Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Accuracy drop significantly after deploying model on ESP32 (AIV-603) #122

Closed
Farzinkh opened this issue Apr 7, 2023 · 2 comments
Closed

Comments

@Farzinkh
Copy link

Farzinkh commented Apr 7, 2023

Hi, I trained my simple model for grayscale 96*96 images and transferred it to the onnx model, then I tried to deploy the model on the ESP32-CAM board, after several attempts, I finally managed to run my code without errors, but the problem is that the accuracy has decreased from 99% to nearly 10%. In my code I load images from raw files saved by numpy library.
Screenshot from 2023-04-07 16-16-34

class HANDRECOGNATION : public Model<int16_t>
{
private:
	Reshape<int16_t> l1;
	Conv2D<int16_t> l2;
	Relu<int16_t> l3;
	MaxPool2D<int16_t> l4;
	Transpose<int16_t> l5;
	Reshape<int16_t> l6;
	Conv2D<int16_t> l7;
	Relu<int16_t> l8;
	Conv2D<int16_t> l9;

public:
	Softmax<int16_t> l10;

	HANDRECOGNATION () :
				l1(Reshape<int16_t>({96,96,1},"l1_reshape")),
				l2(Conv2D<int16_t>(-8, get_sequential_2_conv2d_2_biasadd_filter(), get_sequential_2_conv2d_2_biasadd_bias(), get_sequential_2_conv2d_2_biasadd_activation(), PADDING_VALID, {}, 1, 1, "l2")),
				l3(Relu<int16_t>("l3_relu")),
				l4(MaxPool2D<int16_t>({5,5},PADDING_VALID,{}, 5, 5, "l4")),
				l5(Transpose<int16_t>({2,1,0},"l5_transpose")),
				l6(Reshape<int16_t>({1,1,2592},"l6_reshape")),
				l7(Conv2D<int16_t>(-9, get_fused_gemm_0_filter(), get_fused_gemm_0_bias(), get_fused_gemm_0_activation(), PADDING_VALID, {}, 1, 1, "l7")),
				l8(Relu<int16_t>("l8_relu")),
				l9(Conv2D<int16_t>(-9, get_fused_gemm_1_filter(), get_fused_gemm_1_bias(), NULL, PADDING_VALID, {}, 1, 1, "l9")),
				l10(Softmax<int16_t>(-18,"l10")){}
	void build(Tensor<int16_t> &input)
	{
		this->l1.build(input,true);
		this->l2.build(this->l1.get_output(),true);
		this->l3.build(this->l2.get_output(),true);
		this->l4.build(this->l3.get_output(),true);
		this->l5.build(this->l4.get_output(),true);
		this->l6.build(this->l5.get_output(),true);
		this->l7.build(this->l6.get_output(),true);
		this->l8.build(this->l7.get_output(),true);
		this->l9.build(this->l8.get_output(),true);
		this->l10.build(this->l9.get_output(),true);
	}
	void call(Tensor<int16_t> &input)
	{
		this->l1.call(input);
		input.free_element();

		this->l2.call(this->l1.get_output());
		this->l1.get_output().free_element();

		this->l3.call(this->l2.get_output());
		this->l2.get_output().free_element();

		this->l4.call(this->l3.get_output());
		this->l3.get_output().free_element();

		this->l5.call(this->l4.get_output());
		this->l4.get_output().free_element();

		this->l6.call(this->l5.get_output());
		this->l5.get_output().free_element();

		this->l7.call(this->l6.get_output());
		this->l6.get_output().free_element();

		this->l8.call(this->l7.get_output());
		this->l7.get_output().free_element();

		this->l9.call(this->l8.get_output());
		this->l8.get_output().free_element();

		this->l10.call(this->l9.get_output());
		this->l9.get_output().free_element();
	}

};

And for loading images from SDcard:

fseek(f,0,SEEK_END);
long fsize=ftell(f);
fseek(f,0,SEEK_SET);
char *buffer=calloc(1,fsize+1);
fread(buffer,fsize,1,f);
fclose(f);
detect=run_inference((void *) buffer);
int run_inference(void *image){
Tensor<int16_t> input;
input.set_element((int16_t *)image).set_exponent(input_exponent).set_shape({96, 96, 1}).set_auto_free(false);
model.forward(input);
auto *score = model.l10.get_output().get_element_ptr();
auto max_score = score[0];
int max_index = 0;

for (size_t i = 1; i < 10; i++)
{
	if (score[i] > max_score)
	{
		max_score = score[i];
		max_index = i;
	}
}
return (max_index);
}

Also confusion matrix is:
Figure_1
Did I commit errors? I have already tested loading images from SD card with MNIST model without any problems.

@github-actions github-actions bot changed the title Accuracy drop significantly after deploying model on ESP32 Accuracy drop significantly after deploying model on ESP32 (AIV-603) Apr 7, 2023
@Farzinkh
Copy link
Author

Farzinkh commented Jul 8, 2023

Hello everyone, I finally solved this problem here with a lot of experiments and I want to let you know about my repository AI_EDGE which has all the useful information and tools to implement a successful benchmark from SD Card.

@sun-xiangyu
Copy link
Collaborator

please try new esp-dl.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants