forked from servalproject/serval-dna
-
Notifications
You must be signed in to change notification settings - Fork 0
/
overlay_route.c
959 lines (803 loc) · 35.4 KB
/
overlay_route.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
/*
Serval Distributed Numbering Architecture (DNA)
Copyright (C) 2010 Paul Gardner-Stephen
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "serval.h"
#include "conf.h"
#include "str.h"
#include "strbuf.h"
#include "overlay_buffer.h"
#include "overlay_address.h"
#include "overlay_packet.h"
/*
Here we implement the actual routing algorithm which is heavily based on BATMAN.
The fundamental difference is that we want to allow the mesh to grow beyond the
size that could ordinarily be accomodated by the available bandwidth. Some
explanation follows.
BATMAN operates by having nodes periodically send "hello" or originator messages,
either with a limited distribution or with a sufficiently high TTL to spread
over the whole network.
The latter results in a super-linear bandwidth requirement as the network grows
in size.
What we wish to do is to implement the BATMAN concept, but using link-local traffic
only. To do this we need to change the high-TTL originator frames into something
equivalent, but that does not get automatic network-wide distribution.
What seems possible is to implement the BATMAN approach for link-local neighbours,
and then have each node periodically announce the link-score to the peers that
they know about, whether link-local or more distant. If the number of reported
peers is left unconstrained, super-linear bandwidth consumption will still occur.
However, if the number of peers that each node announces is limited, then bandwidth
will be capped at a constant factor (which can be chosen based on the bandwidth
available). The trade-off being that each node will only be able to see some number
of "nearest" peers based on the available bandwidth.
This seems an entirely reasonable outcome, and at least on the surface would appear
to solve our problem of wanting to allow a global-scale mesh, even if only local
connectivity is possible, in contrast to existing mesh protocols that will not allow
any connectivity once the number of nodes grows beyond a certain point.
Remaining challenges that we have to think through are how to add a hierarchical
element to the mesh that might allow us to route traffic beyond a nodes'
neighbourhood of peers.
There is some hope to extend the effective range beyond the immediate neighbourhood
to some degree by rotating the peers that a node reports on, so that a larger total
set of nodes becomes known to the mesh, in return for less frequent updates on their
link scores and optimal routes.
This actually makes some logical sense, as the general direction in which to route
a frame to a distant node is less likely to change more slowly than for nearer nodes.
So we will attempt this.
With some careful thought, this statistical announcement of peers also serves to allow
long-range but very low bandwidth links, e.g., satellite or dial-up, as well as long-shot
WiFi where bandwidth is less constrained.
Questions arise as to the possibility of introducing routing loops through the use of
stale information. So we will certainly need to have some idea of the freshness of
routing data.
Finally, all this works only for bidirectional links. We will need to think about how
to handle mono-directional links. BATMAN does this well, but I don't have the documentation
here at 36,000 feet to digest it and think about how to incorporate it.
Having landed and thought about this a bit more, what we will do is send link-local
announcements which each direct neighbour Y will listen to and build up an estimated
probability of a packet sent by X reaching them. This information will be
periodically broadcast as the interface ticks, and not forwarded beyond link-local,
this preventing super-scalar traffic growth. When X hears that Y's P(X,Y) from
such a neighbour reception notice X can record P(X,Y) as its link score to Y. This
deals with asymmetric delivery probabilities for link-local neighbours.
So how do we efficiently distribute P(X,Y) to our second-degree neighbours, which
we shall call Z? We will assume that P(X,Z) = P(X,Y)*P(Y,Z). Thus X needs to get
Y's set of P(Y,a) values. This is easy to arrange if X and Y are bidirectionally
link-local, as Y can periodically broadcast this information, and X can cache it.
This process will eventually build up the entire set P(X,b), where b are all nodes
on the mesh. However, it assumes that every link is bidirectional. What if X can
send directly to Y, but Y cannot send directly to X, i.e., P(X,Y)~1, P(Y,X)~0?
Provided that there is some path P(Y,m)*P(m,X) >0, then Y will eventually learn
about it. If Y knows that P(X,Y)>0, then it knows that X is a link-local neighbour
monodirectionally, and thus should endeavour to tell X about its direct neighbours.
This is fairly easy to arrange, and we will try this approach.
So overall, this results in traffic at each node which is O(n^2+n*m) where n is the
number of direct neighbours and m is the total number of nodes reachable on the
mesh. As we can limit the number of nodes reachable on the mesh by having nodes
only advertise their k highest scoring nodes, we can effectively limit the traffic
to approximately linear with respect to reachable node count, but quadratic with
respect to the number of immediate neighbours. This seems a reasonable outcome.
Related to this we need to continue thinking about how to handle intermittant links in a more
formal sense, including getting an idea of when nodes might reappear.
Turning to the practical side of things, we need to keep track of reachability scores for
nodes via each of our immediate neighbours. Recognising the statistical nature of
the announcments, we probably want to keep track of some that have ceased to be neighbours
in case they become neighbours again.
Probably it makes more sense to have a list of known nodes and the most recent and
highest scoring nodes by which we may reach them, complete with the sequence numbers of last
observation that they are based upon, and possibly more information down the track to
support intermittant links.
*/
struct overlay_neighbour_observation {
/* Sequence numbers are handled as ranges because the tick
rate can vary between interfaces, and we want to be able to
estimate the reliability of links to nodes that may have
several available interfaces.
We don't want sequence numbers to wrap too often, but we
would also like to support fairly fast ticking interfaces,
e.g., for gigabit type links. So lets go with 1ms granularity. */
unsigned int s1;
unsigned int s2;
time_ms_t time_ms;
unsigned char sender_interface;
unsigned char valid;
};
struct overlay_neighbour {
time_ms_t last_observation_time_ms;
time_ms_t last_metric_update;
int most_recent_observation_id;
struct overlay_neighbour_observation observations[OVERLAY_MAX_OBSERVATIONS];
overlay_node *node;
/* Scores of visibility from each of the neighbours interfaces.
This is so that the sender knows which interface to use to reach us.
*/
unsigned char scores[OVERLAY_MAX_INTERFACES];
};
/* We need to keep track of which nodes are our direct neighbours.
This means we need to keep an eye on how recently we received DIRECT announcements
from nodes, and keep a list of the most recent ones. The challenge is to keep the
list ordered without having to do copies or have nasty linked-list structures that
require lots of random memory reads to resolve.
The simplest approach is to maintain a cache of neighbours and practise random
replacement. It is however succecptible to cache flushing attacks by adversaries, so
we will need something smarter in the long term.
*/
#define overlay_max_neighbours 128
int overlay_neighbour_count=0;
struct overlay_neighbour overlay_neighbours[overlay_max_neighbours];
int overlay_route_recalc_node_metrics(overlay_node *n, time_ms_t now);
int overlay_route_recalc_neighbour_metrics(struct overlay_neighbour *n, time_ms_t now);
struct overlay_neighbour *overlay_route_get_neighbour_structure(overlay_node *node, int createP);
overlay_node *get_node(struct subscriber *subscriber, int create){
if (!subscriber)
return NULL;
// we don't want to track routing info for ourselves.
if (subscriber->reachable==REACHABLE_SELF)
return NULL;
if ((!subscriber->node) && create){
subscriber->node = (overlay_node *)malloc(sizeof(overlay_node));
memset(subscriber->node,0,sizeof(overlay_node));
subscriber->node->subscriber = subscriber;
// if we're taking over routing calculations, make sure we invalidate any other calculations first
set_reachable(subscriber, REACHABLE_NONE);
// This info message is used by tests; don't alter or remove it.
INFOF("ADD OVERLAY NODE sid=%s", alloca_tohex_sid(subscriber->sid));
}
return subscriber->node;
}
int overlay_route_ack_selfannounce(overlay_interface *recv_interface,
unsigned int s1,unsigned int s2,
int interface,
struct subscriber *subscriber)
{
/* Acknowledge the receipt of a self-announcement of an immediate neighbour.
We could acknowledge immediately, but that requires the transmission of an
extra packet with all the overhead that entails. However, there is no real
need to send the ack out immediately. It should be entirely reasonable to
send the ack out with the next interface tick.
So we can craft the ack and submit it to the queue. As the next-hop will get
determined at TX time, this will ensure that we send the packet out on the
right interface to reach the originator of the self-assessment.
So all we need to do is craft the payload and put it onto the queue for
OVERLAY_MESH_MANAGEMENT messages.
Also, we should check for older such frames on the queue and drop them.
There is one caveat to the above: until the first selfannounce gets returned,
we don't have an open route. Thus we need to just make sure that the ack
goes out broadcast if we don't know about a return path. Once the return path
starts getting built, it should be fine.
*/
/* XXX Allocate overlay_frame structure and populate it */
struct overlay_frame *out=NULL;
out=calloc(sizeof(struct overlay_frame),1);
if (!out) return WHY("calloc() failed to allocate an overlay frame");
out->type=OF_TYPE_SELFANNOUNCE_ACK;
out->modifiers=0;
out->ttl=6; /* maximum time to live for an ack taking an indirect route back
to the originator. If it were 1, then we would not be able to
handle mono-directional links (which WiFi is notorious for).
XXX 6 is quite an arbitrary selection however. */
/* Set destination of ack to source of observed frame */
out->destination = subscriber;
/* set source to ourselves */
out->source = my_subscriber;
/* Set the time in the ack. Use the last sequence number we have seen
from this neighbour, as that may be helpful information for that neighbour
down the track. My policy is to communicate that information which should
be helpful for forming and maintaining the health of the mesh, as that way
each node can in potentially implement a different mesh routing protocol,
without breaking the wire protocol. This makes over-the-air software updates
much safer.
Combining of adjacent observation reports may mean that the most recent
observation is not the last one in the list, also the wrapping of the sequence
numbers means we can't just take the highest-numbered sequence number.
So we need to take the observation which was most recently received.
*/
out->payload=ob_new();
/* XXX - we should merge contiguous observation reports so that packet loss
on the return path doesn't count against the link. */
ob_append_ui32(out->payload,s1);
ob_append_ui32(out->payload,s2);
ob_append_byte(out->payload,interface);
/* Add to queue. Keep broadcast status that we have assigned here if required to
get ack back to sender before we have a route. */
out->queue=OQ_MESH_MANAGEMENT;
if (overlay_payload_enqueue(out))
{
op_free(out);
return WHY("overlay_payload_enqueue(self-announce ack) failed");
}
/* XXX Remove any stale versions (or should we just freshen, and forget making
a new one, since it would be more efficient). */
return 0;
}
int overlay_route_make_neighbour(overlay_node *n)
{
if (!n) return WHY("n is NULL");
/* If it is already a neighbour, then return */
if (n->neighbour_id) return 0;
/* It isn't yet a neighbour, so find or free a neighbour slot */
/* slot 0 is reserved, so skip it */
if (!overlay_neighbour_count) overlay_neighbour_count=1;
if (overlay_neighbour_count<overlay_max_neighbours) {
/* Use next free neighbour slot */
n->neighbour_id=overlay_neighbour_count++;
} else {
/* Evict an old neighbour */
int nid=1+random()%(overlay_max_neighbours-1);
if (overlay_neighbours[nid].node) overlay_neighbours[nid].node->neighbour_id=0;
n->neighbour_id=nid;
}
bzero(&overlay_neighbours[n->neighbour_id],sizeof(struct overlay_neighbour));
overlay_neighbours[n->neighbour_id].node=n;
return 0;
}
struct overlay_neighbour *overlay_route_get_neighbour_structure(overlay_node *node, int createP)
{
if (!node)
return NULL;
/* Check if node is already a neighbour, or if not, make it one */
if (!node->neighbour_id){
if (!createP)
return NULL;
if (overlay_route_make_neighbour(node))
{ WHY("overlay_route_make_neighbour() failed"); return NULL; }
}
/* Get neighbour structure */
return &overlay_neighbours[node->neighbour_id];
}
int overlay_route_node_can_hear_me(struct subscriber *subscriber, int sender_interface,
unsigned int s1,unsigned int s2,
time_ms_t now)
{
/* 1. Find (or create) node entry for the node.
2. Replace oldest observation with this observation.
3. Update score of how reliably we can hear this node */
/* Get neighbour structure */
struct overlay_neighbour *neh=overlay_route_get_neighbour_structure(get_node(subscriber, 1),1 /* create if necessary */);
if (!neh)
return WHY("Unable to create neighbour structure");
int obs_index=neh->most_recent_observation_id;
int merge=0;
/* See if this observation is contiguous with a previous one, if so, merge.
This not only reduces the number of observation slots we need, but dramatically speeds up
the scanning of recent observations when re-calculating observation scores. */
while (neh->observations[obs_index].valid && neh->observations[obs_index].s2 >= s1 - 1) {
if (neh->observations[obs_index].sender_interface == sender_interface) {
if (config.debug.overlayrouting)
DEBUGF("merging observation into slot #%d s1=%u s2=%u", obs_index, neh->observations[obs_index].s1, neh->observations[obs_index].s2);
s1 = neh->observations[obs_index].s1;
merge=1;
break;
}
if (--obs_index < 0)
obs_index = OVERLAY_MAX_OBSERVATIONS - 1;
}
if (!merge) {
/* Replace oldest observation with this one */
obs_index = neh->most_recent_observation_id + 1;
if (obs_index >= OVERLAY_MAX_OBSERVATIONS)
obs_index = 0;
}
if (config.debug.overlayrouting)
DEBUGF("assign observation slot #%d: s1=%u s2=%u time_ms=%lld", obs_index, s1, s2, (long long)now);
neh->observations[obs_index].s1=s1;
neh->observations[obs_index].s2=s2;
neh->observations[obs_index].sender_interface=sender_interface;
neh->observations[obs_index].time_ms=now;
neh->observations[obs_index].valid=1;
neh->most_recent_observation_id=obs_index;
neh->last_observation_time_ms=now;
/* force updating of stats for neighbour if we have added an observation */
neh->last_metric_update=0;
/* Update reachability metrics for node */
if (overlay_route_recalc_neighbour_metrics(neh,now))
return -1;
if (config.debug.overlayroutemonitor) overlay_route_dump();
return 0;
}
/* XXX Think about scheduling this node's score for readvertising? */
int overlay_route_recalc_node_metrics(overlay_node *n, time_ms_t now)
{
int o;
int best_score=0;
int best_observation=-1;
int reachable = REACHABLE_NONE;
overlay_interface *interface=NULL;
struct subscriber *next_hop=NULL;
// TODO assumption timeout...
if (n->subscriber->reachable&REACHABLE_ASSUMED){
reachable=n->subscriber->reachable;
interface=n->subscriber->interface;
}
if (n->neighbour_id)
{
/* Node is also a direct neighbour, so check score that way */
if (n->neighbour_id>overlay_max_neighbours||n->neighbour_id<0)
return WHY("n->neighbour_id is invalid.");
struct overlay_neighbour *neighbour=&overlay_neighbours[n->neighbour_id];
int i;
for(i=0;i<overlay_interface_count;i++)
{
if (overlay_interfaces[i].state==INTERFACE_STATE_UP &&
neighbour->scores[i]>best_score)
{
best_score=neighbour->scores[i];
best_observation=-1;
reachable=REACHABLE_BROADCAST;
interface = &overlay_interfaces[i];
// if we've probed this unicast link, preserve the status
if ((n->subscriber->reachable&REACHABLE_UNICAST) && !(n->subscriber->reachable&REACHABLE_ASSUMED))
reachable|=REACHABLE_UNICAST;
}
}
}
if (best_score<=0){
for(o=0;o<OVERLAY_MAX_OBSERVATIONS;o++)
{
// only count observations from neighbours that we *know* we have a 2 way path to
if (n->observations[o].observed_score && n->observations[o].sender->reachable&REACHABLE
&& !(n->observations[o].sender->reachable&REACHABLE_ASSUMED))
{
int discounted_score=n->observations[o].observed_score;
discounted_score-=(now-n->observations[o].rx_time)/1000;
if (discounted_score<0) discounted_score=0;
n->observations[o].corrected_score=discounted_score;
if (discounted_score>best_score) {
best_score=discounted_score;
best_observation=o;
reachable=REACHABLE_INDIRECT;
next_hop=n->observations[o].sender;
}
}
}
}
/* Think about scheduling this node's score for readvertising if its score
has changed a lot?
Really what we probably want is to advertise when the score goes up, since
if it goes down, we probably don't need to say anything at all.
*/
int diff=best_score - n->best_link_score;
if (diff>0) {
overlay_route_please_advertise(n);
if (config.debug.overlayroutemonitor) overlay_route_dump();
}
int old_best = n->best_link_score;
/* Remember new reachability information */
switch (reachable){
case REACHABLE_INDIRECT:
n->subscriber->next_hop = next_hop;
break;
case REACHABLE_BROADCAST:
case REACHABLE_BROADCAST|REACHABLE_UNICAST:
n->subscriber->interface = interface;
break;
}
n->best_link_score=best_score;
n->best_observation=best_observation;
set_reachable(n->subscriber, reachable);
if (old_best && !best_score){
INFOF("PEER UNREACHABLE, sid=%s", alloca_tohex_sid(n->subscriber->sid));
overlay_send_probe(n->subscriber, n->subscriber->address, n->subscriber->interface, OQ_MESH_MANAGEMENT);
}else if(best_score && !old_best){
INFOF("PEER REACHABLE, sid=%s", alloca_tohex_sid(n->subscriber->sid));
/* Make sure node is advertised soon */
overlay_route_please_advertise(n);
}
return 0;
}
/* Recalculate node reachability metric, but only for directly connected nodes,
i.e., link-local neighbours.
The scores should be calculated separately for each interface we can
hear the node on, so that this information can get back to the sender so that
they know the best interface to use when trying to talk to us.
For now we will calculate a weighted sum of recent reachability over some fixed
length time interval.
The sequence numbers are all based on a milli-second clock.
For mobile mesh networks we need this metric to be very fast adapting to new
paths, but to have a memory of older paths in case they are still useful.
We thus combined equally a measure of very recent reachability (in last 10
interface ticks perhaps?) with a measure of longer-term reachability (last
200 seconds perhaps?). Also, if no recent observations, then we further
limit the score.
*/
int overlay_route_recalc_neighbour_metrics(struct overlay_neighbour *n, time_ms_t now)
{
int i;
time_ms_t most_recent_observation=0;
IN();
if (!n->node)
RETURN(WHY("Neighbour is not a node"));
if (config.debug.overlayrouting)
DEBUGF("Updating neighbour metrics for %s", alloca_tohex_sid(n->node->subscriber->sid));
/* At most one update per half second */
if (n->last_metric_update == 0) {
if (config.debug.overlayrouting)
DEBUG("last update was never");
} else {
time_ms_t ago = now - n->last_metric_update;
if (ago < 500) {
if (config.debug.overlayrouting)
DEBUGF("last update was %lldms ago -- skipping", (long long)ago);
RETURN (0);
}
if (config.debug.overlayrouting)
DEBUGF("last update was %lldms ago", (long long)ago);
}
n->last_metric_update = now;
/* Somewhere to remember how many milliseconds we have seen */
int ms_observed_5sec[OVERLAY_MAX_INTERFACES];
int ms_observed_200sec[OVERLAY_MAX_INTERFACES];
for(i=0;i<OVERLAY_MAX_INTERFACES;i++) {
ms_observed_5sec[i]=0;
ms_observed_200sec[i]=0;
}
/* XXX This simple accumulation scheme does not weed out duplicates, nor weight for recency of
communication.
Also, we might like to take into account the interface we received
the announcements on. */
for(i=0;i<OVERLAY_MAX_OBSERVATIONS;i++) {
int interface_number=n->observations[i].sender_interface;
overlay_interface *interface = &overlay_interfaces[interface_number];
if (!n->observations[i].valid ||
n->observations[i].sender_interface>=OVERLAY_MAX_INTERFACES ||
interface->state!=INTERFACE_STATE_UP)
continue;
int long_interval=interface->tick_ms * 400;
int short_interval=interface->tick_ms * 10;
/* Work out the interval covered by the observation.
The times are represented as lowest 32 bits of a 64-bit
millisecond clock. This introduces modulo problems,
however by using 32-bit modulo arithmatic here, we avoid
most of them. */
unsigned int interval=n->observations[i].s2-n->observations[i].s1;
/* Check the observation age, and ignore if too old */
time_ms_t obs_age = now - n->observations[i].time_ms;
if (config.debug.overlayrouting)
DEBUGF("tallying obs: %lldms old, %ums long", obs_age,interval);
/* Ignore very large intervals (>1hour) as being likely to be erroneous.
(or perhaps a clock wrap due to the modulo arithmatic)
One tick per hour should be well and truly slow enough to do
50KB per 12 hours, which is the minimum traffic charge rate
on an expensive BGAN satellite link.
*/
if (interval>=3600000 || obs_age>long_interval)
continue;
if (config.debug.overlayrouting)
DEBUGF("adding %dms (interface %d '%s')",
interval,interface_number,
overlay_interfaces[interface_number].name);
ms_observed_200sec[interface_number]+=interval;
if (obs_age<=short_interval){
ms_observed_5sec[interface_number]+=(interval>short_interval?short_interval:interval);
}
if (n->observations[i].time_ms>most_recent_observation) most_recent_observation=n->observations[i].time_ms;
}
/* From the sum of observations calculate the metrics.
We want the score to climb quickly and then plateu.
*/
int scoreChanged=0;
for(i=0;i<OVERLAY_MAX_INTERFACES;i++) {
overlay_interface *interface = &overlay_interfaces[i];
int long_interval=interface->tick_ms * 400;
int short_interval=interface->tick_ms * 10;
int score;
if (ms_observed_200sec[i]>long_interval) ms_observed_200sec[i]=long_interval;
if (ms_observed_5sec[i]>short_interval) ms_observed_5sec[i]=short_interval;
if (ms_observed_200sec[i]==0) {
// Not observed at all
score=0;
} else {
int contrib_200=ms_observed_200sec[i]/(long_interval/128);
int contrib_5=ms_observed_5sec[i]/(short_interval/128);
if (contrib_5<1)
score=contrib_200/2;
else
score=contrib_5+contrib_200;
/* Deal with invalid sequence number ranges */
if (score<1) score=1;
if (score>255) score=255;
}
if (n->scores[i]!=score){
scoreChanged=1;
n->scores[i]=score;
}
if ((config.debug.overlayrouting)&&score)
DEBUGF("Neighbour score on interface #%d = %d (observations for %dms)",i,score,ms_observed_200sec[i]);
}
if (scoreChanged)
overlay_route_recalc_node_metrics(n->node, now);
RETURN(0);
OUT();
}
/*
Self-announcement acks bounce back to the self-announcer from immediate neighbours
who report the link score they have calculated based on listening to self-announces
from that peer. By acking them these scores then get to the originator, who then
has a score for the link to their neighbour, which is measuring the correct
direction of the link.
Frames consist of 32bit timestamp in seconds followed by zero or more entries
of the format:
8bits - link score
8bits - interface number
this is followed by a 00 byte to indicate the end.
That way we don't waste lots of bytes on single-interface nodes.
(But I am sure we can do better).
These link scores should get stored in our node list as compared to our neighbour list,
with the node itself listed as the nexthop that the score is associated with.
*/
int overlay_route_saw_selfannounce_ack(struct overlay_frame *f,long long now)
{
IN();
if (config.debug.overlayrouting)
DEBUGF("processing selfannounce ack (payload length=%d)",f->payload->sizeLimit);
if (f->payload->sizeLimit<9)
RETURN(WHY("selfannounce ack packet too short"));
unsigned int s1=ob_get_ui32(f->payload);
unsigned int s2=ob_get_ui32(f->payload);
int iface=ob_get(f->payload);
// Call something like the following for each link
overlay_route_node_can_hear_me(f->source,iface,s1,s2,now);
RETURN(0);
OUT();
}
/* if to and via are the same, then this is evidence that we can get to the
node directly. */
int overlay_route_record_link(time_ms_t now, struct subscriber *to,
struct subscriber *via,int sender_interface,
unsigned int s1,unsigned int s2,int score,
int gateways_en_route)
{
IN();
if (config.debug.overlayrouting)
DEBUGF("to=%s, via=%s, sender_interface=%d, s1=%d, s2=%d score=%d gateways_en_route=%d",
alloca_tohex_sid(to->sid), alloca_tohex_sid(via->sid), sender_interface, s1, s2,
score, gateways_en_route
);
if (sender_interface>OVERLAY_MAX_INTERFACES || score == 0) {
if (config.debug.overlayrouting)
DEBUG("invalid report");
RETURN(0);
}
overlay_node *n = get_node(to,1);
if (!n)
RETURN(WHY("Could not create entry for node"));
int slot = -1;
int i;
for (i = 0; i < OVERLAY_MAX_OBSERVATIONS; ++i) {
/* Take note of where we can find space for a fresh observation */
if (slot == -1 && n->observations[i].observed_score == 0)
slot = i;
/* If the intermediate host ("via") address and interface numbers match, then overwrite old
observation with new one */
if (n->observations[i].sender == via) {
slot = i;
break;
}
}
/* If in doubt, replace a random slot.
XXX - we should probably replace the lowest scoring slot instead, but random will work well
enough for now. */
if (slot == -1) {
slot = random() % OVERLAY_MAX_OBSERVATIONS;
if (config.debug.overlayrouting)
DEBUGF("allocate observation slot=%d", slot);
} else {
if (config.debug.overlayrouting)
DEBUGF("overwrite observation slot=%d (sender=%s interface=%u observed_score=%u rx_time=%lld)",
slot,
n->observations[slot].sender?alloca_tohex_sid(n->observations[slot].sender->sid):"[None]",
n->observations[slot].interface,
n->observations[slot].observed_score,
n->observations[slot].rx_time
);
}
n->observations[slot].observed_score=0;
n->observations[slot].gateways_en_route=gateways_en_route;
n->observations[slot].rx_time=now;
n->observations[slot].sender = via;
n->observations[slot].observed_score=score;
n->observations[slot].interface=sender_interface;
/* Remember that we have seen an observation for this node.
XXX - This should actually be set to the time that the last first-hand
observation of the node was made, so that stale information doesn't build
false belief of reachability.
This is why the timestamp field is supplied, which is just copied from the
original selfannouncement ack. We just have to register it against our
local time to interpret it (XXX which comes with some risks related to
clock-skew, but we will deal with those in due course).
*/
n->last_observation_time_ms=now;
if (s2>n->last_first_hand_observation_time_millisec)
n->last_first_hand_observation_time_millisec=s2;
overlay_route_recalc_node_metrics(n,now);
if (config.debug.overlayroutemonitor)
overlay_route_dump();
RETURN(0);
OUT();
}
int node_dump(struct subscriber *subscriber, void *context){
strbuf *b=context;
overlay_node *node = subscriber->node;
int o;
if (node){
strbuf_sprintf(*b," %s* : %d :", alloca_tohex(subscriber->sid, 7),
node->best_link_score);
for(o=0;o<OVERLAY_MAX_OBSERVATIONS;o++)
{
if (node->observations[o].observed_score)
{
overlay_node_observation *ob=&node->observations[o];
if (ob->corrected_score)
strbuf_sprintf(*b," %d/%d via %s*",
ob->corrected_score,ob->gateways_en_route,
alloca_tohex(ob->sender->sid,7));
}
}
strbuf_sprintf(*b,"\n");
}
return 0;
}
int overlay_route_dump()
{
int n,i;
time_ms_t now = gettime_ms();
strbuf b = strbuf_alloca(8192);
strbuf_sprintf(b,"Overlay Local Identities\n------------------------\n");
int cn,in,kp;
for(cn=0;cn<keyring->context_count;cn++)
for(in=0;in<keyring->contexts[cn]->identity_count;in++)
for(kp=0;kp<keyring->contexts[cn]->identities[in]->keypair_count;kp++)
if (keyring->contexts[cn]->identities[in]->keypairs[kp]->type
==KEYTYPE_CRYPTOBOX)
{
for(i=0;i<SID_SIZE;i++)
strbuf_sprintf(b,"%02x",keyring->contexts[cn]->identities[in]
->keypairs[kp]->public_key[i]);
strbuf_sprintf(b,"\n");
}
DEBUG(strbuf_str(b));
strbuf_reset(b);
strbuf_sprintf(b,"\nOverlay Neighbour Table\n------------------------\n");
for(n=0;n<overlay_neighbour_count;n++)
if (overlay_neighbours[n].node)
{
strbuf_sprintf(b," %s* : %lldms ago :",
alloca_tohex(overlay_neighbours[n].node->subscriber->sid, 7),
(long long)(now - overlay_neighbours[n].last_observation_time_ms));
for(i=0;i<OVERLAY_MAX_INTERFACES;i++)
if (overlay_neighbours[n].scores[i])
strbuf_sprintf(b," %d(via #%d)",
overlay_neighbours[n].scores[i],i);
strbuf_sprintf(b,"\n");
}
DEBUG(strbuf_str(b));
strbuf_reset(b);
strbuf_sprintf(b,"Overlay Mesh Route Table\n------------------------\n");
enum_subscribers(NULL, node_dump, &b);
DEBUG(strbuf_str(b));
return 0;
}
/* Ticking neighbours is easy; we just pretend we have heard from them again,
and recalculate the score that way, which already includes a mechanism for
taking into account the age of the most recent observation */
int overlay_route_tick_neighbour(int neighbour_id, time_ms_t now)
{
if (neighbour_id>0 && overlay_neighbours[neighbour_id].node)
if (overlay_route_recalc_neighbour_metrics(&overlay_neighbours[neighbour_id],now))
WHY("overlay_route_recalc_neighbour_metrics() failed");
return 0;
}
/* Updating the route score to get to a node it trickier, as they might not be a
neighbour. Even if they are a neighbour, all we have to go on is the node's
observations.
From these we can work out a discounted score based on their age.
XXX This is where the discounting should be modified for nodes that are
updated less often as they exhibit score stability. Actually, for the
most part we can tolerate these without any special action, as their high
scores will keep them reachable for longer anyway.
*/
int overlay_route_tick_node(struct subscriber *subscriber, void *context)
{
if (subscriber->node)
overlay_route_recalc_node_metrics(subscriber->node, gettime_ms());
return 0;
}
void overlay_route_tick(struct sched_ent *alarm)
{
int n;
time_ms_t now = gettime_ms();
/* Go through some of neighbour list */
for (n=0;n<overlay_max_neighbours;n++)
overlay_route_tick_neighbour(n,now);
/* Go through the node list */
enum_subscribers(NULL, overlay_route_tick_node, NULL);
/* Update callback interval based on how much work we have to do */
alarm->alarm = gettime_ms()+5000;
alarm->deadline = alarm->alarm+100;
schedule(alarm);
return;
}
int overlay_route_node_info(overlay_mdp_nodeinfo *node_info)
{
time_ms_t now = gettime_ms();
if (0)
DEBUGF("Looking for node %s* (prefix len=0x%x)",
alloca_tohex(node_info->sid, node_info->sid_prefix_length),
node_info->sid_prefix_length
);
node_info->foundP=0;
/* check if it is a local identity */
int cn,in,kp;
for(cn=0;cn<keyring->context_count;cn++)
for(in=0;in<keyring->contexts[cn]->identity_count;in++)
for(kp=0;kp<keyring->contexts[cn]->identities[in]->keypair_count;kp++)
if (keyring->contexts[cn]->identities[in]->keypairs[kp]->type
==KEYTYPE_CRYPTOBOX)
{
if (!memcmp(&node_info->sid[0],
&keyring->contexts[cn]->identities[in]
->keypairs[kp]->public_key[0],
node_info->sid_prefix_length/2))
{
node_info->foundP=1;
node_info->localP=1;
node_info->neighbourP=0;
node_info->time_since_last_observation = 0;
node_info->score=256;
node_info->interface_number=-1;
bcopy(&keyring->contexts[cn]->identities[in]
->keypairs[kp]->public_key[0],
&node_info->sid[0],SID_SIZE);
return 0;
}
}
struct subscriber *subscriber = find_subscriber(node_info->sid, node_info->sid_prefix_length/2, 0);
if (subscriber && subscriber->node){
overlay_node *node = subscriber->node;
node_info->foundP=1;
node_info->localP=0;
node_info->score=-1;
node_info->interface_number=-1;
bcopy(subscriber->sid,
node_info->sid,SID_SIZE);
if (subscriber->node->neighbour_id){
int n = subscriber->node->neighbour_id;
node_info->neighbourP=1;
node_info->time_since_last_observation = now - overlay_neighbours[n].last_observation_time_ms;
int i;
for(i=0;i<OVERLAY_MAX_INTERFACES;i++)
if (overlay_neighbours[n].scores[i]>node_info->score)
{
node_info->score=overlay_neighbours[n].scores[i];
node_info->interface_number=i;
}
}else{
node_info->neighbourP=0;
node_info->time_since_last_observation = -1;
int o;
for(o=0;o<OVERLAY_MAX_OBSERVATIONS;o++)
if (node->observations[o].observed_score)
{
overlay_node_observation *ob
=&node->observations[o];
if (ob->corrected_score>node_info->score) {
node_info->score=ob->corrected_score;
}
if (node_info->time_since_last_observation == -1 || now - ob->rx_time < node_info->time_since_last_observation)
node_info->time_since_last_observation = now - ob->rx_time;
}
}
}
return 0;
}