We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
作者你好,我注意到visformer_tiny在model.py和swin_model.py中都有给出,而visformer_tinyV2只在swin_model.py中给出,请问visformer_tinyV2的精度提升1个百分点是微调网络结构带来的,还是swin_model.py这种方式实现带来的精度提升。
The text was updated successfully, but these errors were encountered:
你好,在smallV2上,swin设置大概能带来0.1-0.2%的提升,剩下的约0.6%是结构带来的。 我们确实没有测对于tinyV2上swin设置的提升具体是多少,只是将smallV2上的修改直接迁移过去了,不过我觉得smallV2上的性能变化应该可以作为参考~
Sorry, something went wrong.
请问能不能提供一下swin tiny v2的预训练权重和在检测任务上的性能?
No branches or pull requests
作者你好,我注意到visformer_tiny在model.py和swin_model.py中都有给出,而visformer_tinyV2只在swin_model.py中给出,请问visformer_tinyV2的精度提升1个百分点是微调网络结构带来的,还是swin_model.py这种方式实现带来的精度提升。
The text was updated successfully, but these errors were encountered: