-
Notifications
You must be signed in to change notification settings - Fork 77
/
cross_vali_data_convert_merge.py
113 lines (99 loc) · 3.33 KB
/
cross_vali_data_convert_merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import numpy as np,numpy
import csv
import glob
import os
window_size = 1000
threshold = 60
slide_size = 200 #less than window_size!!!
def dataimport(path1, path2):
xx = np.empty([0,window_size,90],float)
yy = np.empty([0,8],float)
###Input data###
#data import from csv
input_csv_files = sorted(glob.glob(path1))
for f in input_csv_files:
print("input_file_name=",f)
data = [[ float(elm) for elm in v] for v in csv.reader(open(f, "r"))]
tmp1 = np.array(data)
x2 =np.empty([0,window_size,90],float)
#data import by slide window
k = 0
while k <= (len(tmp1) + 1 - 2 * window_size):
x = np.dstack(np.array(tmp1[k:k+window_size, 1:91]).T)
x2 = np.concatenate((x2, x),axis=0)
k += slide_size
xx = np.concatenate((xx,x2),axis=0)
xx = xx.reshape(len(xx),-1)
###Annotation data###
#data import from csv
annotation_csv_files = sorted(glob.glob(path2))
for ff in annotation_csv_files:
print("annotation_file_name=",ff)
ano_data = [[ str(elm) for elm in v] for v in csv.reader(open(ff,"r"))]
tmp2 = np.array(ano_data)
#data import by slide window
y = np.zeros(((len(tmp2) + 1 - 2 * window_size)//slide_size+1,8))
k = 0
while k <= (len(tmp2) + 1 - 2 * window_size):
y_pre = np.stack(np.array(tmp2[k:k+window_size]))
bed = 0
fall = 0
walk = 0
pickup = 0
run = 0
sitdown = 0
standup = 0
noactivity = 0
for j in range(window_size):
if y_pre[j] == "bed":
bed += 1
elif y_pre[j] == "fall":
fall += 1
elif y_pre[j] == "walk":
walk += 1
elif y_pre[j] == "pickup":
pickup += 1
elif y_pre[j] == "run":
run += 1
elif y_pre[j] == "sitdown":
sitdown += 1
elif y_pre[j] == "standup":
standup += 1
else:
noactivity += 1
if bed > window_size * threshold / 100:
y[k/slide_size,:] = np.array([0,1,0,0,0,0,0,0])
elif fall > window_size * threshold / 100:
y[k/slide_size,:] = np.array([0,0,1,0,0,0,0,0])
elif walk > window_size * threshold / 100:
y[k/slide_size,:] = np.array([0,0,0,1,0,0,0,0])
elif pickup > window_size * threshold / 100:
y[k/slide_size,:] = np.array([0,0,0,0,1,0,0,0])
elif run > window_size * threshold / 100:
y[k/slide_size,:] = np.array([0,0,0,0,0,1,0,0])
elif sitdown > window_size * threshold / 100:
y[k/slide_size,:] = np.array([0,0,0,0,0,0,1,0])
elif standup > window_size * threshold / 100:
y[k/slide_size,:] = np.array([0,0,0,0,0,0,0,1])
else:
y[k/slide_size,:] = np.array([2,0,0,0,0,0,0,0])
k += slide_size
yy = np.concatenate((yy, y),axis=0)
print(xx.shape,yy.shape)
return (xx, yy)
#### Main ####
if not os.path.exists("input_files/"):
os.makedirs("input_files/")
for i, label in enumerate (["bed", "fall", "pickup", "run", "sitdown", "standup", "walk"]):
filepath1 = "./Dataset/Data/input_*" + str(label) + "*.csv"
filepath2 = "./Dataset/Data/annotation_*" + str(label) + "*.csv"
outputfilename1 = "./input_files/xx_" + str(window_size) + "_" + str(threshold) + "_" + label + ".csv"
outputfilename2 = "./input_files/yy_" + str(window_size) + "_" + str(threshold) + "_" + label + ".csv"
x, y = dataimport(filepath1, filepath2)
with open(outputfilename1, "w") as f:
writer = csv.writer(f, lineterminator="\n")
writer.writerows(x)
with open(outputfilename2, "w") as f:
writer = csv.writer(f, lineterminator="\n")
writer.writerows(y)
print(label + "finish!")