-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
265 lines (207 loc) · 8.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import argparse
from pathlib import Path
from datetime import datetime
import time
import os
import shutil
from tensorboardX import SummaryWriter
import torch
from torch.optim.lr_scheduler import MultiStepLR
from models import ESCModel
from dataset import UrbanSound8KDataset
parser = argparse.ArgumentParser(description='ESC Fusion model training')
parser.add_argument('mode', choices=['LMC', 'MC', 'MLMC', 'LMC+MC'])
parser.add_argument('--train_pickle', type=Path)
parser.add_argument('--test_pickle', type=Path)
parser.add_argument('--epochs', default=50, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=32, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--lr_steps', default=[100], type=float, nargs="+",
metavar='LRSteps', help='epochs to decay learning rate by 10')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--print-freq', '-p', default=20, type=int,
metavar='N', help='print frequency (default: 10)')
args = parser.parse_args()
best_prec1 = 0
training_iterations = 0
experiment_name = 'mode=' + args.mode
experiment_dir = os.path.join(experiment_name, datetime.now().strftime('%b%d_%H-%M-%S'))
runs_path = Path('./runs')
if not runs_path.exists():
runs_path.mkdir()
log_dir = runs_path / experiment_dir
summaryWriter = SummaryWriter(logdir=log_dir)
def main():
global args, best_prec1
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.mode != 'LMC+MC':
print(args.mode)
model = ESCModel(mode=args.mode)
model = torch.nn.DataParallel(model, device_ids=None).to(device)
train_loader = torch.utils.data.DataLoader(
UrbanSound8KDataset(args.train_pickle, args.mode),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
UrbanSound8KDataset(args.test_pickle, args.mode),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay)
scheduler = MultiStepLR(optimizer, args.lr_steps, gamma=0.1)
for epoch in range(args.epochs):
scheduler.step()
train(train_loader, model, criterion, optimizer, epoch, device)
# evaluate on validation set
prec1 = validate(val_loader, model, criterion, device)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
}, is_best)
summaryWriter.close()
def train(train_loader, model, criterion, optimizer, epoch, device):
global training_iterations
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target, _) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
input = input.to(device)
# compute output
output = model(input)
batch_size = input.size(0)
target = target.to(device)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1,5))
losses.update(loss.item(), batch_size)
top1.update(prec1, batch_size)
top5.update(prec5, batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
training_iterations += 1
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
summaryWriter.add_scalars('data/loss', {
'training': losses.avg,
}, training_iterations)
summaryWriter.add_scalar('data/epochs', epoch, training_iterations)
summaryWriter.add_scalar('data/learning_rate', optimizer.param_groups[-1]['lr'], training_iterations)
summaryWriter.add_scalars('data/precision/top1', {
'training': top1.avg,
}, training_iterations)
summaryWriter.add_scalars('data/precision/top5', {
'training': top5.avg
}, training_iterations)
message = ('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.avg:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.avg:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.avg:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.avg:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.avg:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5,
lr=optimizer.param_groups[-1]['lr']))
print(message)
def validate(val_loader, model, criterion, device, name=''):
global training_iterations
with torch.no_grad():
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target, _) in enumerate(val_loader):
input = input.to(device)
# compute output
output = model(input)
batch_size = input.size(0)
target = target.to(device)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), batch_size)
top1.update(prec1, batch_size)
top5.update(prec5, batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
summaryWriter.add_scalars('data/loss', {
'validation': losses.avg,
}, training_iterations)
summaryWriter.add_scalars('data/precision/top1', {
'validation': top1.avg,
}, training_iterations)
summaryWriter.add_scalars('data/precision/top5', {
'validation': top5.avg
}, training_iterations)
message = ('Testing Results: '
'Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} '
'Loss {loss.avg:.5f}').format(top1=top1,
top5=top5,
loss=losses)
print(message)
return top1.avg
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).to(torch.float32).sum(0)
res.append(float(correct_k.mul_(100.0 / batch_size)))
return tuple(res)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
global experiment_dir
weights_dir = Path('./models') / experiment_dir
if not weights_dir.exists():
weights_dir.mkdir(parents=True)
torch.save(state, weights_dir / filename)
if is_best:
shutil.copyfile(weights_dir / filename,
weights_dir / 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == '__main__':
main()