-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
347 lines (290 loc) · 11.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import traceback
from typing import Any, Dict, List
import streamlit as st
import plotly.express as px
import tornado
from tornado.websocket import WebSocketClosedError
from streamlit_prophet.lib.dataprep.clean import clean_df
from streamlit_prophet.lib.dataprep.format import (
add_cap_and_floor_cols,
check_dataset_size,
filter_and_aggregate_df,
format_date_and_target,
format_datetime,
print_empty_cols,
print_removed_cols,
remove_empty_cols,
resample_df,
)
from streamlit_prophet.lib.dataprep.split import get_train_set, get_train_val_sets
from streamlit_prophet.lib.exposition.export import display_save_experiment_button
from streamlit_prophet.lib.exposition.visualize import (
plot_components,
plot_future,
plot_overview,
plot_performance,
)
from streamlit_prophet.lib.inputs.dataprep import input_cleaning, input_dimensions, input_resampling
from streamlit_prophet.lib.inputs.dataset import (
input_columns,
input_dataset,
input_future_regressors,
)
from streamlit_prophet.lib.inputs.dates import (
input_cv,
input_forecast_dates,
input_train_dates,
input_val_dates,
)
from streamlit_prophet.lib.inputs.eval import input_metrics, input_scope_eval
from streamlit_prophet.lib.inputs.params import (
input_holidays_params,
input_other_params,
input_prior_scale_params,
input_regressors,
input_seasonality_params,
)
from streamlit_prophet.lib.models.prophet import forecast_workflow
from streamlit_prophet.lib.utils.load import load_config, load_image
def deploy_streamlit():
try:
# Set page config
st.set_page_config(
page_title='Time Series Wizard - LiveTech',
page_icon='streamlit_prophet/references/livetech.png',
initial_sidebar_state="expanded",
menu_items={
'Get Help': None,
'Report a bug': 'mailto:[email protected], [email protected]',
'About': 'Time Series Wizard v0.8'
},
# layout='wide'
)
df = px.data.iris()
# background = get_img_as_base64("streamlit_prophet/references/background.png")
# background_menu = get_img_as_base64("streamlit_prophet/references/background_menu.png")
page_bg_img = f"""
<style>
[data-testid="stAppViewContainer"] > .main {{
background-image: linear-gradient(to bottom, #89b40e, #00b352, #00ad99, #00a3c7, #0096e2, #3d9ddc, #559dda, #68a7d8, #4ca0e2, #3a9ae6, #3f9ae3, #5ed7df);
/* background-image: linear-gradient(to bottom, #a8eb12, #00ed7f, #00e6c8, #00d7f5, #00c4ff, #3dc2fd, #56c1fb, #69bff8, #52cffe, #41dfff, #46eefa, #5ffbf1); */
/* background-image: url(""); */
/* background: linear-gradient(to right, #ff00ff, #00ffff); */
background-size: 200%;
}}
[data-testid="stSidebar"] > div:first-child {{
background-image: linear-gradient(to right top, #7c99cc, #00b4e2, #00c7cc, #00d882, #a4e40e);
/* background-image: linear-gradient(to right top, #86a8e7, #00c4ff, #00dce3, #00ea92, #a8eb12); */
/* background: linear-gradient(to right, #00ffff, #ff00ff); */
}}
[data-testid="stHeader"] {{
background:rgba(0,0,0,0);
}}
[data-testid="stToolbar"] {{
right: 2rem;
}}
# h1:hover, h2:hover, h3:hover, h4:hover, h5:hover, h6:hover {{
# color: blue !important;
# }}
[data-testid="stDecoration"] {{
display: none;
}}
footer {{visibility:hidden;}}
</style>
"""
st.markdown(page_bg_img, unsafe_allow_html=True)
# Load config
config, instructions, readme = load_config(
"config_streamlit.toml", "config_instructions.toml", "config_readme.toml"
)
# Initialization
dates: Dict[Any, Any] = dict()
report: List[Dict[str, Any]] = []
# Info
col10, col20, col30 = st.columns([1, 3, 1])
with col10:
st.header("")
with col20:
st.image(load_image("livetech-verticale_bianco.png"), width=200, use_column_width="auto")
with col30:
st.header("")
with st.expander(
"Web App to build time series forecasting models in a few clicks!",
expanded=False,
):
st.write(readme["app"]["app_intro"])
st.write("")
st.write("")
st.sidebar.title("Create your Time Series")
st.sidebar.title("1. Data")
# Load data
#@TODO AGGIORNARE
# css = f'''
# .streamlit-expander:hover {{
#
# color: blue !important;
#
# }}
# '''
# st.markdown(f'<style>{css}</style>', unsafe_allow_html=True)
with st.sidebar.expander("Dataset", expanded=True):
df, load_options, config, datasets = input_dataset(config, readme, instructions)
df, empty_cols = remove_empty_cols(df)
print_empty_cols(empty_cols)
# Column names
with st.sidebar.expander("Columns", expanded=True):
date_col, target_col = input_columns(config, readme, df, load_options)
df = format_date_and_target(df, date_col, target_col, config, load_options)
# Filtering
with st.sidebar.expander("Filtering", expanded=False):
dimensions = input_dimensions(df, readme, config)
df, cols_to_drop = filter_and_aggregate_df(df, dimensions, config, date_col, target_col)
print_removed_cols(cols_to_drop)
# Resampling
with st.sidebar.expander("Resampling", expanded=False):
resampling = input_resampling(df, readme)
df = format_datetime(df, resampling)
df = resample_df(df, resampling)
check_dataset_size(df, config)
# Cleaning
with st.sidebar.expander("Cleaning", expanded=False):
cleaning = input_cleaning(resampling, readme, config)
df = clean_df(df, cleaning)
check_dataset_size(df, config)
st.sidebar.title("2. Modelling")
# Prior scale
with st.sidebar.expander("Prior scale", expanded=False):
params = input_prior_scale_params(config, readme)
# Seasonalities
with st.sidebar.expander("Seasonalities", expanded=False):
params = input_seasonality_params(config, params, resampling, readme)
# Holidays
with st.sidebar.expander("Holidays"):
params = input_holidays_params(params, readme, config)
# External regressors
with st.sidebar.expander("Regressors"):
params = input_regressors(df, config, params, readme)
# Other parameters
with st.sidebar.expander("Other parameters", expanded=False):
params = input_other_params(config, params, readme)
df = add_cap_and_floor_cols(df, params)
st.sidebar.title("3. Evaluation")
# Choose whether or not to do evaluation
evaluate = st.sidebar.checkbox(
"Evaluate my model", value=True, help=readme["tooltips"]["choice_eval"]
)
if evaluate:
# Split
with st.sidebar.expander("Split", expanded=True):
use_cv = st.checkbox(
"Perform cross-validation", value=False, help=readme["tooltips"]["choice_cv"]
)
dates = input_train_dates(df, use_cv, config, resampling, dates)
if use_cv:
dates = input_cv(dates, resampling, config, readme)
datasets = get_train_set(df, dates, datasets)
else:
dates = input_val_dates(df, dates, config)
datasets = get_train_val_sets(df, dates, config, datasets)
# Performance metrics
with st.sidebar.expander("Metrics", expanded=False):
eval = input_metrics(readme, config)
# Scope of evaluation
with st.sidebar.expander("Scope", expanded=False):
eval = input_scope_eval(eval, use_cv, readme)
else:
use_cv = False
st.sidebar.title("4. Forecast")
# Choose whether or not to do future forecasts
make_future_forecast = st.sidebar.checkbox(
"Make forecast on future dates", value=False, help=readme["tooltips"]["choice_forecast"]
)
if make_future_forecast:
with st.sidebar.expander("Horizon", expanded=False):
dates = input_forecast_dates(df, dates, resampling, config, readme)
with st.sidebar.expander("Regressors", expanded=False):
datasets = input_future_regressors(
datasets, dates, params, dimensions, load_options, date_col
)
# Launch training & forecast
if st.checkbox(
"Launch forecast",
value=False,
help=readme["tooltips"]["launch_forecast"],
):
if not (evaluate | make_future_forecast):
st.error("Please check at least 'Evaluation' or 'Forecast' in the sidebar.")
track_experiments = st.checkbox(
"Track experiments", value=False, help=readme["tooltips"]["track_experiments"]
)
datasets, models, forecasts = forecast_workflow(
config,
use_cv,
make_future_forecast,
evaluate,
cleaning,
resampling,
params,
dates,
datasets,
df,
date_col,
target_col,
dimensions,
load_options,
)
# Visualizations
if evaluate | make_future_forecast:
st.write("# 1. Overview")
report = plot_overview(
make_future_forecast, use_cv, models, forecasts, target_col, cleaning, readme, report
)
if evaluate:
st.write(
f'# 2. Evaluation on {"CV" if use_cv else ""} {eval["set"].lower()} set{"s" if use_cv else ""}'
)
report = plot_performance(
use_cv, target_col, datasets, forecasts, dates, eval, resampling, config, readme, report
)
if evaluate | make_future_forecast:
st.write(
"# 3. Impact of components and regressors"
if evaluate
else "# 2. Impact of components and regressors"
)
report = plot_components(
use_cv,
make_future_forecast,
target_col,
models,
forecasts,
cleaning,
resampling,
config,
readme,
df,
report,
)
if make_future_forecast:
st.write("# 4. Future forecast" if evaluate else "# 3. Future forecast")
report = plot_future(models, forecasts, dates, target_col, cleaning, readme, report)
# Save experiment
if track_experiments:
display_save_experiment_button(
report,
config,
use_cv,
make_future_forecast,
evaluate,
cleaning,
resampling,
params,
dates,
date_col,
target_col,
dimensions,
)
except Exception as e:
traceback.print_exc()
st.error(f"An error occurred: {str(e)}")
deploy_streamlit()