Skip to content

Latest commit

 

History

History
34 lines (21 loc) · 1.09 KB

README.md

File metadata and controls

34 lines (21 loc) · 1.09 KB

Sem2NeRF Environment Installation

Manual installation

The provided exported anoconda environment file is mainly tested on NVIDIA GeForce RTX 3090 and Tesla V100 with cuda 11.4. If it does not work on your machine, please consider installing the environment manually by following the instructions below.

  • initialize a python 3.6 environment
conda create -n sem2nerf python=3.6.7
conda activate sem2nerf
  • install pytorch 1.7.0. Choose a correct CUDA version from here. Below we provide the commands for cuda11
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
  • install related python dependencies
pip install matplotlib==3.2.1 pyyaml==5.3.1 opencv-python==4.2.0.34 timm==0.5.4 tensorboard==2.2.1 tqdm==4.46.0 scikit-video==1.1.11 

Miscs

The scripts/inference3d.py leverages ffmpeg to generate video files. If you do not have ffmpeg installed on your machine, please install it via conda, e.g.,

conda install -c conda-forge ffmpeg