Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Using a pre-trained model #14

Open
adhocmaster opened this issue Apr 30, 2022 · 6 comments
Open

Using a pre-trained model #14

adhocmaster opened this issue Apr 30, 2022 · 6 comments

Comments

@adhocmaster
Copy link

Hi there,

I would like to test the pre-trained model against pedestrian models that I have been developing. I see there is a weight folder but still not sure how to create an agent and load the weights. Can you guide me?

@dotchen
Copy link
Owner

dotchen commented Apr 30, 2022

Thank you for your interest in our project.

Please follow the instructions here on how to directly run an agent with pre-trained model weights.
Please make sure to have installed git-lfs before cloning the repo.

@adhocmaster
Copy link
Author

Thanks for the prompt reponse.

@varunjammula
Copy link

Hi @dotchen, when are you planning on releasing the Leaderboard weights for model evaluation? Thanks in advance.

@dotchen
Copy link
Owner

dotchen commented May 25, 2022

I will try to find sometime to refactor and release it. Hopefully around June.

@ricokoff
Copy link

Hi @dotchen,

Are there any updates on the leaderboard weights?

@xolovezarii
Copy link

xolovezarii commented Mar 7, 2024

Thank you for your interest in our project.

Please follow the instructions here on how to directly run an agent with pre-trained model weights. Please make sure to have installed git-lfs before cloning the repo.

Hi @dotchen
I followed what said in the repo but still don't know what should I do with "wights" folder!?
I run the project and it' output is like this:

Running the route
======[Agent] Wallclock_time = 2024-03-10 08:13:24.232159 / 0.0 / Sim_time = 0.05000000074505806 / 50.00000074505806x
======[Agent] Wallclock_time = 2024-03-10 08:13:25.015090 / 0.782931 / Sim_time = 0.10000000149011612 / 0.12756224908839695x

Stopping the route, the agent has crashed:

Not compiled with CUDA support

Traceback (most recent call last):
File "/home/missakhbariun/LAV/leaderboard/leaderboard/scenarios/scenario_manager.py", line 152, in _tick_scenario
ego_action = self._agent()
File "/home/missakhbariun/LAV/leaderboard/leaderboard/autoagents/agent_wrapper.py", line 75, in call
return self._agent()
File "/home/missakhbariun/LAV/leaderboard/leaderboard/autoagents/autonomous_agent.py", line 115, in call
control = self.run_step(input_data, timestamp)
File "/home/missakhbariun/miniconda3/envs/LAV-env/lib/python3.7/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/home/missakhbariun/LAV/team_code_v2/lav_agent.py", line 318, in run_step
pred_bev = self.lidar_model([lidar_points], [len(lidar_points)])
File "/home/missakhbariun/miniconda3/envs/LAV-env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/home/missakhbariun/LAV/team_code_v2/models/lidar.py", line 37, in forward
features = self.point_pillar_net(lidars, num_points)
File "/home/missakhbariun/miniconda3/envs/LAV-env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/home/missakhbariun/LAV/team_code_v2/models/point_pillar.py", line 114, in forward
features = self.point_net(decorated_points, inverse_indices)
File "/home/missakhbariun/miniconda3/envs/LAV-env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/home/missakhbariun/LAV/team_code_v2/models/point_pillar.py", line 33, in forward
feat_max = scatter_max(feat, inverse_indices, dim=0)[0]
File "/home/missakhbariun/miniconda3/envs/LAV-env/lib/python3.7/site-packages/torch_scatter/scatter.py", line 72, in scatter_max
return torch.ops.torch_scatter.scatter_max(src, index, dim, out, dim_size)
File "/home/missakhbariun/miniconda3/envs/LAV-env/lib/python3.7/site-packages/torch/_ops.py", line 442, in call
return self._op(*args, **kwargs or {})
RuntimeError: Not compiled with CUDA support

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "/home/missakhbariun/LAV/leaderboard/leaderboard_evaluator.py", line 352, in _load_and_run_scenario
self.manager.run_scenario()
File "/home/missakhbariun/LAV/leaderboard/leaderboard/scenarios/scenario_manager.py", line 136, in run_scenario
self._tick_scenario(timestamp)
File "/home/missakhbariun/LAV/leaderboard/leaderboard/scenarios/scenario_manager.py", line 159, in _tick_scenario
raise AgentError(e)
leaderboard.autoagents.agent_wrapper.AgentError: Not compiled with CUDA support

Stopping the route

========= Results of RouteScenario_25 (repetition 0) ------ FAILURE =========

╒═════════════════════════════════╤═════════════════════╕
│ Start Time │ 2024-03-07 22:05:05 │
├─────────────────────────────────┼─────────────────────┤
│ End Time │ 2024-03-07 22:05:07 │
├─────────────────────────────────┼─────────────────────┤
│ Duration (System Time) │ 1.97s │
├─────────────────────────────────┼─────────────────────┤
│ Duration (Game Time) │ 0.1s │
├─────────────────────────────────┼─────────────────────┤
│ Ratio (System Time / Game Time) │ 0.051 │
╘═════════════════════════════════╧═════════════════════╛

╒═══════════════════════╤═════════╤═════════╕
│ Criterion │ Result │ Value │
├───────────────────────┼─────────┼─────────┤
│ RouteCompletionTest │ FAILURE │ 0.0 % │
├───────────────────────┼─────────┼─────────┤
│ OutsideRouteLanesTest │ SUCCESS │ 0 % │
├───────────────────────┼─────────┼─────────┤
│ CollisionTest │ SUCCESS │ 0 times │
├───────────────────────┼─────────┼─────────┤
│ RunningRedLightTest │ SUCCESS │ 0 times │
├───────────────────────┼─────────┼─────────┤
│ RunningStopTest │ SUCCESS │ 0 times │
├───────────────────────┼─────────┼─────────┤
│ InRouteTest │ SUCCESS │ │
├───────────────────────┼─────────┼─────────┤
│ AgentBlockedTest │ SUCCESS │ │
├───────────────────────┼─────────┼─────────┤
│ Timeout │ SUCCESS │ │
╘═══════════════════════╧═════════╧═════════╛

Registering the route statistics
Registering the global statistics

It looks like it did not use the pretrained wights and models.

what should I do???
I would be so thankful if you guys help me, too.@varunjammula @adhocmaster @ricokoff @philkr

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants