-
Notifications
You must be signed in to change notification settings - Fork 4.7k
/
gcscan.cpp
263 lines (216 loc) · 9.11 KB
/
gcscan.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
/*
* GCSCAN.CPP
*
* GC Root Scanning
*
*
*/
#include "common.h"
#include "gcenv.h"
#include "gcscan.h"
#include "gc.h"
#include "objecthandle.h"
VOLATILE(int32_t) GCScan::m_GcStructuresInvalidCnt = 1;
bool GCScan::GetGcRuntimeStructuresValid ()
{
LIMITED_METHOD_CONTRACT;
SUPPORTS_DAC;
_ASSERTE ((int32_t)m_GcStructuresInvalidCnt >= 0);
return (int32_t)m_GcStructuresInvalidCnt == 0;
}
#ifndef DACCESS_COMPILE
//
// Dependent handle promotion scan support
//
// This method is called first during the mark phase. It's job is to set up the context for further scanning
// (remembering the scan parameters the GC gives us and initializing some state variables we use to determine
// whether further scans will be required or not).
//
// This scan is not guaranteed to return complete results due to the GC context in which we are called. In
// particular it is possible, due to either a mark stack overflow or unsynchronized operation in server GC
// mode, that not all reachable objects will be reported as promoted yet. However, the operations we perform
// will still be correct and this scan allows us to spot a common optimization where no dependent handles are
// due for retirement in this particular GC. This is an important optimization to take advantage of since
// synchronizing the GC to calculate complete results is a costly operation.
void GCScan::GcDhInitialScan(promote_func* fn, int condemned, int max_gen, ScanContext* sc)
{
// We allocate space for dependent handle scanning context during Ref_Initialize. Under server GC there
// are actually as many contexts as heaps (and CPUs). Ref_GetDependentHandleContext() retrieves the
// correct context for the current GC thread based on the ScanContext passed to us by the GC.
DhContext *pDhContext = Ref_GetDependentHandleContext(sc);
// Record GC callback parameters in the DH context so that the GC doesn't continually have to pass the
// same data to each call.
pDhContext->m_pfnPromoteFunction = fn;
pDhContext->m_iCondemned = condemned;
pDhContext->m_iMaxGen = max_gen;
pDhContext->m_pScanContext = sc;
// Look for dependent handle whose primary has been promoted but whose secondary has not. Promote the
// secondary in those cases. Additionally this scan sets the m_fUnpromotedPrimaries and m_fPromoted state
// flags in the DH context. The m_fUnpromotedPrimaries flag is the most interesting here: if this flag is
// false after the scan then it doesn't matter how many object promotions might currently be missing since
// there are no secondary objects that are currently unpromoted anyway. This is the (hopefully common)
// circumstance under which we don't have to perform any costly additional re-scans.
Ref_ScanDependentHandlesForPromotion(pDhContext);
}
// This method is called after GcDhInitialScan and before each subsequent scan (GcDhReScan below). It
// determines whether any handles are left that have unpromoted secondaries.
bool GCScan::GcDhUnpromotedHandlesExist(ScanContext* sc)
{
WRAPPER_NO_CONTRACT;
// Locate our dependent handle context based on the GC context.
DhContext *pDhContext = Ref_GetDependentHandleContext(sc);
return pDhContext->m_fUnpromotedPrimaries;
}
// Perform a re-scan of dependent handles, promoting secondaries associated with newly promoted primaries as
// above. We may still need to call this multiple times since promotion of a secondary late in the table could
// promote a primary earlier in the table. Also, GC graph promotions are not guaranteed to be complete by the
// time the promotion callback returns (the mark stack can overflow). As a result the GC might have to call
// this method in a loop. The scan records state that let's us know when to terminate (no further handles to
// be promoted or no promotions in the last scan). Returns true if at least one object was promoted as a
// result of the scan.
bool GCScan::GcDhReScan(ScanContext* sc)
{
// Locate our dependent handle context based on the GC context.
DhContext *pDhContext = Ref_GetDependentHandleContext(sc);
return Ref_ScanDependentHandlesForPromotion(pDhContext);
}
/*
* Scan for dead weak pointers
*/
void GCScan::GcWeakPtrScan(int condemned, int max_gen, ScanContext* sc)
{
// Clear out weak pointers that are no longer live.
Ref_CheckReachable(condemned, max_gen, (uintptr_t)sc);
// Clear any secondary objects whose primary object is now definitely dead.
Ref_ScanDependentHandlesForClearing(condemned, max_gen, sc);
}
static void CALLBACK CheckPromoted(_UNCHECKED_OBJECTREF *pObjRef, uintptr_t * /*pExtraInfo*/, uintptr_t /*lp1*/, uintptr_t /*lp2*/)
{
LIMITED_METHOD_CONTRACT;
LOG((LF_GC, LL_INFO100000, LOG_HANDLE_OBJECT_CLASS("Checking referent of Weak-", pObjRef, "to ", *pObjRef)));
Object **pRef = (Object **)pObjRef;
if (!g_theGCHeap->IsPromoted(*pRef))
{
LOG((LF_GC, LL_INFO100, LOG_HANDLE_OBJECT_CLASS("Severing Weak-", pObjRef, "to unreachable ", *pObjRef)));
*pRef = NULL;
}
else
{
LOG((LF_GC, LL_INFO1000000, "reachable " LOG_OBJECT_CLASS(*pObjRef)));
}
}
void GCScan::GcWeakPtrScanBySingleThread( int condemned, int max_gen, ScanContext* sc )
{
UNREFERENCED_PARAMETER(condemned);
UNREFERENCED_PARAMETER(max_gen);
GCToEEInterface::SyncBlockCacheWeakPtrScan(&CheckPromoted, (uintptr_t)sc, 0);
}
void GCScan::GcScanSizedRefs(promote_func* fn, int condemned, int max_gen, ScanContext* sc)
{
Ref_ScanSizedRefHandles(condemned, max_gen, sc, fn);
}
void GCScan::GcShortWeakPtrScan(int condemned, int max_gen, ScanContext* sc)
{
Ref_CheckAlive(condemned, max_gen, (uintptr_t)sc);
}
/*
* Scan all stack roots in this 'namespace'
*/
void GCScan::GcScanRoots(promote_func* fn, int condemned, int max_gen,
ScanContext* sc)
{
GCToEEInterface::GcScanRoots(fn, condemned, max_gen, sc);
}
/*
* Scan all handle roots in this 'namespace'
*/
void GCScan::GcScanHandles (promote_func* fn, int condemned, int max_gen,
ScanContext* sc)
{
STRESS_LOG1(LF_GC|LF_GCROOTS, LL_INFO10, "GcScanHandles (Promotion Phase = %d)\n", sc->promotion);
if (sc->promotion)
{
Ref_TracePinningRoots(condemned, max_gen, sc, fn);
Ref_TraceNormalRoots(condemned, max_gen, sc, fn);
}
else
{
Ref_UpdatePointers(condemned, max_gen, sc, fn);
Ref_UpdatePinnedPointers(condemned, max_gen, sc, fn);
Ref_ScanDependentHandlesForRelocation(condemned, max_gen, sc, fn);
}
}
/*
* Scan all handle roots in this 'namespace' for profiling
*/
void GCScan::GcScanHandlesForProfilerAndETW (int max_gen, ScanContext* sc, handle_scan_fn fn)
{
LIMITED_METHOD_CONTRACT;
#if defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE)
LOG((LF_GC|LF_GCROOTS, LL_INFO10, "Profiler Root Scan Phase, Handles\n"));
Ref_ScanHandlesForProfilerAndETW(max_gen, (uintptr_t)sc, fn);
#endif // defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE)
}
/*
* Scan dependent handles in this 'namespace' for profiling
*/
void GCScan::GcScanDependentHandlesForProfilerAndETW (int max_gen, ScanContext* sc, handle_scan_fn fn)
{
LIMITED_METHOD_CONTRACT;
#if defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE)
LOG((LF_GC|LF_GCROOTS, LL_INFO10, "Profiler Root Scan Phase, DependentHandles\n"));
Ref_ScanDependentHandlesForProfilerAndETW(max_gen, sc, fn);
#endif // defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE)
}
void GCScan::GcRuntimeStructuresValid (BOOL bValid)
{
WRAPPER_NO_CONTRACT;
if (!bValid)
{
int32_t result;
result = Interlocked::Increment (&m_GcStructuresInvalidCnt);
_ASSERTE (result > 0);
}
else
{
int32_t result;
result = Interlocked::Decrement (&m_GcStructuresInvalidCnt);
_ASSERTE (result >= 0);
}
}
void GCScan::GcDemote (int condemned, int max_gen, ScanContext* sc)
{
Ref_RejuvenateHandles (condemned, max_gen, (uintptr_t)sc);
if (!IsServerHeap() || sc->thread_number == 0)
GCToEEInterface::SyncBlockCacheDemote(max_gen);
}
void GCScan::GcPromotionsGranted (int condemned, int max_gen, ScanContext* sc)
{
Ref_AgeHandles(condemned, max_gen, (uintptr_t)sc);
if (!IsServerHeap() || sc->thread_number == 0)
GCToEEInterface::SyncBlockCachePromotionsGranted(max_gen);
}
size_t GCScan::AskForMoreReservedMemory (size_t old_size, size_t need_size)
{
LIMITED_METHOD_CONTRACT;
#if !defined(FEATURE_CORECLR) && !defined(FEATURE_NATIVEAOT)
// call the host....
IGCHostControl *pGCHostControl = CorHost::GetGCHostControl();
if (pGCHostControl)
{
size_t new_max_limit_size = need_size;
pGCHostControl->RequestVirtualMemLimit (old_size,
(SIZE_T*)&new_max_limit_size);
return new_max_limit_size;
}
#endif
return old_size + need_size;
}
void GCScan::VerifyHandleTable(int condemned, int max_gen, ScanContext* sc)
{
LIMITED_METHOD_CONTRACT;
Ref_VerifyHandleTable(condemned, max_gen, sc);
}
#endif // !DACCESS_COMPILE