + clampPoint(point, target) { + return target.copy(point).clamp(this.min, this.max); + } + + distanceToPoint(point) { + const clampedPoint = _vector$4.copy(point).clamp(this.min, this.max); + + return clampedPoint.sub(point).length(); + } + + intersect(box) { + this.min.max(box.min); + this.max.min(box.max); + return this; + } + + union(box) { + this.min.min(box.min); + this.max.max(box.max); + return this; + } + + translate(offset) { + this.min.add(offset); + this.max.add(offset); + return this; + } + + equals(box) { + return box.min.equals(this.min) && box.max.equals(this.max); + } + + } + + Box2.prototype.isBox2 = true; + + const _startP = /*@__PURE__*/new Vector3(); + + const _startEnd = /*@__PURE__*/new Vector3(); + + class Line3 { + constructor(start = new Vector3(), end = new Vector3()) { + this.start = start; + this.end = end; + } + + set(start, end) { + this.start.copy(start); + this.end.copy(end); + return this; + } + + copy(line) { + this.start.copy(line.start); + this.end.copy(line.end); + return this; + } + + getCenter(target) { + return target.addVectors(this.start, this.end).multiplyScalar(0.5); + } + + delta(target) { + return target.subVectors(this.end, this.start); + } + + distanceSq() { + return this.start.distanceToSquared(this.end); + } + + distance() { + return this.start.distanceTo(this.end); + } + + at(t, target) { + return this.delta(target).multiplyScalar(t).add(this.start); + } + + closestPointToPointParameter(point, clampToLine) { + _startP.subVectors(point, this.start); + + _startEnd.subVectors(this.end, this.start); + + const startEnd2 = _startEnd.dot(_startEnd); + + const startEnd_startP = _startEnd.dot(_startP); + + let t = startEnd_startP / startEnd2; + + if (clampToLine) { + t = clamp(t, 0, 1); + } + + return t; + } + + closestPointToPoint(point, clampToLine, target) { + const t = this.closestPointToPointParameter(point, clampToLine); + return this.delta(target).multiplyScalar(t).add(this.start); + } + + applyMatrix4(matrix) { + this.start.applyMatrix4(matrix); + this.end.applyMatrix4(matrix); + return this; + } + + equals(line) { + return line.start.equals(this.start) && line.end.equals(this.end); + } + + clone() { + return new this.constructor().copy(this); + } + + } + + class ImmediateRenderObject extends Object3D { + constructor(material) { + super(); + this.material = material; + + this.render = function () {}; + + this.hasPositions = false; + this.hasNormals = false; + this.hasColors = false; + this.hasUvs = false; + this.positionArray = null; + this.normalArray = null; + this.colorArray = null; + this.uvArray = null; + this.count = 0; + } + + } + + ImmediateRenderObject.prototype.isImmediateRenderObject = true; + + const _vector$3 = /*@__PURE__*/new Vector3(); + + class SpotLightHelper extends Object3D { + constructor(light, color) { + super(); + this.light = light; + this.light.updateMatrixWorld(); + this.matrix = light.matrixWorld; + this.matrixAutoUpdate = false; + this.color = color; + const geometry = new BufferGeometry(); + const positions = [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 1]; + + for (let i = 0, j = 1, l = 32; i < l; i++, j++) { + const p1 = i / l * Math.PI * 2; + const p2 = j / l * Math.PI * 2; + positions.push(Math.cos(p1), Math.sin(p1), 1, Math.cos(p2), Math.sin(p2), 1); + } + + geometry.setAttribute('position', new Float32BufferAttribute(positions, 3)); + const material = new LineBasicMaterial({ + fog: false, + toneMapped: false + }); + this.cone = new LineSegments(geometry, material); + this.add(this.cone); + this.update(); + } + + dispose() { + this.cone.geometry.dispose(); + this.cone.material.dispose(); + } + + update() { + this.light.updateMatrixWorld(); + const coneLength = this.light.distance ? this.light.distance : 1000; + const coneWidth = coneLength * Math.tan(this.light.angle); + this.cone.scale.set(coneWidth, coneWidth, coneLength); + + _vector$3.setFromMatrixPosition(this.light.target.matrixWorld); + + this.cone.lookAt(_vector$3); + + if (this.color !== undefined) { + this.cone.material.color.set(this.color); + } else { + this.cone.material.color.copy(this.light.color); + } + } + + } + + const _vector$2 = /*@__PURE__*/new Vector3(); + + const _boneMatrix = /*@__PURE__*/new Matrix4(); + + const _matrixWorldInv = /*@__PURE__*/new Matrix4(); + + class SkeletonHelper extends LineSegments { + constructor(object) { + const bones = getBoneList(object); + const geometry = new BufferGeometry(); + const vertices = []; + const colors = []; + const color1 = new Color(0, 0, 1); + const color2 = new Color(0, 1, 0); + + for (let i = 0; i < bones.length; i++) { + const bone = bones[i]; + + if (bone.parent && bone.parent.isBone) { + vertices.push(0, 0, 0); + vertices.push(0, 0, 0); + colors.push(color1.r, color1.g, color1.b); + colors.push(color2.r, color2.g, color2.b); + } + } + + geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); + const material = new LineBasicMaterial({ + vertexColors: true, + depthTest: false, + depthWrite: false, + toneMapped: false, + transparent: true + }); + super(geometry, material); + this.type = 'SkeletonHelper'; + this.isSkeletonHelper = true; + this.root = object; + this.bones = bones; + this.matrix = object.matrixWorld; + this.matrixAutoUpdate = false; + } + + updateMatrixWorld(force) { + const bones = this.bones; + const geometry = this.geometry; + const position = geometry.getAttribute('position'); + + _matrixWorldInv.copy(this.root.matrixWorld).invert(); + + for (let i = 0, j = 0; i < bones.length; i++) { + const bone = bones[i]; + + if (bone.parent && bone.parent.isBone) { + _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.matrixWorld); + + _vector$2.setFromMatrixPosition(_boneMatrix); + + position.setXYZ(j, _vector$2.x, _vector$2.y, _vector$2.z); + + _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.parent.matrixWorld); + + _vector$2.setFromMatrixPosition(_boneMatrix); + + position.setXYZ(j + 1, _vector$2.x, _vector$2.y, _vector$2.z); + j += 2; + } + } + + geometry.getAttribute('position').needsUpdate = true; + super.updateMatrixWorld(force); + } + + } + + function getBoneList(object) { + const boneList = []; + + if (object && object.isBone) { + boneList.push(object); + } + + for (let i = 0; i < object.children.length; i++) { + boneList.push.apply(boneList, getBoneList(object.children[i])); + } + + return boneList; + } + + class PointLightHelper extends Mesh { + constructor(light, sphereSize, color) { + const geometry = new SphereGeometry(sphereSize, 4, 2); + const material = new MeshBasicMaterial({ + wireframe: true, + fog: false, + toneMapped: false + }); + super(geometry, material); + this.light = light; + this.light.updateMatrixWorld(); + this.color = color; + this.type = 'PointLightHelper'; + this.matrix = this.light.matrixWorld; + this.matrixAutoUpdate = false; + this.update(); + /* + // TODO: delete this comment? + const distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 ); + const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } ); + this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); + this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial ); + const d = light.distance; + if ( d === 0.0 ) { + this.lightDistance.visible = false; + } else { + this.lightDistance.scale.set( d, d, d ); + } + this.add( this.lightDistance ); + */ + } + + dispose() { + this.geometry.dispose(); + this.material.dispose(); + } + + update() { + if (this.color !== undefined) { + this.material.color.set(this.color); + } else { + this.material.color.copy(this.light.color); + } + /* + const d = this.light.distance; + if ( d === 0.0 ) { + this.lightDistance.visible = false; + } else { + this.lightDistance.visible = true; + this.lightDistance.scale.set( d, d, d ); + } + */ + + } + + } + + const _vector$1 = /*@__PURE__*/new Vector3(); + + const _color1 = /*@__PURE__*/new Color(); + + const _color2 = /*@__PURE__*/new Color(); + + class HemisphereLightHelper extends Object3D { + constructor(light, size, color) { + super(); + this.light = light; + this.light.updateMatrixWorld(); + this.matrix = light.matrixWorld; + this.matrixAutoUpdate = false; + this.color = color; + const geometry = new OctahedronGeometry(size); + geometry.rotateY(Math.PI * 0.5); + this.material = new MeshBasicMaterial({ + wireframe: true, + fog: false, + toneMapped: false + }); + if (this.color === undefined) this.material.vertexColors = true; + const position = geometry.getAttribute('position'); + const colors = new Float32Array(position.count * 3); + geometry.setAttribute('color', new BufferAttribute(colors, 3)); + this.add(new Mesh(geometry, this.material)); + this.update(); + } + + dispose() { + this.children[0].geometry.dispose(); + this.children[0].material.dispose(); + } + + update() { + const mesh = this.children[0]; + + if (this.color !== undefined) { + this.material.color.set(this.color); + } else { + const colors = mesh.geometry.getAttribute('color'); + + _color1.copy(this.light.color); + + _color2.copy(this.light.groundColor); + + for (let i = 0, l = colors.count; i < l; i++) { + const color = i < l / 2 ? _color1 : _color2; + colors.setXYZ(i, color.r, color.g, color.b); + } + + colors.needsUpdate = true; + } + + mesh.lookAt(_vector$1.setFromMatrixPosition(this.light.matrixWorld).negate()); + } + + } + + class GridHelper extends LineSegments { + constructor(size = 10, divisions = 10, color1 = 0x444444, color2 = 0x888888) { + color1 = new Color(color1); + color2 = new Color(color2); + const center = divisions / 2; + const step = size / divisions; + const halfSize = size / 2; + const vertices = [], + colors = []; + + for (let i = 0, j = 0, k = -halfSize; i <= divisions; i++, k += step) { + vertices.push(-halfSize, 0, k, halfSize, 0, k); + vertices.push(k, 0, -halfSize, k, 0, halfSize); + const color = i === center ? color1 : color2; + color.toArray(colors, j); + j += 3; + color.toArray(colors, j); + j += 3; + color.toArray(colors, j); + j += 3; + color.toArray(colors, j); + j += 3; + } + + const geometry = new BufferGeometry(); + geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); + const material = new LineBasicMaterial({ + vertexColors: true, + toneMapped: false + }); + super(geometry, material); + this.type = 'GridHelper'; + } + + } + + class PolarGridHelper extends LineSegments { + constructor(radius = 10, radials = 16, circles = 8, divisions = 64, color1 = 0x444444, color2 = 0x888888) { + color1 = new Color(color1); + color2 = new Color(color2); + const vertices = []; + const colors = []; // create the radials + + for (let i = 0; i <= radials; i++) { + const v = i / radials * (Math.PI * 2); + const x = Math.sin(v) * radius; + const z = Math.cos(v) * radius; + vertices.push(0, 0, 0); + vertices.push(x, 0, z); + const color = i & 1 ? color1 : color2; + colors.push(color.r, color.g, color.b); + colors.push(color.r, color.g, color.b); + } // create the circles + + + for (let i = 0; i <= circles; i++) { + const color = i & 1 ? color1 : color2; + const r = radius - radius / circles * i; + + for (let j = 0; j < divisions; j++) { + // first vertex + let v = j / divisions * (Math.PI * 2); + let x = Math.sin(v) * r; + let z = Math.cos(v) * r; + vertices.push(x, 0, z); + colors.push(color.r, color.g, color.b); // second vertex + + v = (j + 1) / divisions * (Math.PI * 2); + x = Math.sin(v) * r; + z = Math.cos(v) * r; + vertices.push(x, 0, z); + colors.push(color.r, color.g, color.b); + } + } + + const geometry = new BufferGeometry(); + geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); + const material = new LineBasicMaterial({ + vertexColors: true, + toneMapped: false + }); + super(geometry, material); + this.type = 'PolarGridHelper'; + } + + } + + const _v1 = /*@__PURE__*/new Vector3(); + + const _v2 = /*@__PURE__*/new Vector3(); + + const _v3 = /*@__PURE__*/new Vector3(); + + class DirectionalLightHelper extends Object3D { + constructor(light, size, color) { + super(); + this.light = light; + this.light.updateMatrixWorld(); + this.matrix = light.matrixWorld; + this.matrixAutoUpdate = false; + this.color = color; + if (size === undefined) size = 1; + let geometry = new BufferGeometry(); + geometry.setAttribute('position', new Float32BufferAttribute([-size, size, 0, size, size, 0, size, -size, 0, -size, -size, 0, -size, size, 0], 3)); + const material = new LineBasicMaterial({ + fog: false, + toneMapped: false + }); + this.lightPlane = new Line(geometry, material); + this.add(this.lightPlane); + geometry = new BufferGeometry(); + geometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 0, 1], 3)); + this.targetLine = new Line(geometry, material); + this.add(this.targetLine); + this.update(); + } + + dispose() { + this.lightPlane.geometry.dispose(); + this.lightPlane.material.dispose(); + this.targetLine.geometry.dispose(); + this.targetLine.material.dispose(); + } + + update() { + _v1.setFromMatrixPosition(this.light.matrixWorld); + + _v2.setFromMatrixPosition(this.light.target.matrixWorld); + + _v3.subVectors(_v2, _v1); + + this.lightPlane.lookAt(_v2); + + if (this.color !== undefined) { + this.lightPlane.material.color.set(this.color); + this.targetLine.material.color.set(this.color); + } else { + this.lightPlane.material.color.copy(this.light.color); + this.targetLine.material.color.copy(this.light.color); + } + + this.targetLine.lookAt(_v2); + this.targetLine.scale.z = _v3.length(); + } + + } + + const _vector = /*@__PURE__*/new Vector3(); + + const _camera = /*@__PURE__*/new Camera(); + /** + * - shows frustum, line of sight and up of the camera + * - suitable for fast updates + * - based on frustum visualization in lightgl.js shadowmap example + * http://evanw.github.com/lightgl.js/tests/shadowmap.html + */ + + + class CameraHelper extends LineSegments { + constructor(camera) { + const geometry = new BufferGeometry(); + const material = new LineBasicMaterial({ + color: 0xffffff, + vertexColors: true, + toneMapped: false + }); + const vertices = []; + const colors = []; + const pointMap = {}; // colors + + const colorFrustum = new Color(0xffaa00); + const colorCone = new Color(0xff0000); + const colorUp = new Color(0x00aaff); + const colorTarget = new Color(0xffffff); + const colorCross = new Color(0x333333); // near + + addLine('n1', 'n2', colorFrustum); + addLine('n2', 'n4', colorFrustum); + addLine('n4', 'n3', colorFrustum); + addLine('n3', 'n1', colorFrustum); // far + + addLine('f1', 'f2', colorFrustum); + addLine('f2', 'f4', colorFrustum); + addLine('f4', 'f3', colorFrustum); + addLine('f3', 'f1', colorFrustum); // sides + + addLine('n1', 'f1', colorFrustum); + addLine('n2', 'f2', colorFrustum); + addLine('n3', 'f3', colorFrustum); + addLine('n4', 'f4', colorFrustum); // cone + + addLine('p', 'n1', colorCone); + addLine('p', 'n2', colorCone); + addLine('p', 'n3', colorCone); + addLine('p', 'n4', colorCone); // up + + addLine('u1', 'u2', colorUp); + addLine('u2', 'u3', colorUp); + addLine('u3', 'u1', colorUp); // target + + addLine('c', 't', colorTarget); + addLine('p', 'c', colorCross); // cross + + addLine('cn1', 'cn2', colorCross); + addLine('cn3', 'cn4', colorCross); + addLine('cf1', 'cf2', colorCross); + addLine('cf3', 'cf4', colorCross); + + function addLine(a, b, color) { + addPoint(a, color); + addPoint(b, color); + } + + function addPoint(id, color) { + vertices.push(0, 0, 0); + colors.push(color.r, color.g, color.b); + + if (pointMap[id] === undefined) { + pointMap[id] = []; + } + + pointMap[id].push(vertices.length / 3 - 1); + } + + geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); + super(geometry, material); + this.type = 'CameraHelper'; + this.camera = camera; + if (this.camera.updateProjectionMatrix) this.camera.updateProjectionMatrix(); + this.matrix = camera.matrixWorld; + this.matrixAutoUpdate = false; + this.pointMap = pointMap; + this.update(); + } + + update() { + const geometry = this.geometry; + const pointMap = this.pointMap; + const w = 1, + h = 1; // we need just camera projection matrix inverse + // world matrix must be identity + + _camera.projectionMatrixInverse.copy(this.camera.projectionMatrixInverse); // center / target + + + setPoint('c', pointMap, geometry, _camera, 0, 0, -1); + setPoint('t', pointMap, geometry, _camera, 0, 0, 1); // near + + setPoint('n1', pointMap, geometry, _camera, -w, -h, -1); + setPoint('n2', pointMap, geometry, _camera, w, -h, -1); + setPoint('n3', pointMap, geometry, _camera, -w, h, -1); + setPoint('n4', pointMap, geometry, _camera, w, h, -1); // far + + setPoint('f1', pointMap, geometry, _camera, -w, -h, 1); + setPoint('f2', pointMap, geometry, _camera, w, -h, 1); + setPoint('f3', pointMap, geometry, _camera, -w, h, 1); + setPoint('f4', pointMap, geometry, _camera, w, h, 1); // up + + setPoint('u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, -1); + setPoint('u2', pointMap, geometry, _camera, -w * 0.7, h * 1.1, -1); + setPoint('u3', pointMap, geometry, _camera, 0, h * 2, -1); // cross + + setPoint('cf1', pointMap, geometry, _camera, -w, 0, 1); + setPoint('cf2', pointMap, geometry, _camera, w, 0, 1); + setPoint('cf3', pointMap, geometry, _camera, 0, -h, 1); + setPoint('cf4', pointMap, geometry, _camera, 0, h, 1); + setPoint('cn1', pointMap, geometry, _camera, -w, 0, -1); + setPoint('cn2', pointMap, geometry, _camera, w, 0, -1); + setPoint('cn3', pointMap, geometry, _camera, 0, -h, -1); + setPoint('cn4', pointMap, geometry, _camera, 0, h, -1); + geometry.getAttribute('position').needsUpdate = true; + } + + dispose() { + this.geometry.dispose(); + this.material.dispose(); + } + + } + + function setPoint(point, pointMap, geometry, camera, x, y, z) { + _vector.set(x, y, z).unproject(camera); + + const points = pointMap[point]; + + if (points !== undefined) { + const position = geometry.getAttribute('position'); + + for (let i = 0, l = points.length; i < l; i++) { + position.setXYZ(points[i], _vector.x, _vector.y, _vector.z); + } + } + } + + const _box = /*@__PURE__*/new Box3(); + + class BoxHelper extends LineSegments { + constructor(object, color = 0xffff00) { + const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]); + const positions = new Float32Array(8 * 3); + const geometry = new BufferGeometry(); + geometry.setIndex(new BufferAttribute(indices, 1)); + geometry.setAttribute('position', new BufferAttribute(positions, 3)); + super(geometry, new LineBasicMaterial({ + color: color, + toneMapped: false + })); + this.object = object; + this.type = 'BoxHelper'; + this.matrixAutoUpdate = false; + this.update(); + } + + update(object) { + if (object !== undefined) { + console.warn('THREE.BoxHelper: .update() has no longer arguments.'); + } + + if (this.object !== undefined) { + _box.setFromObject(this.object); + } + + if (_box.isEmpty()) return; + const min = _box.min; + const max = _box.max; + /* + 5____4 + 1/___0/| + | 6__|_7 + 2/___3/ + 0: max.x, max.y, max.z + 1: min.x, max.y, max.z + 2: min.x, min.y, max.z + 3: max.x, min.y, max.z + 4: max.x, max.y, min.z + 5: min.x, max.y, min.z + 6: min.x, min.y, min.z + 7: max.x, min.y, min.z + */ + + const position = this.geometry.attributes.position; + const array = position.array; + array[0] = max.x; + array[1] = max.y; + array[2] = max.z; + array[3] = min.x; + array[4] = max.y; + array[5] = max.z; + array[6] = min.x; + array[7] = min.y; + array[8] = max.z; + array[9] = max.x; + array[10] = min.y; + array[11] = max.z; + array[12] = max.x; + array[13] = max.y; + array[14] = min.z; + array[15] = min.x; + array[16] = max.y; + array[17] = min.z; + array[18] = min.x; + array[19] = min.y; + array[20] = min.z; + array[21] = max.x; + array[22] = min.y; + array[23] = min.z; + position.needsUpdate = true; + this.geometry.computeBoundingSphere(); + } + + setFromObject(object) { + this.object = object; + this.update(); + return this; + } + + copy(source) { + LineSegments.prototype.copy.call(this, source); + this.object = source.object; + return this; + } + + } + + class Box3Helper extends LineSegments { + constructor(box, color = 0xffff00) { + const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]); + const positions = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1]; + const geometry = new BufferGeometry(); + geometry.setIndex(new BufferAttribute(indices, 1)); + geometry.setAttribute('position', new Float32BufferAttribute(positions, 3)); + super(geometry, new LineBasicMaterial({ + color: color, + toneMapped: false + })); + this.box = box; + this.type = 'Box3Helper'; + this.geometry.computeBoundingSphere(); + } + + updateMatrixWorld(force) { + const box = this.box; + if (box.isEmpty()) return; + box.getCenter(this.position); + box.getSize(this.scale); + this.scale.multiplyScalar(0.5); + super.updateMatrixWorld(force); + } + + } + + class PlaneHelper extends Line { + constructor(plane, size = 1, hex = 0xffff00) { + const color = hex; + const positions = [1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0]; + const geometry = new BufferGeometry(); + geometry.setAttribute('position', new Float32BufferAttribute(positions, 3)); + geometry.computeBoundingSphere(); + super(geometry, new LineBasicMaterial({ + color: color, + toneMapped: false + })); + this.type = 'PlaneHelper'; + this.plane = plane; + this.size = size; + const positions2 = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1]; + const geometry2 = new BufferGeometry(); + geometry2.setAttribute('position', new Float32BufferAttribute(positions2, 3)); + geometry2.computeBoundingSphere(); + this.add(new Mesh(geometry2, new MeshBasicMaterial({ + color: color, + opacity: 0.2, + transparent: true, + depthWrite: false, + toneMapped: false + }))); + } + + updateMatrixWorld(force) { + let scale = -this.plane.constant; + if (Math.abs(scale) < 1e-8) scale = 1e-8; // sign does not matter + + this.scale.set(0.5 * this.size, 0.5 * this.size, scale); + this.children[0].material.side = scale < 0 ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here + + this.lookAt(this.plane.normal); + super.updateMatrixWorld(force); + } + + } + + const _axis = /*@__PURE__*/new Vector3(); + + let _lineGeometry, _coneGeometry; + + class ArrowHelper extends Object3D { + // dir is assumed to be normalized + constructor(dir = new Vector3(0, 0, 1), origin = new Vector3(0, 0, 0), length = 1, color = 0xffff00, headLength = length * 0.2, headWidth = headLength * 0.2) { + super(); + this.type = 'ArrowHelper'; + + if (_lineGeometry === undefined) { + _lineGeometry = new BufferGeometry(); + + _lineGeometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 1, 0], 3)); + + _coneGeometry = new CylinderGeometry(0, 0.5, 1, 5, 1); + + _coneGeometry.translate(0, -0.5, 0); + } + + this.position.copy(origin); + this.line = new Line(_lineGeometry, new LineBasicMaterial({ + color: color, + toneMapped: false + })); + this.line.matrixAutoUpdate = false; + this.add(this.line); + this.cone = new Mesh(_coneGeometry, new MeshBasicMaterial({ + color: color, + toneMapped: false + })); + this.cone.matrixAutoUpdate = false; + this.add(this.cone); + this.setDirection(dir); + this.setLength(length, headLength, headWidth); + } + + setDirection(dir) { + // dir is assumed to be normalized + if (dir.y > 0.99999) { + this.quaternion.set(0, 0, 0, 1); + } else if (dir.y < -0.99999) { + this.quaternion.set(1, 0, 0, 0); + } else { + _axis.set(dir.z, 0, -dir.x).normalize(); + + const radians = Math.acos(dir.y); + this.quaternion.setFromAxisAngle(_axis, radians); + } + } + + setLength(length, headLength = length * 0.2, headWidth = headLength * 0.2) { + this.line.scale.set(1, Math.max(0.0001, length - headLength), 1); // see #17458 + + this.line.updateMatrix(); + this.cone.scale.set(headWidth, headLength, headWidth); + this.cone.position.y = length; + this.cone.updateMatrix(); + } + + setColor(color) { + this.line.material.color.set(color); + this.cone.material.color.set(color); + } + + copy(source) { + super.copy(source, false); + this.line.copy(source.line); + this.cone.copy(source.cone); + return this; + } + + } + + class AxesHelper extends LineSegments { + constructor(size = 1) { + const vertices = [0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size]; + const colors = [1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1]; + const geometry = new BufferGeometry(); + geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); + geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); + const material = new LineBasicMaterial({ + vertexColors: true, + toneMapped: false + }); + super(geometry, material); + this.type = 'AxesHelper'; + } + + setColors(xAxisColor, yAxisColor, zAxisColor) { + const color = new Color(); + const array = this.geometry.attributes.color.array; + color.set(xAxisColor); + color.toArray(array, 0); + color.toArray(array, 3); + color.set(yAxisColor); + color.toArray(array, 6); + color.toArray(array, 9); + color.set(zAxisColor); + color.toArray(array, 12); + color.toArray(array, 15); + this.geometry.attributes.color.needsUpdate = true; + return this; + } + + dispose() { + this.geometry.dispose(); + this.material.dispose(); + } + + } + + class ShapePath { + constructor() { + this.type = 'ShapePath'; + this.color = new Color(); + this.subPaths = []; + this.currentPath = null; + } + + moveTo(x, y) { + this.currentPath = new Path(); + this.subPaths.push(this.currentPath); + this.currentPath.moveTo(x, y); + return this; + } + + lineTo(x, y) { + this.currentPath.lineTo(x, y); + return this; + } + + quadraticCurveTo(aCPx, aCPy, aX, aY) { + this.currentPath.quadraticCurveTo(aCPx, aCPy, aX, aY); + return this; + } + + bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) { + this.currentPath.bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY); + return this; + } + + splineThru(pts) { + this.currentPath.splineThru(pts); + return this; + } + + toShapes(isCCW, noHoles) { + function toShapesNoHoles(inSubpaths) { + const shapes = []; + + for (let i = 0, l = inSubpaths.length; i < l; i++) { + const tmpPath = inSubpaths[i]; + const tmpShape = new Shape(); + tmpShape.curves = tmpPath.curves; + shapes.push(tmpShape); + } + + return shapes; + } + + function isPointInsidePolygon(inPt, inPolygon) { + const polyLen = inPolygon.length; // inPt on polygon contour => immediate success or + // toggling of inside/outside at every single! intersection point of an edge + // with the horizontal line through inPt, left of inPt + // not counting lowerY endpoints of edges and whole edges on that line + + let inside = false; + + for (let p = polyLen - 1, q = 0; q < polyLen; p = q++) { + let edgeLowPt = inPolygon[p]; + let edgeHighPt = inPolygon[q]; + let edgeDx = edgeHighPt.x - edgeLowPt.x; + let edgeDy = edgeHighPt.y - edgeLowPt.y; + + if (Math.abs(edgeDy) > Number.EPSILON) { + // not parallel + if (edgeDy < 0) { + edgeLowPt = inPolygon[q]; + edgeDx = -edgeDx; + edgeHighPt = inPolygon[p]; + edgeDy = -edgeDy; + } + + if (inPt.y < edgeLowPt.y || inPt.y > edgeHighPt.y) continue; + + if (inPt.y === edgeLowPt.y) { + if (inPt.x === edgeLowPt.x) return true; // inPt is on contour ? + // continue; // no intersection or edgeLowPt => doesn't count !!! + } else { + const perpEdge = edgeDy * (inPt.x - edgeLowPt.x) - edgeDx * (inPt.y - edgeLowPt.y); + if (perpEdge === 0) return true; // inPt is on contour ? + + if (perpEdge < 0) continue; + inside = !inside; // true intersection left of inPt + } + } else { + // parallel or collinear + if (inPt.y !== edgeLowPt.y) continue; // parallel + // edge lies on the same horizontal line as inPt + + if (edgeHighPt.x <= inPt.x && inPt.x <= edgeLowPt.x || edgeLowPt.x <= inPt.x && inPt.x <= edgeHighPt.x) return true; // inPt: Point on contour ! + // continue; + } + } + + return inside; + } + + const isClockWise = ShapeUtils.isClockWise; + const subPaths = this.subPaths; + if (subPaths.length === 0) return []; + if (noHoles === true) return toShapesNoHoles(subPaths); + let solid, tmpPath, tmpShape; + const shapes = []; + + if (subPaths.length === 1) { + tmpPath = subPaths[0]; + tmpShape = new Shape(); + tmpShape.curves = tmpPath.curves; + shapes.push(tmpShape); + return shapes; + } + + let holesFirst = !isClockWise(subPaths[0].getPoints()); + holesFirst = isCCW ? !holesFirst : holesFirst; // console.log("Holes first", holesFirst); + + const betterShapeHoles = []; + const newShapes = []; + let newShapeHoles = []; + let mainIdx = 0; + let tmpPoints; + newShapes[mainIdx] = undefined; + newShapeHoles[mainIdx] = []; + + for (let i = 0, l = subPaths.length; i < l; i++) { + tmpPath = subPaths[i]; + tmpPoints = tmpPath.getPoints(); + solid = isClockWise(tmpPoints); + solid = isCCW ? !solid : solid; + + if (solid) { + if (!holesFirst && newShapes[mainIdx]) mainIdx++; + newShapes[mainIdx] = { + s: new Shape(), + p: tmpPoints + }; + newShapes[mainIdx].s.curves = tmpPath.curves; + if (holesFirst) mainIdx++; + newShapeHoles[mainIdx] = []; //console.log('cw', i); + } else { + newShapeHoles[mainIdx].push({ + h: tmpPath, + p: tmpPoints[0] + }); //console.log('ccw', i); + } + } // only Holes? -> probably all Shapes with wrong orientation + + + if (!newShapes[0]) return toShapesNoHoles(subPaths); + + if (newShapes.length > 1) { + let ambiguous = false; + const toChange = []; + + for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) { + betterShapeHoles[sIdx] = []; + } + + for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) { + const sho = newShapeHoles[sIdx]; + + for (let hIdx = 0; hIdx < sho.length; hIdx++) { + const ho = sho[hIdx]; + let hole_unassigned = true; + + for (let s2Idx = 0; s2Idx < newShapes.length; s2Idx++) { + if (isPointInsidePolygon(ho.p, newShapes[s2Idx].p)) { + if (sIdx !== s2Idx) toChange.push({ + froms: sIdx, + tos: s2Idx, + hole: hIdx + }); + + if (hole_unassigned) { + hole_unassigned = false; + betterShapeHoles[s2Idx].push(ho); + } else { + ambiguous = true; + } + } + } + + if (hole_unassigned) { + betterShapeHoles[sIdx].push(ho); + } + } + } // console.log("ambiguous: ", ambiguous); + + + if (toChange.length > 0) { + // console.log("to change: ", toChange); + if (!ambiguous) newShapeHoles = betterShapeHoles; + } + } + + let tmpHoles; + + for (let i = 0, il = newShapes.length; i < il; i++) { + tmpShape = newShapes[i].s; + shapes.push(tmpShape); + tmpHoles = newShapeHoles[i]; + + for (let j = 0, jl = tmpHoles.length; j < jl; j++) { + tmpShape.holes.push(tmpHoles[j].h); + } + } //console.log("shape", shapes); + + + return shapes; + } + + } + + const _floatView = new Float32Array(1); + + const _int32View = new Int32Array(_floatView.buffer); + + class DataUtils { + // Converts float32 to float16 (stored as uint16 value). + static toHalfFloat(val) { + if (val > 65504) { + console.warn('THREE.DataUtils.toHalfFloat(): value exceeds 65504.'); + val = 65504; // maximum representable value in float16 + } // Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410 + + /* This method is faster than the OpenEXR implementation (very often + * used, eg. in Ogre), with the additional benefit of rounding, inspired + * by James Tursa?s half-precision code. */ + + + _floatView[0] = val; + const x = _int32View[0]; + let bits = x >> 16 & 0x8000; + /* Get the sign */ + + let m = x >> 12 & 0x07ff; + /* Keep one extra bit for rounding */ + + const e = x >> 23 & 0xff; + /* Using int is faster here */ + + /* If zero, or denormal, or exponent underflows too much for a denormal + * half, return signed zero. */ + + if (e < 103) return bits; + /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */ + + if (e > 142) { + bits |= 0x7c00; + /* If exponent was 0xff and one mantissa bit was set, it means NaN, + * not Inf, so make sure we set one mantissa bit too. */ + + bits |= (e == 255 ? 0 : 1) && x & 0x007fffff; + return bits; + } + /* If exponent underflows but not too much, return a denormal */ + + + if (e < 113) { + m |= 0x0800; + /* Extra rounding may overflow and set mantissa to 0 and exponent + * to 1, which is OK. */ + + bits |= (m >> 114 - e) + (m >> 113 - e & 1); + return bits; + } + + bits |= e - 112 << 10 | m >> 1; + /* Extra rounding. An overflow will set mantissa to 0 and increment + * the exponent, which is OK. */ + + bits += m & 1; + return bits; + } + + } + + const LineStrip = 0; + const LinePieces = 1; + const NoColors = 0; + const FaceColors = 1; + const VertexColors = 2; + function MeshFaceMaterial(materials) { + console.warn('THREE.MeshFaceMaterial has been removed. Use an Array instead.'); + return materials; + } + function MultiMaterial(materials = []) { + console.warn('THREE.MultiMaterial has been removed. Use an Array instead.'); + materials.isMultiMaterial = true; + materials.materials = materials; + + materials.clone = function () { + return materials.slice(); + }; + + return materials; + } + function PointCloud(geometry, material) { + console.warn('THREE.PointCloud has been renamed to THREE.Points.'); + return new Points(geometry, material); + } + function Particle(material) { + console.warn('THREE.Particle has been renamed to THREE.Sprite.'); + return new Sprite(material); + } + function ParticleSystem(geometry, material) { + console.warn('THREE.ParticleSystem has been renamed to THREE.Points.'); + return new Points(geometry, material); + } + function PointCloudMaterial(parameters) { + console.warn('THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.'); + return new PointsMaterial(parameters); + } + function ParticleBasicMaterial(parameters) { + console.warn('THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.'); + return new PointsMaterial(parameters); + } + function ParticleSystemMaterial(parameters) { + console.warn('THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.'); + return new PointsMaterial(parameters); + } + function Vertex(x, y, z) { + console.warn('THREE.Vertex has been removed. Use THREE.Vector3 instead.'); + return new Vector3(x, y, z); + } // + + function DynamicBufferAttribute(array, itemSize) { + console.warn('THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.'); + return new BufferAttribute(array, itemSize).setUsage(DynamicDrawUsage); + } + function Int8Attribute(array, itemSize) { + console.warn('THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.'); + return new Int8BufferAttribute(array, itemSize); + } + function Uint8Attribute(array, itemSize) { + console.warn('THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.'); + return new Uint8BufferAttribute(array, itemSize); + } + function Uint8ClampedAttribute(array, itemSize) { + console.warn('THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.'); + return new Uint8ClampedBufferAttribute(array, itemSize); + } + function Int16Attribute(array, itemSize) { + console.warn('THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.'); + return new Int16BufferAttribute(array, itemSize); + } + function Uint16Attribute(array, itemSize) { + console.warn('THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.'); + return new Uint16BufferAttribute(array, itemSize); + } + function Int32Attribute(array, itemSize) { + console.warn('THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.'); + return new Int32BufferAttribute(array, itemSize); + } + function Uint32Attribute(array, itemSize) { + console.warn('THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.'); + return new Uint32BufferAttribute(array, itemSize); + } + function Float32Attribute(array, itemSize) { + console.warn('THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.'); + return new Float32BufferAttribute(array, itemSize); + } + function Float64Attribute(array, itemSize) { + console.warn('THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.'); + return new Float64BufferAttribute(array, itemSize); + } // + + Curve.create = function (construct, getPoint) { + console.log('THREE.Curve.create() has been deprecated'); + construct.prototype = Object.create(Curve.prototype); + construct.prototype.constructor = construct; + construct.prototype.getPoint = getPoint; + return construct; + }; // + + + Path.prototype.fromPoints = function (points) { + console.warn('THREE.Path: .fromPoints() has been renamed to .setFromPoints().'); + return this.setFromPoints(points); + }; // + + + function AxisHelper(size) { + console.warn('THREE.AxisHelper has been renamed to THREE.AxesHelper.'); + return new AxesHelper(size); + } + function BoundingBoxHelper(object, color) { + console.warn('THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.'); + return new BoxHelper(object, color); + } + function EdgesHelper(object, hex) { + console.warn('THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.'); + return new LineSegments(new EdgesGeometry(object.geometry), new LineBasicMaterial({ + color: hex !== undefined ? hex : 0xffffff + })); + } + + GridHelper.prototype.setColors = function () { + console.error('THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.'); + }; + + SkeletonHelper.prototype.update = function () { + console.error('THREE.SkeletonHelper: update() no longer needs to be called.'); + }; + + function WireframeHelper(object, hex) { + console.warn('THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.'); + return new LineSegments(new WireframeGeometry(object.geometry), new LineBasicMaterial({ + color: hex !== undefined ? hex : 0xffffff + })); + } // + + Loader.prototype.extractUrlBase = function (url) { + console.warn('THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.'); + return LoaderUtils.extractUrlBase(url); + }; + + Loader.Handlers = { + add: function () { + console.error('THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.'); + }, + get: function () { + console.error('THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.'); + } + }; + function XHRLoader(manager) { + console.warn('THREE.XHRLoader has been renamed to THREE.FileLoader.'); + return new FileLoader(manager); + } + function BinaryTextureLoader(manager) { + console.warn('THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.'); + return new DataTextureLoader(manager); + } // + + Box2.prototype.center = function (optionalTarget) { + console.warn('THREE.Box2: .center() has been renamed to .getCenter().'); + return this.getCenter(optionalTarget); + }; + + Box2.prototype.empty = function () { + console.warn('THREE.Box2: .empty() has been renamed to .isEmpty().'); + return this.isEmpty(); + }; + + Box2.prototype.isIntersectionBox = function (box) { + console.warn('THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().'); + return this.intersectsBox(box); + }; + + Box2.prototype.size = function (optionalTarget) { + console.warn('THREE.Box2: .size() has been renamed to .getSize().'); + return this.getSize(optionalTarget); + }; // + + + Box3.prototype.center = function (optionalTarget) { + console.warn('THREE.Box3: .center() has been renamed to .getCenter().'); + return this.getCenter(optionalTarget); + }; + + Box3.prototype.empty = function () { + console.warn('THREE.Box3: .empty() has been renamed to .isEmpty().'); + return this.isEmpty(); + }; + + Box3.prototype.isIntersectionBox = function (box) { + console.warn('THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().'); + return this.intersectsBox(box); + }; + + Box3.prototype.isIntersectionSphere = function (sphere) { + console.warn('THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().'); + return this.intersectsSphere(sphere); + }; + + Box3.prototype.size = function (optionalTarget) { + console.warn('THREE.Box3: .size() has been renamed to .getSize().'); + return this.getSize(optionalTarget); + }; // + + + Sphere.prototype.empty = function () { + console.warn('THREE.Sphere: .empty() has been renamed to .isEmpty().'); + return this.isEmpty(); + }; // + + + Frustum.prototype.setFromMatrix = function (m) { + console.warn('THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().'); + return this.setFromProjectionMatrix(m); + }; // + + + Line3.prototype.center = function (optionalTarget) { + console.warn('THREE.Line3: .center() has been renamed to .getCenter().'); + return this.getCenter(optionalTarget); + }; // + + + Matrix3.prototype.flattenToArrayOffset = function (array, offset) { + console.warn('THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.'); + return this.toArray(array, offset); + }; + + Matrix3.prototype.multiplyVector3 = function (vector) { + console.warn('THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.'); + return vector.applyMatrix3(this); + }; + + Matrix3.prototype.multiplyVector3Array = function () { + console.error('THREE.Matrix3: .multiplyVector3Array() has been removed.'); + }; + + Matrix3.prototype.applyToBufferAttribute = function (attribute) { + console.warn('THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.'); + return attribute.applyMatrix3(this); + }; + + Matrix3.prototype.applyToVector3Array = function () { + console.error('THREE.Matrix3: .applyToVector3Array() has been removed.'); + }; + + Matrix3.prototype.getInverse = function (matrix) { + console.warn('THREE.Matrix3: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.'); + return this.copy(matrix).invert(); + }; // + + + Matrix4.prototype.extractPosition = function (m) { + console.warn('THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().'); + return this.copyPosition(m); + }; + + Matrix4.prototype.flattenToArrayOffset = function (array, offset) { + console.warn('THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.'); + return this.toArray(array, offset); + }; + + Matrix4.prototype.getPosition = function () { + console.warn('THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.'); + return new Vector3().setFromMatrixColumn(this, 3); + }; + + Matrix4.prototype.setRotationFromQuaternion = function (q) { + console.warn('THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().'); + return this.makeRotationFromQuaternion(q); + }; + + Matrix4.prototype.multiplyToArray = function () { + console.warn('THREE.Matrix4: .multiplyToArray() has been removed.'); + }; + + Matrix4.prototype.multiplyVector3 = function (vector) { + console.warn('THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.'); + return vector.applyMatrix4(this); + }; + + Matrix4.prototype.multiplyVector4 = function (vector) { + console.warn('THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.'); + return vector.applyMatrix4(this); + }; + + Matrix4.prototype.multiplyVector3Array = function () { + console.error('THREE.Matrix4: .multiplyVector3Array() has been removed.'); + }; + + Matrix4.prototype.rotateAxis = function (v) { + console.warn('THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.'); + v.transformDirection(this); + }; + + Matrix4.prototype.crossVector = function (vector) { + console.warn('THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.'); + return vector.applyMatrix4(this); + }; + + Matrix4.prototype.translate = function () { + console.error('THREE.Matrix4: .translate() has been removed.'); + }; + + Matrix4.prototype.rotateX = function () { + console.error('THREE.Matrix4: .rotateX() has been removed.'); + }; + + Matrix4.prototype.rotateY = function () { + console.error('THREE.Matrix4: .rotateY() has been removed.'); + }; + + Matrix4.prototype.rotateZ = function () { + console.error('THREE.Matrix4: .rotateZ() has been removed.'); + }; + + Matrix4.prototype.rotateByAxis = function () { + console.error('THREE.Matrix4: .rotateByAxis() has been removed.'); + }; + + Matrix4.prototype.applyToBufferAttribute = function (attribute) { + console.warn('THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.'); + return attribute.applyMatrix4(this); + }; + + Matrix4.prototype.applyToVector3Array = function () { + console.error('THREE.Matrix4: .applyToVector3Array() has been removed.'); + }; + + Matrix4.prototype.makeFrustum = function (left, right, bottom, top, near, far) { + console.warn('THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.'); + return this.makePerspective(left, right, top, bottom, near, far); + }; + + Matrix4.prototype.getInverse = function (matrix) { + console.warn('THREE.Matrix4: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.'); + return this.copy(matrix).invert(); + }; // + + + Plane.prototype.isIntersectionLine = function (line) { + console.warn('THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().'); + return this.intersectsLine(line); + }; // + + + Quaternion.prototype.multiplyVector3 = function (vector) { + console.warn('THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.'); + return vector.applyQuaternion(this); + }; + + Quaternion.prototype.inverse = function () { + console.warn('THREE.Quaternion: .inverse() has been renamed to invert().'); + return this.invert(); + }; // + + + Ray.prototype.isIntersectionBox = function (box) { + console.warn('THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().'); + return this.intersectsBox(box); + }; + + Ray.prototype.isIntersectionPlane = function (plane) { + console.warn('THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().'); + return this.intersectsPlane(plane); + }; + + Ray.prototype.isIntersectionSphere = function (sphere) { + console.warn('THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().'); + return this.intersectsSphere(sphere); + }; // + + + Triangle.prototype.area = function () { + console.warn('THREE.Triangle: .area() has been renamed to .getArea().'); + return this.getArea(); + }; + + Triangle.prototype.barycoordFromPoint = function (point, target) { + console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().'); + return this.getBarycoord(point, target); + }; + + Triangle.prototype.midpoint = function (target) { + console.warn('THREE.Triangle: .midpoint() has been renamed to .getMidpoint().'); + return this.getMidpoint(target); + }; + + Triangle.prototypenormal = function (target) { + console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().'); + return this.getNormal(target); + }; + + Triangle.prototype.plane = function (target) { + console.warn('THREE.Triangle: .plane() has been renamed to .getPlane().'); + return this.getPlane(target); + }; + + Triangle.barycoordFromPoint = function (point, a, b, c, target) { + console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().'); + return Triangle.getBarycoord(point, a, b, c, target); + }; + + Triangle.normal = function (a, b, c, target) { + console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().'); + return Triangle.getNormal(a, b, c, target); + }; // + + + Shape.prototype.extractAllPoints = function (divisions) { + console.warn('THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.'); + return this.extractPoints(divisions); + }; + + Shape.prototype.extrude = function (options) { + console.warn('THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.'); + return new ExtrudeGeometry(this, options); + }; + + Shape.prototype.makeGeometry = function (options) { + console.warn('THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.'); + return new ShapeGeometry(this, options); + }; // + + + Vector2.prototype.fromAttribute = function (attribute, index, offset) { + console.warn('THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().'); + return this.fromBufferAttribute(attribute, index, offset); + }; + + Vector2.prototype.distanceToManhattan = function (v) { + console.warn('THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().'); + return this.manhattanDistanceTo(v); + }; + + Vector2.prototype.lengthManhattan = function () { + console.warn('THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().'); + return this.manhattanLength(); + }; // + + + Vector3.prototype.setEulerFromRotationMatrix = function () { + console.error('THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.'); + }; + + Vector3.prototype.setEulerFromQuaternion = function () { + console.error('THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.'); + }; + + Vector3.prototype.getPositionFromMatrix = function (m) { + console.warn('THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().'); + return this.setFromMatrixPosition(m); + }; + + Vector3.prototype.getScaleFromMatrix = function (m) { + console.warn('THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().'); + return this.setFromMatrixScale(m); + }; + + Vector3.prototype.getColumnFromMatrix = function (index, matrix) { + console.warn('THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().'); + return this.setFromMatrixColumn(matrix, index); + }; + + Vector3.prototype.applyProjection = function (m) { + console.warn('THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.'); + return this.applyMatrix4(m); + }; + + Vector3.prototype.fromAttribute = function (attribute, index, offset) { + console.warn('THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().'); + return this.fromBufferAttribute(attribute, index, offset); + }; + + Vector3.prototype.distanceToManhattan = function (v) { + console.warn('THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().'); + return this.manhattanDistanceTo(v); + }; + + Vector3.prototype.lengthManhattan = function () { + console.warn('THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().'); + return this.manhattanLength(); + }; // + + + Vector4.prototype.fromAttribute = function (attribute, index, offset) { + console.warn('THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().'); + return this.fromBufferAttribute(attribute, index, offset); + }; + + Vector4.prototype.lengthManhattan = function () { + console.warn('THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().'); + return this.manhattanLength(); + }; // + + + Object3D.prototype.getChildByName = function (name) { + console.warn('THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().'); + return this.getObjectByName(name); + }; + + Object3D.prototype.renderDepth = function () { + console.warn('THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.'); + }; + + Object3D.prototype.translate = function (distance, axis) { + console.warn('THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.'); + return this.translateOnAxis(axis, distance); + }; + + Object3D.prototype.getWorldRotation = function () { + console.error('THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.'); + }; + + Object3D.prototype.applyMatrix = function (matrix) { + console.warn('THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().'); + return this.applyMatrix4(matrix); + }; + + Object.defineProperties(Object3D.prototype, { + eulerOrder: { + get: function () { + console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.'); + return this.rotation.order; + }, + set: function (value) { + console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.'); + this.rotation.order = value; + } + }, + useQuaternion: { + get: function () { + console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.'); + }, + set: function () { + console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.'); + } + } + }); + + Mesh.prototype.setDrawMode = function () { + console.error('THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.'); + }; + + Object.defineProperties(Mesh.prototype, { + drawMode: { + get: function () { + console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.'); + return TrianglesDrawMode; + }, + set: function () { + console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.'); + } + } + }); + + SkinnedMesh.prototype.initBones = function () { + console.error('THREE.SkinnedMesh: initBones() has been removed.'); + }; // + + + PerspectiveCamera.prototype.setLens = function (focalLength, filmGauge) { + console.warn('THREE.PerspectiveCamera.setLens is deprecated. ' + 'Use .setFocalLength and .filmGauge for a photographic setup.'); + if (filmGauge !== undefined) this.filmGauge = filmGauge; + this.setFocalLength(focalLength); + }; // + + + Object.defineProperties(Light.prototype, { + onlyShadow: { + set: function () { + console.warn('THREE.Light: .onlyShadow has been removed.'); + } + }, + shadowCameraFov: { + set: function (value) { + console.warn('THREE.Light: .shadowCameraFov is now .shadow.camera.fov.'); + this.shadow.camera.fov = value; + } + }, + shadowCameraLeft: { + set: function (value) { + console.warn('THREE.Light: .shadowCameraLeft is now .shadow.camera.left.'); + this.shadow.camera.left = value; + } + }, + shadowCameraRight: { + set: function (value) { + console.warn('THREE.Light: .shadowCameraRight is now .shadow.camera.right.'); + this.shadow.camera.right = value; + } + }, + shadowCameraTop: { + set: function (value) { + console.warn('THREE.Light: .shadowCameraTop is now .shadow.camera.top.'); + this.shadow.camera.top = value; + } + }, + shadowCameraBottom: { + set: function (value) { + console.warn('THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.'); + this.shadow.camera.bottom = value; + } + }, + shadowCameraNear: { + set: function (value) { + console.warn('THREE.Light: .shadowCameraNear is now .shadow.camera.near.'); + this.shadow.camera.near = value; + } + }, + shadowCameraFar: { + set: function (value) { + console.warn('THREE.Light: .shadowCameraFar is now .shadow.camera.far.'); + this.shadow.camera.far = value; + } + }, + shadowCameraVisible: { + set: function () { + console.warn('THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.'); + } + }, + shadowBias: { + set: function (value) { + console.warn('THREE.Light: .shadowBias is now .shadow.bias.'); + this.shadow.bias = value; + } + }, + shadowDarkness: { + set: function () { + console.warn('THREE.Light: .shadowDarkness has been removed.'); + } + }, + shadowMapWidth: { + set: function (value) { + console.warn('THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.'); + this.shadow.mapSize.width = value; + } + }, + shadowMapHeight: { + set: function (value) { + console.warn('THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.'); + this.shadow.mapSize.height = value; + } + } + }); // + + Object.defineProperties(BufferAttribute.prototype, { + length: { + get: function () { + console.warn('THREE.BufferAttribute: .length has been deprecated. Use .count instead.'); + return this.array.length; + } + }, + dynamic: { + get: function () { + console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.'); + return this.usage === DynamicDrawUsage; + }, + set: function () { + console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.'); + this.setUsage(DynamicDrawUsage); + } + } + }); + + BufferAttribute.prototype.setDynamic = function (value) { + console.warn('THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.'); + this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage); + return this; + }; + + BufferAttribute.prototype.copyIndicesArray = function () { + console.error('THREE.BufferAttribute: .copyIndicesArray() has been removed.'); + }, BufferAttribute.prototype.setArray = function () { + console.error('THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers'); + }; // + + BufferGeometry.prototype.addIndex = function (index) { + console.warn('THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().'); + this.setIndex(index); + }; + + BufferGeometry.prototype.addAttribute = function (name, attribute) { + console.warn('THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().'); + + if (!(attribute && attribute.isBufferAttribute) && !(attribute && attribute.isInterleavedBufferAttribute)) { + console.warn('THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).'); + return this.setAttribute(name, new BufferAttribute(arguments[1], arguments[2])); + } + + if (name === 'index') { + console.warn('THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.'); + this.setIndex(attribute); + return this; + } + + return this.setAttribute(name, attribute); + }; + + BufferGeometry.prototype.addDrawCall = function (start, count, indexOffset) { + if (indexOffset !== undefined) { + console.warn('THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.'); + } + + console.warn('THREE.BufferGeometry: .addDrawCall() is now .addGroup().'); + this.addGroup(start, count); + }; + + BufferGeometry.prototype.clearDrawCalls = function () { + console.warn('THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().'); + this.clearGroups(); + }; + + BufferGeometry.prototype.computeOffsets = function () { + console.warn('THREE.BufferGeometry: .computeOffsets() has been removed.'); + }; + + BufferGeometry.prototype.removeAttribute = function (name) { + console.warn('THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().'); + return this.deleteAttribute(name); + }; + + BufferGeometry.prototype.applyMatrix = function (matrix) { + console.warn('THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().'); + return this.applyMatrix4(matrix); + }; + + Object.defineProperties(BufferGeometry.prototype, { + drawcalls: { + get: function () { + console.error('THREE.BufferGeometry: .drawcalls has been renamed to .groups.'); + return this.groups; + } + }, + offsets: { + get: function () { + console.warn('THREE.BufferGeometry: .offsets has been renamed to .groups.'); + return this.groups; + } + } + }); + + InterleavedBuffer.prototype.setDynamic = function (value) { + console.warn('THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.'); + this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage); + return this; + }; + + InterleavedBuffer.prototype.setArray = function () { + console.error('THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers'); + }; // + + + ExtrudeGeometry.prototype.getArrays = function () { + console.error('THREE.ExtrudeGeometry: .getArrays() has been removed.'); + }; + + ExtrudeGeometry.prototype.addShapeList = function () { + console.error('THREE.ExtrudeGeometry: .addShapeList() has been removed.'); + }; + + ExtrudeGeometry.prototype.addShape = function () { + console.error('THREE.ExtrudeGeometry: .addShape() has been removed.'); + }; // + + + Scene.prototype.dispose = function () { + console.error('THREE.Scene: .dispose() has been removed.'); + }; // + + + Uniform.prototype.onUpdate = function () { + console.warn('THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.'); + return this; + }; // + + + Object.defineProperties(Material.prototype, { + wrapAround: { + get: function () { + console.warn('THREE.Material: .wrapAround has been removed.'); + }, + set: function () { + console.warn('THREE.Material: .wrapAround has been removed.'); + } + }, + overdraw: { + get: function () { + console.warn('THREE.Material: .overdraw has been removed.'); + }, + set: function () { + console.warn('THREE.Material: .overdraw has been removed.'); + } + }, + wrapRGB: { + get: function () { + console.warn('THREE.Material: .wrapRGB has been removed.'); + return new Color(); + } + }, + shading: { + get: function () { + console.error('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.'); + }, + set: function (value) { + console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.'); + this.flatShading = value === FlatShading; + } + }, + stencilMask: { + get: function () { + console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.'); + return this.stencilFuncMask; + }, + set: function (value) { + console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.'); + this.stencilFuncMask = value; + } + }, + vertexTangents: { + get: function () { + console.warn('THREE.' + this.type + ': .vertexTangents has been removed.'); + }, + set: function () { + console.warn('THREE.' + this.type + ': .vertexTangents has been removed.'); + } + } + }); + Object.defineProperties(ShaderMaterial.prototype, { + derivatives: { + get: function () { + console.warn('THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.'); + return this.extensions.derivatives; + }, + set: function (value) { + console.warn('THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.'); + this.extensions.derivatives = value; + } + } + }); // + + WebGLRenderer.prototype.clearTarget = function (renderTarget, color, depth, stencil) { + console.warn('THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.'); + this.setRenderTarget(renderTarget); + this.clear(color, depth, stencil); + }; + + WebGLRenderer.prototype.animate = function (callback) { + console.warn('THREE.WebGLRenderer: .animate() is now .setAnimationLoop().'); + this.setAnimationLoop(callback); + }; + + WebGLRenderer.prototype.getCurrentRenderTarget = function () { + console.warn('THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().'); + return this.getRenderTarget(); + }; + + WebGLRenderer.prototype.getMaxAnisotropy = function () { + console.warn('THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().'); + return this.capabilities.getMaxAnisotropy(); + }; + + WebGLRenderer.prototype.getPrecision = function () { + console.warn('THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.'); + return this.capabilities.precision; + }; + + WebGLRenderer.prototype.resetGLState = function () { + console.warn('THREE.WebGLRenderer: .resetGLState() is now .state.reset().'); + return this.state.reset(); + }; + + WebGLRenderer.prototype.supportsFloatTextures = function () { + console.warn('THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).'); + return this.extensions.get('OES_texture_float'); + }; + + WebGLRenderer.prototype.supportsHalfFloatTextures = function () { + console.warn('THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).'); + return this.extensions.get('OES_texture_half_float'); + }; + + WebGLRenderer.prototype.supportsStandardDerivatives = function () { + console.warn('THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).'); + return this.extensions.get('OES_standard_derivatives'); + }; + + WebGLRenderer.prototype.supportsCompressedTextureS3TC = function () { + console.warn('THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).'); + return this.extensions.get('WEBGL_compressed_texture_s3tc'); + }; + + WebGLRenderer.prototype.supportsCompressedTexturePVRTC = function () { + console.warn('THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).'); + return this.extensions.get('WEBGL_compressed_texture_pvrtc'); + }; + + WebGLRenderer.prototype.supportsBlendMinMax = function () { + console.warn('THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).'); + return this.extensions.get('EXT_blend_minmax'); + }; + + WebGLRenderer.prototype.supportsVertexTextures = function () { + console.warn('THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.'); + return this.capabilities.vertexTextures; + }; + + WebGLRenderer.prototype.supportsInstancedArrays = function () { + console.warn('THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).'); + return this.extensions.get('ANGLE_instanced_arrays'); + }; + + WebGLRenderer.prototype.enableScissorTest = function (boolean) { + console.warn('THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().'); + this.setScissorTest(boolean); + }; + + WebGLRenderer.prototype.initMaterial = function () { + console.warn('THREE.WebGLRenderer: .initMaterial() has been removed.'); + }; + + WebGLRenderer.prototype.addPrePlugin = function () { + console.warn('THREE.WebGLRenderer: .addPrePlugin() has been removed.'); + }; + + WebGLRenderer.prototype.addPostPlugin = function () { + console.warn('THREE.WebGLRenderer: .addPostPlugin() has been removed.'); + }; + + WebGLRenderer.prototype.updateShadowMap = function () { + console.warn('THREE.WebGLRenderer: .updateShadowMap() has been removed.'); + }; + + WebGLRenderer.prototype.setFaceCulling = function () { + console.warn('THREE.WebGLRenderer: .setFaceCulling() has been removed.'); + }; + + WebGLRenderer.prototype.allocTextureUnit = function () { + console.warn('THREE.WebGLRenderer: .allocTextureUnit() has been removed.'); + }; + + WebGLRenderer.prototype.setTexture = function () { + console.warn('THREE.WebGLRenderer: .setTexture() has been removed.'); + }; + + WebGLRenderer.prototype.setTexture2D = function () { + console.warn('THREE.WebGLRenderer: .setTexture2D() has been removed.'); + }; + + WebGLRenderer.prototype.setTextureCube = function () { + console.warn('THREE.WebGLRenderer: .setTextureCube() has been removed.'); + }; + + WebGLRenderer.prototype.getActiveMipMapLevel = function () { + console.warn('THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().'); + return this.getActiveMipmapLevel(); + }; + + Object.defineProperties(WebGLRenderer.prototype, { + shadowMapEnabled: { + get: function () { + return this.shadowMap.enabled; + }, + set: function (value) { + console.warn('THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.'); + this.shadowMap.enabled = value; + } + }, + shadowMapType: { + get: function () { + return this.shadowMap.type; + }, + set: function (value) { + console.warn('THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.'); + this.shadowMap.type = value; + } + }, + shadowMapCullFace: { + get: function () { + console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.'); + return undefined; + }, + set: function () { + console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.'); + } + }, + context: { + get: function () { + console.warn('THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.'); + return this.getContext(); + } + }, + vr: { + get: function () { + console.warn('THREE.WebGLRenderer: .vr has been renamed to .xr'); + return this.xr; + } + }, + gammaInput: { + get: function () { + console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.'); + return false; + }, + set: function () { + console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.'); + } + }, + gammaOutput: { + get: function () { + console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.'); + return false; + }, + set: function (value) { + console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.'); + this.outputEncoding = value === true ? sRGBEncoding : LinearEncoding; + } + }, + toneMappingWhitePoint: { + get: function () { + console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.'); + return 1.0; + }, + set: function () { + console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.'); + } + } + }); + Object.defineProperties(WebGLShadowMap.prototype, { + cullFace: { + get: function () { + console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.'); + return undefined; + }, + set: function () { + console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.'); + } + }, + renderReverseSided: { + get: function () { + console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.'); + return undefined; + }, + set: function () { + console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.'); + } + }, + renderSingleSided: { + get: function () { + console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.'); + return undefined; + }, + set: function () { + console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.'); + } + } + }); + function WebGLRenderTargetCube(width, height, options) { + console.warn('THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).'); + return new WebGLCubeRenderTarget(width, options); + } // + + Object.defineProperties(WebGLRenderTarget.prototype, { + wrapS: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.'); + return this.texture.wrapS; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.'); + this.texture.wrapS = value; + } + }, + wrapT: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.'); + return this.texture.wrapT; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.'); + this.texture.wrapT = value; + } + }, + magFilter: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.'); + return this.texture.magFilter; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.'); + this.texture.magFilter = value; + } + }, + minFilter: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.'); + return this.texture.minFilter; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.'); + this.texture.minFilter = value; + } + }, + anisotropy: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.'); + return this.texture.anisotropy; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.'); + this.texture.anisotropy = value; + } + }, + offset: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.'); + return this.texture.offset; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.'); + this.texture.offset = value; + } + }, + repeat: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.'); + return this.texture.repeat; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.'); + this.texture.repeat = value; + } + }, + format: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.'); + return this.texture.format; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.'); + this.texture.format = value; + } + }, + type: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.'); + return this.texture.type; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.'); + this.texture.type = value; + } + }, + generateMipmaps: { + get: function () { + console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.'); + return this.texture.generateMipmaps; + }, + set: function (value) { + console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.'); + this.texture.generateMipmaps = value; + } + } + }); // + + Audio.prototype.load = function (file) { + console.warn('THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.'); + const scope = this; + const audioLoader = new AudioLoader(); + audioLoader.load(file, function (buffer) { + scope.setBuffer(buffer); + }); + return this; + }; + + AudioAnalyser.prototype.getData = function () { + console.warn('THREE.AudioAnalyser: .getData() is now .getFrequencyData().'); + return this.getFrequencyData(); + }; // + + + CubeCamera.prototype.updateCubeMap = function (renderer, scene) { + console.warn('THREE.CubeCamera: .updateCubeMap() is now .update().'); + return this.update(renderer, scene); + }; + + CubeCamera.prototype.clear = function (renderer, color, depth, stencil) { + console.warn('THREE.CubeCamera: .clear() is now .renderTarget.clear().'); + return this.renderTarget.clear(renderer, color, depth, stencil); + }; + + ImageUtils.crossOrigin = undefined; + + ImageUtils.loadTexture = function (url, mapping, onLoad, onError) { + console.warn('THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.'); + const loader = new TextureLoader(); + loader.setCrossOrigin(this.crossOrigin); + const texture = loader.load(url, onLoad, undefined, onError); + if (mapping) texture.mapping = mapping; + return texture; + }; + + ImageUtils.loadTextureCube = function (urls, mapping, onLoad, onError) { + console.warn('THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.'); + const loader = new CubeTextureLoader(); + loader.setCrossOrigin(this.crossOrigin); + const texture = loader.load(urls, onLoad, undefined, onError); + if (mapping) texture.mapping = mapping; + return texture; + }; + + ImageUtils.loadCompressedTexture = function () { + console.error('THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.'); + }; + + ImageUtils.loadCompressedTextureCube = function () { + console.error('THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.'); + }; // + + + function CanvasRenderer() { + console.error('THREE.CanvasRenderer has been removed'); + } // + + function JSONLoader() { + console.error('THREE.JSONLoader has been removed.'); + } // + + const SceneUtils = { + createMultiMaterialObject: function () { + console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js'); + }, + detach: function () { + console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js'); + }, + attach: function () { + console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js'); + } + }; // + + function LensFlare() { + console.error('THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js'); + } // + + function ParametricGeometry() { + console.error('THREE.ParametricGeometry has been moved to /examples/jsm/geometries/ParametricGeometry.js'); + return new BufferGeometry(); + } + function TextGeometry() { + console.error('THREE.TextGeometry has been moved to /examples/jsm/geometries/TextGeometry.js'); + return new BufferGeometry(); + } + function FontLoader() { + console.error('THREE.FontLoader has been moved to /examples/jsm/loaders/FontLoader.js'); + } + function Font() { + console.error('THREE.Font has been moved to /examples/jsm/loaders/FontLoader.js'); + } + + if (typeof __THREE_DEVTOOLS__ !== 'undefined') { + /* eslint-disable no-undef */ + __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('register', { + detail: { + revision: REVISION + } + })); + /* eslint-enable no-undef */ + + } + + if (typeof window !== 'undefined') { + if (window.__THREE__) { + console.warn('WARNING: Multiple instances of Three.js being imported.'); + } else { + window.__THREE__ = REVISION; + } + } + + exports.ACESFilmicToneMapping = ACESFilmicToneMapping; + exports.AddEquation = AddEquation; + exports.AddOperation = AddOperation; + exports.AdditiveAnimationBlendMode = AdditiveAnimationBlendMode; + exports.AdditiveBlending = AdditiveBlending; + exports.AlphaFormat = AlphaFormat; + exports.AlwaysDepth = AlwaysDepth; + exports.AlwaysStencilFunc = AlwaysStencilFunc; + exports.AmbientLight = AmbientLight; + exports.AmbientLightProbe = AmbientLightProbe; + exports.AnimationClip = AnimationClip; + exports.AnimationLoader = AnimationLoader; + exports.AnimationMixer = AnimationMixer; + exports.AnimationObjectGroup = AnimationObjectGroup; + exports.AnimationUtils = AnimationUtils; + exports.ArcCurve = ArcCurve; + exports.ArrayCamera = ArrayCamera; + exports.ArrowHelper = ArrowHelper; + exports.Audio = Audio; + exports.AudioAnalyser = AudioAnalyser; + exports.AudioContext = AudioContext; + exports.AudioListener = AudioListener; + exports.AudioLoader = AudioLoader; + exports.AxesHelper = AxesHelper; + exports.AxisHelper = AxisHelper; + exports.BackSide = BackSide; + exports.BasicDepthPacking = BasicDepthPacking; + exports.BasicShadowMap = BasicShadowMap; + exports.BinaryTextureLoader = BinaryTextureLoader; + exports.Bone = Bone; + exports.BooleanKeyframeTrack = BooleanKeyframeTrack; + exports.BoundingBoxHelper = BoundingBoxHelper; + exports.Box2 = Box2; + exports.Box3 = Box3; + exports.Box3Helper = Box3Helper; + exports.BoxBufferGeometry = BoxGeometry; + exports.BoxGeometry = BoxGeometry; + exports.BoxHelper = BoxHelper; + exports.BufferAttribute = BufferAttribute; + exports.BufferGeometry = BufferGeometry; + exports.BufferGeometryLoader = BufferGeometryLoader; + exports.ByteType = ByteType; + exports.Cache = Cache; + exports.Camera = Camera; + exports.CameraHelper = CameraHelper; + exports.CanvasRenderer = CanvasRenderer; + exports.CanvasTexture = CanvasTexture; + exports.CatmullRomCurve3 = CatmullRomCurve3; + exports.CineonToneMapping = CineonToneMapping; + exports.CircleBufferGeometry = CircleGeometry; + exports.CircleGeometry = CircleGeometry; + exports.ClampToEdgeWrapping = ClampToEdgeWrapping; + exports.Clock = Clock; + exports.Color = Color; + exports.ColorKeyframeTrack = ColorKeyframeTrack; + exports.CompressedTexture = CompressedTexture; + exports.CompressedTextureLoader = CompressedTextureLoader; + exports.ConeBufferGeometry = ConeGeometry; + exports.ConeGeometry = ConeGeometry; + exports.CubeCamera = CubeCamera; + exports.CubeReflectionMapping = CubeReflectionMapping; + exports.CubeRefractionMapping = CubeRefractionMapping; + exports.CubeTexture = CubeTexture; + exports.CubeTextureLoader = CubeTextureLoader; + exports.CubeUVReflectionMapping = CubeUVReflectionMapping; + exports.CubeUVRefractionMapping = CubeUVRefractionMapping; + exports.CubicBezierCurve = CubicBezierCurve; + exports.CubicBezierCurve3 = CubicBezierCurve3; + exports.CubicInterpolant = CubicInterpolant; + exports.CullFaceBack = CullFaceBack; + exports.CullFaceFront = CullFaceFront; + exports.CullFaceFrontBack = CullFaceFrontBack; + exports.CullFaceNone = CullFaceNone; + exports.Curve = Curve; + exports.CurvePath = CurvePath; + exports.CustomBlending = CustomBlending; + exports.CustomToneMapping = CustomToneMapping; + exports.CylinderBufferGeometry = CylinderGeometry; + exports.CylinderGeometry = CylinderGeometry; + exports.Cylindrical = Cylindrical; + exports.DataTexture = DataTexture; + exports.DataTexture2DArray = DataTexture2DArray; + exports.DataTexture3D = DataTexture3D; + exports.DataTextureLoader = DataTextureLoader; + exports.DataUtils = DataUtils; + exports.DecrementStencilOp = DecrementStencilOp; + exports.DecrementWrapStencilOp = DecrementWrapStencilOp; + exports.DefaultLoadingManager = DefaultLoadingManager; + exports.DepthFormat = DepthFormat; + exports.DepthStencilFormat = DepthStencilFormat; + exports.DepthTexture = DepthTexture; + exports.DirectionalLight = DirectionalLight; + exports.DirectionalLightHelper = DirectionalLightHelper; + exports.DiscreteInterpolant = DiscreteInterpolant; + exports.DodecahedronBufferGeometry = DodecahedronGeometry; + exports.DodecahedronGeometry = DodecahedronGeometry; + exports.DoubleSide = DoubleSide; + exports.DstAlphaFactor = DstAlphaFactor; + exports.DstColorFactor = DstColorFactor; + exports.DynamicBufferAttribute = DynamicBufferAttribute; + exports.DynamicCopyUsage = DynamicCopyUsage; + exports.DynamicDrawUsage = DynamicDrawUsage; + exports.DynamicReadUsage = DynamicReadUsage; + exports.EdgesGeometry = EdgesGeometry; + exports.EdgesHelper = EdgesHelper; + exports.EllipseCurve = EllipseCurve; + exports.EqualDepth = EqualDepth; + exports.EqualStencilFunc = EqualStencilFunc; + exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping; + exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping; + exports.Euler = Euler; + exports.EventDispatcher = EventDispatcher; + exports.ExtrudeBufferGeometry = ExtrudeGeometry; + exports.ExtrudeGeometry = ExtrudeGeometry; + exports.FaceColors = FaceColors; + exports.FileLoader = FileLoader; + exports.FlatShading = FlatShading; + exports.Float16BufferAttribute = Float16BufferAttribute; + exports.Float32Attribute = Float32Attribute; + exports.Float32BufferAttribute = Float32BufferAttribute; + exports.Float64Attribute = Float64Attribute; + exports.Float64BufferAttribute = Float64BufferAttribute; + exports.FloatType = FloatType; + exports.Fog = Fog; + exports.FogExp2 = FogExp2; + exports.Font = Font; + exports.FontLoader = FontLoader; + exports.FrontSide = FrontSide; + exports.Frustum = Frustum; + exports.GLBufferAttribute = GLBufferAttribute; + exports.GLSL1 = GLSL1; + exports.GLSL3 = GLSL3; + exports.GammaEncoding = GammaEncoding; + exports.GreaterDepth = GreaterDepth; + exports.GreaterEqualDepth = GreaterEqualDepth; + exports.GreaterEqualStencilFunc = GreaterEqualStencilFunc; + exports.GreaterStencilFunc = GreaterStencilFunc; + exports.GridHelper = GridHelper; + exports.Group = Group; + exports.HalfFloatType = HalfFloatType; + exports.HemisphereLight = HemisphereLight; + exports.HemisphereLightHelper = HemisphereLightHelper; + exports.HemisphereLightProbe = HemisphereLightProbe; + exports.IcosahedronBufferGeometry = IcosahedronGeometry; + exports.IcosahedronGeometry = IcosahedronGeometry; + exports.ImageBitmapLoader = ImageBitmapLoader; + exports.ImageLoader = ImageLoader; + exports.ImageUtils = ImageUtils; + exports.ImmediateRenderObject = ImmediateRenderObject; + exports.IncrementStencilOp = IncrementStencilOp; + exports.IncrementWrapStencilOp = IncrementWrapStencilOp; + exports.InstancedBufferAttribute = InstancedBufferAttribute; + exports.InstancedBufferGeometry = InstancedBufferGeometry; + exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer; + exports.InstancedMesh = InstancedMesh; + exports.Int16Attribute = Int16Attribute; + exports.Int16BufferAttribute = Int16BufferAttribute; + exports.Int32Attribute = Int32Attribute; + exports.Int32BufferAttribute = Int32BufferAttribute; + exports.Int8Attribute = Int8Attribute; + exports.Int8BufferAttribute = Int8BufferAttribute; + exports.IntType = IntType; + exports.InterleavedBuffer = InterleavedBuffer; + exports.InterleavedBufferAttribute = InterleavedBufferAttribute; + exports.Interpolant = Interpolant; + exports.InterpolateDiscrete = InterpolateDiscrete; + exports.InterpolateLinear = InterpolateLinear; + exports.InterpolateSmooth = InterpolateSmooth; + exports.InvertStencilOp = InvertStencilOp; + exports.JSONLoader = JSONLoader; + exports.KeepStencilOp = KeepStencilOp; + exports.KeyframeTrack = KeyframeTrack; + exports.LOD = LOD; + exports.LatheBufferGeometry = LatheGeometry; + exports.LatheGeometry = LatheGeometry; + exports.Layers = Layers; + exports.LensFlare = LensFlare; + exports.LessDepth = LessDepth; + exports.LessEqualDepth = LessEqualDepth; + exports.LessEqualStencilFunc = LessEqualStencilFunc; + exports.LessStencilFunc = LessStencilFunc; + exports.Light = Light; + exports.LightProbe = LightProbe; + exports.Line = Line; + exports.Line3 = Line3; + exports.LineBasicMaterial = LineBasicMaterial; + exports.LineCurve = LineCurve; + exports.LineCurve3 = LineCurve3; + exports.LineDashedMaterial = LineDashedMaterial; + exports.LineLoop = LineLoop; + exports.LinePieces = LinePieces; + exports.LineSegments = LineSegments; + exports.LineStrip = LineStrip; + exports.LinearEncoding = LinearEncoding; + exports.LinearFilter = LinearFilter; + exports.LinearInterpolant = LinearInterpolant; + exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter; + exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter; + exports.LinearMipmapLinearFilter = LinearMipmapLinearFilter; + exports.LinearMipmapNearestFilter = LinearMipmapNearestFilter; + exports.LinearToneMapping = LinearToneMapping; + exports.Loader = Loader; + exports.LoaderUtils = LoaderUtils; + exports.LoadingManager = LoadingManager; + exports.LogLuvEncoding = LogLuvEncoding; + exports.LoopOnce = LoopOnce; + exports.LoopPingPong = LoopPingPong; + exports.LoopRepeat = LoopRepeat; + exports.LuminanceAlphaFormat = LuminanceAlphaFormat; + exports.LuminanceFormat = LuminanceFormat; + exports.MOUSE = MOUSE; + exports.Material = Material; + exports.MaterialLoader = MaterialLoader; + exports.Math = MathUtils; + exports.MathUtils = MathUtils; + exports.Matrix3 = Matrix3; + exports.Matrix4 = Matrix4; + exports.MaxEquation = MaxEquation; + exports.Mesh = Mesh; + exports.MeshBasicMaterial = MeshBasicMaterial; + exports.MeshDepthMaterial = MeshDepthMaterial; + exports.MeshDistanceMaterial = MeshDistanceMaterial; + exports.MeshFaceMaterial = MeshFaceMaterial; + exports.MeshLambertMaterial = MeshLambertMaterial; + exports.MeshMatcapMaterial = MeshMatcapMaterial; + exports.MeshNormalMaterial = MeshNormalMaterial; + exports.MeshPhongMaterial = MeshPhongMaterial; + exports.MeshPhysicalMaterial = MeshPhysicalMaterial; + exports.MeshStandardMaterial = MeshStandardMaterial; + exports.MeshToonMaterial = MeshToonMaterial; + exports.MinEquation = MinEquation; + exports.MirroredRepeatWrapping = MirroredRepeatWrapping; + exports.MixOperation = MixOperation; + exports.MultiMaterial = MultiMaterial; + exports.MultiplyBlending = MultiplyBlending; + exports.MultiplyOperation = MultiplyOperation; + exports.NearestFilter = NearestFilter; + exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter; + exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter; + exports.NearestMipmapLinearFilter = NearestMipmapLinearFilter; + exports.NearestMipmapNearestFilter = NearestMipmapNearestFilter; + exports.NeverDepth = NeverDepth; + exports.NeverStencilFunc = NeverStencilFunc; + exports.NoBlending = NoBlending; + exports.NoColors = NoColors; + exports.NoToneMapping = NoToneMapping; + exports.NormalAnimationBlendMode = NormalAnimationBlendMode; + exports.NormalBlending = NormalBlending; + exports.NotEqualDepth = NotEqualDepth; + exports.NotEqualStencilFunc = NotEqualStencilFunc; + exports.NumberKeyframeTrack = NumberKeyframeTrack; + exports.Object3D = Object3D; + exports.ObjectLoader = ObjectLoader; + exports.ObjectSpaceNormalMap = ObjectSpaceNormalMap; + exports.OctahedronBufferGeometry = OctahedronGeometry; + exports.OctahedronGeometry = OctahedronGeometry; + exports.OneFactor = OneFactor; + exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor; + exports.OneMinusDstColorFactor = OneMinusDstColorFactor; + exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor; + exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor; + exports.OrthographicCamera = OrthographicCamera; + exports.PCFShadowMap = PCFShadowMap; + exports.PCFSoftShadowMap = PCFSoftShadowMap; + exports.PMREMGenerator = PMREMGenerator; + exports.ParametricGeometry = ParametricGeometry; + exports.Particle = Particle; + exports.ParticleBasicMaterial = ParticleBasicMaterial; + exports.ParticleSystem = ParticleSystem; + exports.ParticleSystemMaterial = ParticleSystemMaterial; + exports.Path = Path; + exports.PerspectiveCamera = PerspectiveCamera; + exports.Plane = Plane; + exports.PlaneBufferGeometry = PlaneGeometry; + exports.PlaneGeometry = PlaneGeometry; + exports.PlaneHelper = PlaneHelper; + exports.PointCloud = PointCloud; + exports.PointCloudMaterial = PointCloudMaterial; + exports.PointLight = PointLight; + exports.PointLightHelper = PointLightHelper; + exports.Points = Points; + exports.PointsMaterial = PointsMaterial; + exports.PolarGridHelper = PolarGridHelper; + exports.PolyhedronBufferGeometry = PolyhedronGeometry; + exports.PolyhedronGeometry = PolyhedronGeometry; + exports.PositionalAudio = PositionalAudio; + exports.PropertyBinding = PropertyBinding; + exports.PropertyMixer = PropertyMixer; + exports.QuadraticBezierCurve = QuadraticBezierCurve; + exports.QuadraticBezierCurve3 = QuadraticBezierCurve3; + exports.Quaternion = Quaternion; + exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack; + exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant; + exports.REVISION = REVISION; + exports.RGBADepthPacking = RGBADepthPacking; + exports.RGBAFormat = RGBAFormat; + exports.RGBAIntegerFormat = RGBAIntegerFormat; + exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format; + exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format; + exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format; + exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format; + exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format; + exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format; + exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format; + exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format; + exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format; + exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format; + exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format; + exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format; + exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format; + exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format; + exports.RGBA_BPTC_Format = RGBA_BPTC_Format; + exports.RGBA_ETC2_EAC_Format = RGBA_ETC2_EAC_Format; + exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format; + exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format; + exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format; + exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format; + exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format; + exports.RGBDEncoding = RGBDEncoding; + exports.RGBEEncoding = RGBEEncoding; + exports.RGBEFormat = RGBEFormat; + exports.RGBFormat = RGBFormat; + exports.RGBIntegerFormat = RGBIntegerFormat; + exports.RGBM16Encoding = RGBM16Encoding; + exports.RGBM7Encoding = RGBM7Encoding; + exports.RGB_ETC1_Format = RGB_ETC1_Format; + exports.RGB_ETC2_Format = RGB_ETC2_Format; + exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format; + exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format; + exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format; + exports.RGFormat = RGFormat; + exports.RGIntegerFormat = RGIntegerFormat; + exports.RawShaderMaterial = RawShaderMaterial; + exports.Ray = Ray; + exports.Raycaster = Raycaster; + exports.RectAreaLight = RectAreaLight; + exports.RedFormat = RedFormat; + exports.RedIntegerFormat = RedIntegerFormat; + exports.ReinhardToneMapping = ReinhardToneMapping; + exports.RepeatWrapping = RepeatWrapping; + exports.ReplaceStencilOp = ReplaceStencilOp; + exports.ReverseSubtractEquation = ReverseSubtractEquation; + exports.RingBufferGeometry = RingGeometry; + exports.RingGeometry = RingGeometry; + exports.SRGB8_ALPHA8_ASTC_10x10_Format = SRGB8_ALPHA8_ASTC_10x10_Format; + exports.SRGB8_ALPHA8_ASTC_10x5_Format = SRGB8_ALPHA8_ASTC_10x5_Format; + exports.SRGB8_ALPHA8_ASTC_10x6_Format = SRGB8_ALPHA8_ASTC_10x6_Format; + exports.SRGB8_ALPHA8_ASTC_10x8_Format = SRGB8_ALPHA8_ASTC_10x8_Format; + exports.SRGB8_ALPHA8_ASTC_12x10_Format = SRGB8_ALPHA8_ASTC_12x10_Format; + exports.SRGB8_ALPHA8_ASTC_12x12_Format = SRGB8_ALPHA8_ASTC_12x12_Format; + exports.SRGB8_ALPHA8_ASTC_4x4_Format = SRGB8_ALPHA8_ASTC_4x4_Format; + exports.SRGB8_ALPHA8_ASTC_5x4_Format = SRGB8_ALPHA8_ASTC_5x4_Format; + exports.SRGB8_ALPHA8_ASTC_5x5_Format = SRGB8_ALPHA8_ASTC_5x5_Format; + exports.SRGB8_ALPHA8_ASTC_6x5_Format = SRGB8_ALPHA8_ASTC_6x5_Format; + exports.SRGB8_ALPHA8_ASTC_6x6_Format = SRGB8_ALPHA8_ASTC_6x6_Format; + exports.SRGB8_ALPHA8_ASTC_8x5_Format = SRGB8_ALPHA8_ASTC_8x5_Format; + exports.SRGB8_ALPHA8_ASTC_8x6_Format = SRGB8_ALPHA8_ASTC_8x6_Format; + exports.SRGB8_ALPHA8_ASTC_8x8_Format = SRGB8_ALPHA8_ASTC_8x8_Format; + exports.Scene = Scene; + exports.SceneUtils = SceneUtils; + exports.ShaderChunk = ShaderChunk; + exports.ShaderLib = ShaderLib; + exports.ShaderMaterial = ShaderMaterial; + exports.ShadowMaterial = ShadowMaterial; + exports.Shape = Shape; + exports.ShapeBufferGeometry = ShapeGeometry; + exports.ShapeGeometry = ShapeGeometry; + exports.ShapePath = ShapePath; + exports.ShapeUtils = ShapeUtils; + exports.ShortType = ShortType; + exports.Skeleton = Skeleton; + exports.SkeletonHelper = SkeletonHelper; + exports.SkinnedMesh = SkinnedMesh; + exports.SmoothShading = SmoothShading; + exports.Sphere = Sphere; + exports.SphereBufferGeometry = SphereGeometry; + exports.SphereGeometry = SphereGeometry; + exports.Spherical = Spherical; + exports.SphericalHarmonics3 = SphericalHarmonics3; + exports.SplineCurve = SplineCurve; + exports.SpotLight = SpotLight; + exports.SpotLightHelper = SpotLightHelper; + exports.Sprite = Sprite; + exports.SpriteMaterial = SpriteMaterial; + exports.SrcAlphaFactor = SrcAlphaFactor; + exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor; + exports.SrcColorFactor = SrcColorFactor; + exports.StaticCopyUsage = StaticCopyUsage; + exports.StaticDrawUsage = StaticDrawUsage; + exports.StaticReadUsage = StaticReadUsage; + exports.StereoCamera = StereoCamera; + exports.StreamCopyUsage = StreamCopyUsage; + exports.StreamDrawUsage = StreamDrawUsage; + exports.StreamReadUsage = StreamReadUsage; + exports.StringKeyframeTrack = StringKeyframeTrack; + exports.SubtractEquation = SubtractEquation; + exports.SubtractiveBlending = SubtractiveBlending; + exports.TOUCH = TOUCH; + exports.TangentSpaceNormalMap = TangentSpaceNormalMap; + exports.TetrahedronBufferGeometry = TetrahedronGeometry; + exports.TetrahedronGeometry = TetrahedronGeometry; + exports.TextGeometry = TextGeometry; + exports.Texture = Texture; + exports.TextureLoader = TextureLoader; + exports.TorusBufferGeometry = TorusGeometry; + exports.TorusGeometry = TorusGeometry; + exports.TorusKnotBufferGeometry = TorusKnotGeometry; + exports.TorusKnotGeometry = TorusKnotGeometry; + exports.Triangle = Triangle; + exports.TriangleFanDrawMode = TriangleFanDrawMode; + exports.TriangleStripDrawMode = TriangleStripDrawMode; + exports.TrianglesDrawMode = TrianglesDrawMode; + exports.TubeBufferGeometry = TubeGeometry; + exports.TubeGeometry = TubeGeometry; + exports.UVMapping = UVMapping; + exports.Uint16Attribute = Uint16Attribute; + exports.Uint16BufferAttribute = Uint16BufferAttribute; + exports.Uint32Attribute = Uint32Attribute; + exports.Uint32BufferAttribute = Uint32BufferAttribute; + exports.Uint8Attribute = Uint8Attribute; + exports.Uint8BufferAttribute = Uint8BufferAttribute; + exports.Uint8ClampedAttribute = Uint8ClampedAttribute; + exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute; + exports.Uniform = Uniform; + exports.UniformsLib = UniformsLib; + exports.UniformsUtils = UniformsUtils; + exports.UnsignedByteType = UnsignedByteType; + exports.UnsignedInt248Type = UnsignedInt248Type; + exports.UnsignedIntType = UnsignedIntType; + exports.UnsignedShort4444Type = UnsignedShort4444Type; + exports.UnsignedShort5551Type = UnsignedShort5551Type; + exports.UnsignedShort565Type = UnsignedShort565Type; + exports.UnsignedShortType = UnsignedShortType; + exports.VSMShadowMap = VSMShadowMap; + exports.Vector2 = Vector2; + exports.Vector3 = Vector3; + exports.Vector4 = Vector4; + exports.VectorKeyframeTrack = VectorKeyframeTrack; + exports.Vertex = Vertex; + exports.VertexColors = VertexColors; + exports.VideoTexture = VideoTexture; + exports.WebGL1Renderer = WebGL1Renderer; + exports.WebGLCubeRenderTarget = WebGLCubeRenderTarget; + exports.WebGLMultipleRenderTargets = WebGLMultipleRenderTargets; + exports.WebGLMultisampleRenderTarget = WebGLMultisampleRenderTarget; + exports.WebGLRenderTarget = WebGLRenderTarget; + exports.WebGLRenderTargetCube = WebGLRenderTargetCube; + exports.WebGLRenderer = WebGLRenderer; + exports.WebGLUtils = WebGLUtils; + exports.WireframeGeometry = WireframeGeometry; + exports.WireframeHelper = WireframeHelper; + exports.WrapAroundEnding = WrapAroundEnding; + exports.XHRLoader = XHRLoader; + exports.ZeroCurvatureEnding = ZeroCurvatureEnding; + exports.ZeroFactor = ZeroFactor; + exports.ZeroSlopeEnding = ZeroSlopeEnding; + exports.ZeroStencilOp = ZeroStencilOp; + exports.sRGBEncoding = sRGBEncoding; + + Object.defineProperty(exports, '__esModule', { value: true }); + +}))); \ No newline at end of file diff --git a/server.js b/server.js new file mode 100644 index 00000000..c2878ae3 --- /dev/null +++ b/server.js @@ -0,0 +1,15 @@ +//Functional express server + +const express = require("express"); +const app = express(); + + +app.use(express.static("public")); + +app.get("/", (request, response) => { + response.sendFile(__dirname + "/views/index.html"); +}); + +const listener = app.listen(process.env.PORT, () => { + console.log("Your app is listening on port " + listener.address().port); +}); \ No newline at end of file diff --git a/style.css b/style.css new file mode 100644 index 00000000..979e6d2e --- /dev/null +++ b/style.css @@ -0,0 +1,20 @@ + + +h1 { + font-family : sans-serif; + color: #5742f5; + max-width: calc(100% - 5rem); + line-height: 1.1; +} + +h2 { + font-family : sans-serif; + color: #f5a742; + max-width: calc(100% - 30rem); + line-height: 1.1; + font-size: 1.2em; +} + + + +body {background-color: black;} \ No newline at end of file