forked from bevyengine/bevy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parallax_mapping.rs
387 lines (359 loc) · 12.4 KB
/
parallax_mapping.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
//! A simple 3D scene with a spinning cube with a normal map and depth map to demonstrate parallax mapping.
//! Press left mouse button to cycle through different views.
use std::fmt;
use bevy::{prelude::*, render::render_resource::TextureFormat, window::close_on_esc};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(Normal(None))
.add_systems(Startup, setup)
.add_systems(
Update,
(
spin,
update_normal,
move_camera,
update_parallax_depth_scale,
update_parallax_layers,
switch_method,
close_on_esc,
),
)
.run();
}
#[derive(Component)]
struct Spin {
speed: f32,
}
/// The camera, used to move camera on click.
#[derive(Component)]
struct CameraController;
const DEPTH_CHANGE_RATE: f32 = 0.1;
const DEPTH_UPDATE_STEP: f32 = 0.03;
const MAX_DEPTH: f32 = 0.3;
struct TargetDepth(f32);
impl Default for TargetDepth {
fn default() -> Self {
TargetDepth(0.09)
}
}
struct TargetLayers(f32);
impl Default for TargetLayers {
fn default() -> Self {
TargetLayers(5.0)
}
}
struct CurrentMethod(ParallaxMappingMethod);
impl Default for CurrentMethod {
fn default() -> Self {
CurrentMethod(ParallaxMappingMethod::Relief { max_steps: 4 })
}
}
impl fmt::Display for CurrentMethod {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.0 {
ParallaxMappingMethod::Occlusion => write!(f, "Parallax Occlusion Mapping"),
ParallaxMappingMethod::Relief { max_steps } => {
write!(f, "Relief Mapping with {max_steps} steps")
}
}
}
}
impl CurrentMethod {
fn next_method(&mut self) {
use ParallaxMappingMethod::*;
self.0 = match self.0 {
Occlusion => Relief { max_steps: 2 },
Relief { max_steps } if max_steps < 3 => Relief { max_steps: 4 },
Relief { max_steps } if max_steps < 5 => Relief { max_steps: 8 },
Relief { .. } => Occlusion,
}
}
}
fn update_parallax_depth_scale(
input: Res<Input<KeyCode>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut target_depth: Local<TargetDepth>,
mut depth_update: Local<bool>,
mut text: Query<&mut Text>,
) {
if input.just_pressed(KeyCode::Key1) {
target_depth.0 -= DEPTH_UPDATE_STEP;
target_depth.0 = target_depth.0.max(0.0);
*depth_update = true;
}
if input.just_pressed(KeyCode::Key2) {
target_depth.0 += DEPTH_UPDATE_STEP;
target_depth.0 = target_depth.0.min(MAX_DEPTH);
*depth_update = true;
}
if *depth_update {
let mut text = text.single_mut();
for (_, mat) in materials.iter_mut() {
let current_depth = mat.parallax_depth_scale;
let new_depth =
current_depth * (1.0 - DEPTH_CHANGE_RATE) + (target_depth.0 * DEPTH_CHANGE_RATE);
mat.parallax_depth_scale = new_depth;
text.sections[0].value = format!("Parallax depth scale: {new_depth:.5}\n");
if (new_depth - current_depth).abs() <= 0.000000001 {
*depth_update = false;
}
}
}
}
fn switch_method(
input: Res<Input<KeyCode>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut text: Query<&mut Text>,
mut current: Local<CurrentMethod>,
) {
if input.just_pressed(KeyCode::Space) {
current.next_method();
} else {
return;
}
let mut text = text.single_mut();
text.sections[2].value = format!("Method: {}\n", *current);
for (_, mat) in materials.iter_mut() {
mat.parallax_mapping_method = current.0;
}
}
fn update_parallax_layers(
input: Res<Input<KeyCode>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut target_layers: Local<TargetLayers>,
mut text: Query<&mut Text>,
) {
if input.just_pressed(KeyCode::Key3) {
target_layers.0 -= 1.0;
target_layers.0 = target_layers.0.max(0.0);
} else if input.just_pressed(KeyCode::Key4) {
target_layers.0 += 1.0;
} else {
return;
}
let layer_count = target_layers.0.exp2();
let mut text = text.single_mut();
text.sections[1].value = format!("Layers: {layer_count:.0}\n");
for (_, mat) in materials.iter_mut() {
mat.max_parallax_layer_count = layer_count;
}
}
fn spin(time: Res<Time>, mut query: Query<(&mut Transform, &Spin)>) {
for (mut transform, spin) in query.iter_mut() {
transform.rotate_local_y(spin.speed * time.delta_seconds());
transform.rotate_local_x(spin.speed * time.delta_seconds());
transform.rotate_local_z(-spin.speed * time.delta_seconds());
}
}
// Camera positions to cycle through when left-clickig.
const CAMERA_POSITIONS: &[Transform] = &[
Transform {
translation: Vec3::new(1.5, 1.5, 1.5),
rotation: Quat::from_xyzw(-0.279, 0.364, 0.115, 0.880),
scale: Vec3::ONE,
},
Transform {
translation: Vec3::new(2.4, 0.0, 0.2),
rotation: Quat::from_xyzw(0.094, 0.676, 0.116, 0.721),
scale: Vec3::ONE,
},
Transform {
translation: Vec3::new(2.4, 2.6, -4.3),
rotation: Quat::from_xyzw(0.170, 0.908, 0.308, 0.225),
scale: Vec3::ONE,
},
Transform {
translation: Vec3::new(-1.0, 0.8, -1.2),
rotation: Quat::from_xyzw(-0.004, 0.909, 0.247, -0.335),
scale: Vec3::ONE,
},
];
fn move_camera(
mut camera: Query<&mut Transform, With<CameraController>>,
mut current_view: Local<usize>,
button: Res<Input<MouseButton>>,
) {
let mut camera = camera.single_mut();
if button.just_pressed(MouseButton::Left) {
*current_view = (*current_view + 1) % CAMERA_POSITIONS.len();
}
let target = CAMERA_POSITIONS[*current_view];
camera.translation = camera.translation.lerp(target.translation, 0.2);
camera.rotation = camera.rotation.slerp(target.rotation, 0.2);
}
fn setup(
mut commands: Commands,
mut materials: ResMut<Assets<StandardMaterial>>,
mut meshes: ResMut<Assets<Mesh>>,
mut normal: ResMut<Normal>,
asset_server: Res<AssetServer>,
) {
// The normal map. Note that to generate it in the GIMP image editor, you should
// open the depth map, and do Filters → Generic → Normal Map
// You should enable the "flip X" checkbox.
let normal_handle = asset_server.load("textures/parallax_example/cube_normal.png");
normal.0 = Some(normal_handle);
// Camera
commands.spawn((
Camera3dBundle {
transform: Transform::from_xyz(1.5, 1.5, 1.5).looking_at(Vec3::ZERO, Vec3::Y),
..default()
},
CameraController,
));
// light
commands
.spawn(PointLightBundle {
transform: Transform::from_xyz(1.8, 0.7, -1.1),
point_light: PointLight {
intensity: 226.0,
shadows_enabled: true,
..default()
},
..default()
})
.with_children(|commands| {
// represent the light source as a sphere
let mesh = meshes.add(
shape::Icosphere {
radius: 0.05,
subdivisions: 3,
}
.try_into()
.unwrap(),
);
commands.spawn(PbrBundle { mesh, ..default() });
});
// Plane
commands.spawn(PbrBundle {
mesh: meshes.add(
shape::Plane {
size: 10.0,
subdivisions: 0,
}
.into(),
),
material: materials.add(StandardMaterial {
// standard material derived from dark green, but
// with roughness and reflectance set.
perceptual_roughness: 0.45,
reflectance: 0.18,
..Color::rgb_u8(0, 80, 0).into()
}),
transform: Transform::from_xyz(0.0, -1.0, 0.0),
..default()
});
let mut cube: Mesh = shape::Cube { size: 1.0 }.into();
// NOTE: for normal maps and depth maps to work, the mesh
// needs tangents generated.
cube.generate_tangents().unwrap();
let parallax_depth_scale = TargetDepth::default().0;
let max_parallax_layer_count = TargetLayers::default().0.exp2();
let parallax_mapping_method = CurrentMethod::default();
let parallax_material = materials.add(StandardMaterial {
perceptual_roughness: 0.4,
base_color_texture: Some(asset_server.load("textures/parallax_example/cube_color.png")),
normal_map_texture: normal.0.clone(),
// The depth map is a greyscale texture where black is the highest level and
// white the lowest.
depth_map: Some(asset_server.load("textures/parallax_example/cube_depth.png")),
parallax_depth_scale,
parallax_mapping_method: parallax_mapping_method.0,
max_parallax_layer_count,
..default()
});
commands.spawn((
PbrBundle {
mesh: meshes.add(cube),
material: parallax_material.clone_weak(),
..default()
},
Spin { speed: 0.3 },
));
let mut background_cube: Mesh = shape::Cube { size: 40.0 }.into();
background_cube.generate_tangents().unwrap();
let background_cube = meshes.add(background_cube);
let background_cube_bundle = |translation| {
(
PbrBundle {
transform: Transform::from_translation(translation),
mesh: background_cube.clone(),
material: parallax_material.clone(),
..default()
},
Spin { speed: -0.1 },
)
};
commands.spawn(background_cube_bundle(Vec3::new(45., 0., 0.)));
commands.spawn(background_cube_bundle(Vec3::new(-45., 0., 0.)));
commands.spawn(background_cube_bundle(Vec3::new(0., 0., 45.)));
commands.spawn(background_cube_bundle(Vec3::new(0., 0., -45.)));
let style = TextStyle {
font: asset_server.load("fonts/FiraMono-Medium.ttf"),
font_size: 18.0,
color: Color::WHITE,
};
commands.spawn(
TextBundle::from_sections(vec![
TextSection::new(
format!("Parallax depth scale: {parallax_depth_scale:.5}\n"),
style.clone(),
),
TextSection::new(
format!("Layers: {max_parallax_layer_count:.0}\n"),
style.clone(),
),
TextSection::new(format!("{parallax_mapping_method}\n"), style.clone()),
TextSection::new("\n\n", style.clone()),
TextSection::new("Controls\n", style.clone()),
TextSection::new("---------------\n", style.clone()),
TextSection::new("Left click - Change view angle\n", style.clone()),
TextSection::new(
"1/2 - Decrease/Increase parallax depth scale\n",
style.clone(),
),
TextSection::new("3/4 - Decrease/Increase layer count\n", style.clone()),
TextSection::new("Space - Switch parallaxing algorithm\n", style),
])
.with_style(Style {
position_type: PositionType::Absolute,
top: Val::Px(10.0),
left: Val::Px(10.0),
..default()
}),
);
}
/// Store handle of the normal to later modify its format in [`update_normal`].
#[derive(Resource)]
struct Normal(Option<Handle<Image>>);
/// Work around the default bevy image loader.
///
/// The bevy image loader used by `AssetServer` always loads images in
/// `Srgb` mode, which is usually what it should do,
/// but is incompatible with normal maps.
///
/// Normal maps require a texture in linear color space,
/// so we overwrite the format of the normal map we loaded through `AssetServer`
/// in this system.
///
/// Note that this method of conversion is a last resort workaround. You should
/// get your normal maps from a 3d model file, like gltf.
///
/// In this system, we wait until the image is loaded, immediately
/// change its format and never run the logic afterward.
fn update_normal(
mut already_ran: Local<bool>,
mut images: ResMut<Assets<Image>>,
normal: Res<Normal>,
) {
if *already_ran {
return;
}
if let Some(normal) = normal.0.as_ref() {
if let Some(mut image) = images.get_mut(normal) {
image.texture_descriptor.format = TextureFormat::Rgba8Unorm;
*already_ran = true;
}
}
}