This doc provides instructions to get started.
- Install git lfs.
- Download this repo
git clone --recurse-submodules [email protected]:dotchen/LAV.git
- Download and unzip CARLA 0.9.10.1
- First, inside the repo, create a dedicated conda environment. Refer here if you do not have conda.
conda env create -f environment.yaml
- Inside the conda environment, install the CARLA PythonAPI
easy_install [PATH TO CARLA EGG]
. Refer to this link if you are confused at this step. - Install PyTorch
- Install torch-scatter based on your
CUDA
andPyTorch
versions. - Setup wandb
Note: the following instructions only apply to Linux. For Windows follow these instructions instead.
Set the following environmental variables to your conda environment. Refer here for instructions to do so.
#!/bin/bash
export CARLA_ROOT=[LINK TO YOUR CARLA FOLDER]
export LEADERBOARD_ROOT=[LINK TO LAV REPO]/leaderboard
export SCENARIO_RUNNER_ROOT=[LINK TO LAV REPO]/scenario_runner
export PYTHONPATH="${CARLA_ROOT}/PythonAPI/carla/":"${SCENARIO_RUNNER_ROOT}":"${LEADERBOARD_ROOT}"
export TEAM_AGENT=[LINK TO LAV REPO]/team_code_v2/lav_agent.py
export TEAM_CONFIG=[LINK TO LAV REPO]/team_code_v2/config.yaml
export SCENARIOS=${LEADERBOARD_ROOT}/data/all_towns_traffic_scenarios_public.json
export REPETITIONS=1
export CHECKPOINT_ENDPOINT=results.json
export DEBUG_CHALLENGE=0
export CHALLENGE_TRACK_CODENAME=SENSORS
Now, you can treat this conda environment the dedicated one (by defauld named LAV-env
).