-
Notifications
You must be signed in to change notification settings - Fork 1
/
resize_lora.py
executable file
·346 lines (309 loc) · 11.4 KB
/
resize_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
from math import log10
import argparse
import logging
from pathlib import Path
import json
from tqdm import tqdm
import torch
import safetensors.torch
from loralib import (
PairedLoraModel,
BaseCheckpoint,
JsonCache,
DecomposedLoRA,
LoRADict,
ConcatLoRAsDict,
)
logger = logging.root
class ResizeRecipe:
def __init__(self, recipe_str):
self.recipe_str = recipe_str
self.weights = parsed = {
"spn_lora": 0.0,
"spn_ckpt": 0.0,
"subspace": 0.0,
"fro_lora": 0.0,
"fro_ckpt": 0.0,
"params": 0.0,
}
self.target_size = None
self.threshold = None
self.rescale = 1.0
for part in recipe_str.split(","):
key, _, value = part.partition("=")
if value:
try:
value = float(value)
except ValueError:
raise ValueError(
f"Could not parse {key}={value} in recipe {recipe_str}"
)
if key in parsed:
parsed[key] = 1.0 if value == "" else value
continue
if value == "":
raise ValueError(
f"Empty value not accepted for key {key} in recipe {recipe_str}"
)
match key:
case "size":
self.target_size = value
case "thr":
self.threshold = value
case "rescale":
self.rescale = value
case _:
raise ValueError(f"Unknown key {key} in recipe {recipe_str}")
wsum = sum(parsed.values())
if wsum == 0.0:
raise ValueError("At least one score type must be specified")
self.weights = parsed = {k: v / wsum for k, v in parsed.items()}
if self.target_size is None and self.threshold is None:
raise ValueError("Either 'size' or 'thr' must be specified in the recipe")
def __str__(self):
return self.recipe_str
def score_dims(self, decomposed_lora, checkpoint, **compute_kwargs):
weights = self.weights
layer_name = decomposed_lora.name
S = decomposed_lora.S
scores = torch.log10(S)
if self.rescale is not None:
scores += log10(self.rescale)
if abs(weights["subspace"]) > 1e-6:
W_base = checkpoint.get_weights(layer_name).to(**compute_kwargs)
scores -= weights["subspace"] * torch.log10(
decomposed_lora.compute_subspace_scales(W_base).abs().cpu()
)
if abs(weights["spn_ckpt"]) > 1e-6:
scores -= weights["spn_ckpt"] * log10(
checkpoint.spectral_norm(layer_name, **compute_kwargs)
)
if abs(weights["spn_lora"]) > 1e-6:
scores -= weights["spn_lora"] * torch.log10(S[0])
if abs(weights["fro_ckpt"]) > 1e-6:
scores -= weights["fro_ckpt"] * log10(
checkpoint.frobenius_norm(layer_name, dtype=torch.float32)
)
if abs(weights["fro_lora"]) > 1e-6:
scores -= weights["fro_lora"] * torch.log10(torch.linalg.vector_norm(S))
if abs(weights["params"]) > 1e-6:
scores -= weights["params"] * log10(decomposed_lora.dim_size(1))
return scores
def resize_lora(
self,
lora_layers: list[DecomposedLoRA],
checkpoint,
compute_kwargs=dict(dtype=torch.float32),
output_dtype=torch.float16,
output_elem_size=None,
):
print_scores = logger.isEnabledFor(logging.INFO)
print_layers = logger.isEnabledFor(logging.DEBUG)
needs_flat_scores = print_scores or self.target_size is not None
if output_elem_size is None:
if output_dtype == torch.float32:
output_elem_size = 4
elif output_dtype == torch.float16:
output_elem_size = 2
else:
# Only works for torch>=2.1
output_elem_size = output_dtype.itemsize
# Score all fims
scores = [
self.score_dims(decomposed_lora, checkpoint, **compute_kwargs)
for decomposed_lora in lora_layers
]
if needs_flat_scores:
flat_scores = torch.cat(scores)
# Select a threshold (greedy knapsack)
if self.target_size is not None:
flat_scores, order = flat_scores.sort(descending=True)
cum_sizes = torch.repeat_interleave(
*torch.tensor(
[
(layer.dim_size(output_elem_size), layer.dim)
for layer in lora_layers
],
dtype=torch.int32,
).T
)[order].cumsum(0)
target_size_bytes = self.target_size * (1 << 20)
if target_size_bytes < cum_sizes[-1]:
threshold = flat_scores[
torch.searchsorted(cum_sizes, target_size_bytes).item()
].item()
else:
threshold = -torch.inf
logger.info("Selected threshold: %.3f", threshold)
else:
threshold = self.threshold
sd = {}
for decomposed_lora, layer_scores in zip(lora_layers, scores):
mask = layer_scores > threshold
sd.update(
decomposed_lora.statedict(
mask=mask, dtype=output_dtype, rescale=self.rescale
)
)
if print_layers:
S = decomposed_lora.S * self.rescale
err = 0.0 if torch.all(mask) else torch.linalg.vector_norm(S[~mask])
re_lora = err / torch.linalg.vector_norm(S)
re_ckpt = err / checkpoint.frobenius_norm(
decomposed_lora.name, dtype=torch.float32
)
logger.debug(
f"dim:{S.shape[0]:>3}->{mask.sum().item():<3}"
f" rle_lora:{100. * re_lora:>6.2f}% rle_ckpt:{100. * re_ckpt:>6.2f}%"
f" {decomposed_lora.name}"
)
if print_scores:
quantile_fracs = [0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99]
quantile_string = " ".join(
f"{frac:.2f}:{q:.3f}"
for frac, q in zip(
quantile_fracs, flat_scores.quantile(torch.tensor(quantile_fracs))
)
)
logger.info(f"Score quantiles: {quantile_string}")
return sd, threshold
def process_lora_model(
lora_model: PairedLoraModel,
recipes: list[ResizeRecipe],
output_folder,
device=None,
compute_dtype=torch.float32,
output_dtype=torch.float16,
):
compute_kwargs = dict(dtype=compute_dtype, device=device, non_blocking=True)
checkpoint = lora_model.checkpoint
lora_layers = []
for key in tqdm(lora_model.keys(), desc="SVD"):
decomposed_lora = lora_model.decompose_layer(key, **compute_kwargs).to(
device="cpu"
)
if decomposed_lora.S[0].abs().item() < 1e-6:
logger.warning(
"LoRA layer %s is all zeroes! dim=%d",
decomposed_lora.name,
decomposed_lora.S.shape[0],
)
continue
lora_layers.append(decomposed_lora)
for recipe in recipes:
sd, threshold = recipe.resize_lora(
tqdm(lora_layers, desc=f"Scoring {recipe}"),
checkpoint,
compute_kwargs=compute_kwargs,
output_dtype=output_dtype,
)
params = recipe.__dict__.copy()
params["threshold"] = threshold
metadata = lora_model.lora_dict.metadata()
metadata["resize_params"] = json.dumps(params)
recipe_fn = [
f"{k.replace('_', '')}{format_float(v)}"
for k, v in sorted(recipe.weights.items())
if v != 0.0
]
if recipe.rescale != 1.0:
recipe_fn.append(f"scale{format_float(recipe.rescale)}")
if recipe.target_size is not None:
recipe_fn.append(f"size{format_float(recipe.target_size)}")
recipe_fn = "_".join(recipe_fn)
output_path = output_folder / (
f"{lora_model.lora_dict.name}_{recipe_fn}_th{format_float(threshold)}.safetensors"
)
logger.info("Saving %s", output_path)
safetensors.torch.save_file(
sd,
output_path,
metadata=metadata,
)
def load_lora_or_merge(path, **to_kwargs):
if "," in path:
members = []
for path in path.split(","):
path, _, weight = path.partition(":")
weight = float(weight) if weight else 1.0
members.append((path, weight))
return ConcatLoRAsDict(members, **to_kwargs)
else:
return LoRADict(path, **to_kwargs)
def format_float(v, p=2):
return f"{v:.{p}f}".rstrip("0").rstrip(".")
def main():
compute_device = "cuda" if torch.cuda.is_available() else "cpu"
parser = argparse.ArgumentParser(
description="Resizes multiple LoRAs with specified parameters.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("checkpoint_path", type=str, help="Path to the checkpoint file")
parser.add_argument(
"lora_model_paths",
type=str,
nargs="+",
help="Paths to the Lora model files",
)
parser.add_argument(
"-o",
"--output_folder",
type=str,
default=None,
help="Folder to save the output files, use the same folder as the input lora if not specified",
)
parser.add_argument(
"-t",
"--output_dtype",
type=str,
choices=["16", "32"],
default="16",
help="Output dtype: 16 for float16, 32 for float32",
)
parser.add_argument(
"-d",
"--device",
type=str,
default=compute_device,
help="Device to run the computations on",
)
parser.add_argument(
"-r",
"--score_recipes",
type=str,
default="fro_ckpt=1,thr=-3.5",
help="Score recipes separated by ':' in the format spn_ckpt=X,spn_lora=Y,subspace=Z,size=S:spn_ckpt=...",
)
parser.add_argument(
"-v",
"--verbose",
action="count",
default=0,
help="Increase verbosity level (e.g., -v for INFO, -vv for DEBUG)",
)
args = parser.parse_args()
log_level = logging.WARNING - (10 * args.verbose)
logging.basicConfig(level=log_level)
output_dtype = torch.float16 if args.output_dtype == "16" else torch.float32
score_recipes = [ResizeRecipe(recipe) for recipe in args.score_recipes.split(":")]
norms_cache = JsonCache(Path(__file__).parent / "norms_cache.json")
checkpoint = BaseCheckpoint(args.checkpoint_path, cache=norms_cache)
for lora_model_path in args.lora_model_paths:
logger.info(f"Processing LoRA model: {lora_model_path}")
lora_dict = load_lora_or_merge(
lora_model_path, device=args.device, dtype=torch.float32
)
output_folder = lora_dict.path.parent
if args.output_folder:
output_folder = Path(args.output_folder)
paired = PairedLoraModel(lora_dict, checkpoint)
process_lora_model(
lora_model=paired,
recipes=score_recipes,
output_folder=output_folder,
output_dtype=output_dtype,
device=args.device,
)
norms_cache.save(discard=True)
if __name__ == "__main__":
main()