-
Notifications
You must be signed in to change notification settings - Fork 68
/
run_controlnext.py
311 lines (283 loc) · 10.9 KB
/
run_controlnext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import os
import torch
import cv2
import gc
import numpy as np
import argparse
from PIL import Image
from utils import preprocess, tools
def log_validation(
args,
device='cuda'
):
pipeline = tools.get_pipeline(
args.pretrained_model_name_or_path,
args.unet_model_name_or_path,
args.controlnet_model_name_or_path,
vae_model_name_or_path=args.vae_model_name_or_path,
lora_path=args.lora_path,
load_weight_increasement=args.load_weight_increasement,
enable_xformers_memory_efficient_attention=args.enable_xformers_memory_efficient_attention,
revision=args.revision,
variant=args.variant,
hf_cache_dir=args.hf_cache_dir,
use_safetensors=args.use_safetensors,
device=device,
)
if args.seed is None:
generator = None
else:
generator = torch.Generator(device=device).manual_seed(args.seed)
if len(args.validation_image) == len(args.validation_prompt):
validation_images = args.validation_image
validation_prompts = args.validation_prompt
elif len(args.validation_image) == 1:
validation_images = args.validation_image * len(args.validation_prompt)
validation_prompts = args.validation_prompt
elif len(args.validation_prompt) == 1:
validation_images = args.validation_image
validation_prompts = args.validation_prompt * len(args.validation_image)
else:
raise ValueError(
"number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`"
)
if args.negative_prompt is not None:
negative_prompts = args.negative_prompt
assert len(validation_prompts) == len(validation_prompts)
else:
negative_prompts = None
extractor = preprocess.get_extractor(args.validation_image_processor)
image_logs = []
inference_ctx = torch.autocast(device)
for i, (validation_prompt, validation_image) in enumerate(zip(validation_prompts, validation_images)):
validation_image = Image.open(validation_image).convert("RGB")
if extractor is not None:
validation_image = extractor(validation_image)
images = []
negative_prompt = negative_prompts[i] if negative_prompts is not None else None
width = args.width if args.width is not None else validation_image.width
height = args.height if args.height is not None else validation_image.height
validation_image = validation_image.resize((width, height))
for _ in range(args.num_validation_images):
with inference_ctx:
image = pipeline(
prompt=validation_prompt,
controlnet_image=validation_image,
controlnet_scale=args.controlnet_scale,
num_inference_steps=args.num_inference_steps,
generator=generator,
negative_prompt=negative_prompt,
width=width,
height=height,
).images[0]
images.append(image)
image_logs.append(
{"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt}
)
save_dir_path = os.path.join(args.output_dir, "eval_img")
if not os.path.exists(save_dir_path):
os.makedirs(save_dir_path)
for i, log in enumerate(image_logs):
images = log["images"]
validation_prompt = log["validation_prompt"]
validation_image = log["validation_image"]
formatted_images = []
formatted_images.append(np.asarray(validation_image))
for image in images:
formatted_images.append(np.asarray(image))
formatted_images = np.concatenate(formatted_images, 1)
for j, validation_image in enumerate(images):
file_path = os.path.join(save_dir_path, "image_{}-{}.png".format(i, j))
validation_image = np.asarray(validation_image)
validation_image = cv2.cvtColor(validation_image, cv2.COLOR_BGR2RGB)
cv2.imwrite(file_path, validation_image)
print("Save images to:", file_path)
file_path = os.path.join(save_dir_path, "image_{}.png".format(i))
formatted_images = cv2.cvtColor(formatted_images, cv2.COLOR_BGR2RGB)
print("Save images to:", file_path)
cv2.imwrite(file_path, formatted_images)
gc.collect()
if str(device) == 'cuda' and torch.cuda.is_available():
torch.cuda.empty_cache()
return image_logs
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--controlnet_model_name_or_path",
type=str,
default=None,
help="Path to pretrained controlnet model or model identifier from huggingface.co/models."
" If not specified controlnet weights are initialized from unet.",
)
parser.add_argument(
"--unet_model_name_or_path",
type=str,
default=None,
help="Path to pretrained unet model or subset"
)
parser.add_argument(
"--vae_model_name_or_path",
type=str,
default=None,
help="Path to pretrained vae model or subset"
)
parser.add_argument(
"--lora_path",
type=str,
default=None,
help="Path to lora"
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--use_safetensors",
action="store_true",
help="Whether or not to use safetensors to load the pipeline.",
)
parser.add_argument(
"--output_dir",
type=str,
default="controlnet-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--width",
type=int,
default=None,
help=(
"The width for input images, all the images in the train/validation dataset will be resized to this"
" width"
),
)
parser.add_argument(
"--height",
type=int,
default=None,
help=(
"The height for input images, all the images in the train/validation dataset will be resized to this"
" height"
),
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--validation_prompt",
type=str,
default=None,
nargs="+",
help=(
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
" Provide either a matching number of `--validation_image`s, a single `--validation_image`"
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
),
)
parser.add_argument(
"--negative_prompt",
type=str,
default=None,
nargs="+",
help=(
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
" Provide either a matching number of `--validation_image`s, a single `--validation_image`"
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
),
)
parser.add_argument(
"--validation_image",
type=str,
default=None,
nargs="+",
help=(
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
" `--validation_image` that will be used with all `--validation_prompt`s."
),
)
parser.add_argument(
"--validation_image_processor",
type=str,
default=None,
choices=["canny"],
help="The type of image processor to use for the validation images.",
)
parser.add_argument(
"--num_validation_images",
type=int,
default=4,
help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair",
)
parser.add_argument(
"--num_inference_steps",
type=int,
default=20,
help="Number of inference steps for the diffusion model",
)
parser.add_argument(
"--controlnet_scale",
type=float,
default=1.0,
help="Scale of the controlnet",
)
parser.add_argument(
"--load_weight_increasement",
action="store_true",
help="Only load weight increasement",
)
parser.add_argument(
"--hf_cache_dir",
type=str,
default=None,
help="Path to the cache directory for huggingface datasets and models.",
)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
if args.validation_prompt is not None and args.validation_image is None:
raise ValueError("`--validation_image` must be set if `--validation_prompt` is set")
if args.validation_prompt is None and args.validation_image is not None:
raise ValueError("`--validation_prompt` must be set if `--validation_image` is set")
if (
args.validation_image is not None
and args.validation_prompt is not None
and len(args.validation_image) != 1
and len(args.validation_prompt) != 1
and len(args.validation_image) != len(args.validation_prompt)
):
raise ValueError(
"Must provide either 1 `--validation_image`, 1 `--validation_prompt`,"
" or the same number of `--validation_prompt`s and `--validation_image`s"
)
if args.width is not None and args.width % 8 != 0:
raise ValueError(
"`--width` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder."
)
if args.height is not None and args.height % 8 != 0:
raise ValueError(
"`--height` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder."
)
return args
if __name__ == "__main__":
args = parse_args()
log_validation(args)