-
-
Notifications
You must be signed in to change notification settings - Fork 8.7k
/
interaction_constraints.R
105 lines (83 loc) · 4.2 KB
/
interaction_constraints.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
library(xgboost)
library(data.table)
set.seed(1024)
# Function to obtain a list of interactions fitted in trees, requires input of maximum depth
treeInteractions <- function(input_tree, input_max_depth){
trees <- copy(input_tree) # copy tree input to prevent overwriting
if (input_max_depth < 2) return(list()) # no interactions if max depth < 2
if (nrow(input_tree) == 1) return(list())
# Attach parent nodes
for (i in 2:input_max_depth){
if (i == 2) trees[, ID_merge:=ID] else trees[, ID_merge:=get(paste0('parent_',i-2))]
parents_left <- trees[!is.na(Split), list(i.id=ID, i.feature=Feature, ID_merge=Yes)]
parents_right <- trees[!is.na(Split), list(i.id=ID, i.feature=Feature, ID_merge=No)]
setorderv(trees, 'ID_merge')
setorderv(parents_left, 'ID_merge')
setorderv(parents_right, 'ID_merge')
trees <- merge(trees, parents_left, by='ID_merge', all.x=T)
trees[!is.na(i.id), c(paste0('parent_', i-1), paste0('parent_feat_', i-1)):=list(i.id, i.feature)]
trees[, c('i.id','i.feature'):=NULL]
trees <- merge(trees, parents_right, by='ID_merge', all.x=T)
trees[!is.na(i.id), c(paste0('parent_', i-1), paste0('parent_feat_', i-1)):=list(i.id, i.feature)]
trees[, c('i.id','i.feature'):=NULL]
}
# Extract nodes with interactions
interaction_trees <- trees[!is.na(Split) & !is.na(parent_1),
c('Feature',paste0('parent_feat_',1:(input_max_depth-1))), with=F]
interaction_trees_split <- split(interaction_trees, 1:nrow(interaction_trees))
interaction_list <- lapply(interaction_trees_split, as.character)
# Remove NAs (no parent interaction)
interaction_list <- lapply(interaction_list, function(x) x[!is.na(x)])
# Remove non-interactions (same variable)
interaction_list <- lapply(interaction_list, unique) # remove same variables
interaction_length <- sapply(interaction_list, length)
interaction_list <- interaction_list[interaction_length > 1]
interaction_list <- unique(lapply(interaction_list, sort))
return(interaction_list)
}
# Generate sample data
x <- list()
for (i in 1:10){
x[[i]] = i*rnorm(1000, 10)
}
x <- as.data.table(x)
y = -1*x[, rowSums(.SD)] + x[['V1']]*x[['V2']] + x[['V3']]*x[['V4']]*x[['V5']] + rnorm(1000, 0.001) + 3*sin(x[['V7']])
train = as.matrix(x)
# Interaction constraint list (column names form)
interaction_list <- list(c('V1','V2'),c('V3','V4','V5'))
# Convert interaction constraint list into feature index form
cols2ids <- function(object, col_names) {
LUT <- seq_along(col_names) - 1
names(LUT) <- col_names
rapply(object, function(x) LUT[x], classes="character", how="replace")
}
interaction_list_fid = cols2ids(interaction_list, colnames(train))
# Fit model with interaction constraints
bst = xgboost(data = train, label = y, max_depth = 4,
eta = 0.1, nthread = 2, nrounds = 1000,
interaction_constraints = interaction_list_fid)
bst_tree <- xgb.model.dt.tree(colnames(train), bst)
bst_interactions <- treeInteractions(bst_tree, 4) # interactions constrained to combinations of V1*V2 and V3*V4*V5
# Fit model without interaction constraints
bst2 = xgboost(data = train, label = y, max_depth = 4,
eta = 0.1, nthread = 2, nrounds = 1000)
bst2_tree <- xgb.model.dt.tree(colnames(train), bst2)
bst2_interactions <- treeInteractions(bst2_tree, 4) # much more interactions
# Fit model with both interaction and monotonicity constraints
bst3 = xgboost(data = train, label = y, max_depth = 4,
eta = 0.1, nthread = 2, nrounds = 1000,
interaction_constraints = interaction_list_fid,
monotone_constraints = c(-1,0,0,0,0,0,0,0,0,0))
bst3_tree <- xgb.model.dt.tree(colnames(train), bst3)
bst3_interactions <- treeInteractions(bst3_tree, 4) # interactions still constrained to combinations of V1*V2 and V3*V4*V5
# Show monotonic constraints still apply by checking scores after incrementing V1
x1 <- sort(unique(x[['V1']]))
for (i in 1:length(x1)){
testdata <- copy(x[, -c('V1')])
testdata[['V1']] <- x1[i]
testdata <- testdata[, paste0('V',1:10), with=F]
pred <- predict(bst3, as.matrix(testdata))
# Should not print out anything due to monotonic constraints
if (i > 1) if (any(pred > prev_pred)) print(i)
prev_pred <- pred
}