-
Notifications
You must be signed in to change notification settings - Fork 4
/
delta_2pt_v3.c
749 lines (679 loc) · 25.3 KB
/
delta_2pt_v3.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
/****************************************************
* delta_2pt_v3.c
*
* Sun Dec 4 12:09:33 EET 2011
*
* PURPOSE:
* - calculate the delta 2-point function from point sources
* - based on proton_2pt_v3;
* - do not use specific projector; save all 4x4 spinor index combinations and different Gamma version
* - try to make it completely timeslice-wise
* TODO:
* DONE:
*
****************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h>
#ifdef MPI
# include <mpi.h>
#endif
#ifdef OPENMP
#include <omp.h>
#endif
#include <getopt.h>
#define MAIN_PROGRAM
#include "ifftw.h"
#include "cvc_complex.h"
#include "ilinalg.h"
#include "icontract.h"
#include "global.h"
#include "cvc_geometry.h"
#include "cvc_utils.h"
#include "mpi_init.h"
#include "io.h"
#include "propagator_io.h"
#include "dml.h"
#include "gauge_io.h"
#include "Q_phi.h"
#include "fuzz.h"
#include "read_input_parser.h"
#include "smearing_techniques.h"
#include "make_H3orbits.h"
#include "contractions_io.h"
void usage() {
fprintf(stdout, "Code to perform contractions for proton 2-pt. function\n");
fprintf(stdout, "Usage: [options]\n");
fprintf(stdout, "Options: -v verbose [no effect, lots of stdout output]\n");
fprintf(stdout, " -f input filename [default proton.input]\n");
fprintf(stdout, " -p number of colors [default 1]\n");
fprintf(stdout, " -a write ascii output too [default no ascii output]\n");
fprintf(stdout, " -F fermion type [default Wilson fermion, id 1]\n");
fprintf(stdout, " -t number of threads for OPENMP [default 1]\n");
fprintf(stdout, " -g do random gauge transformation [default no gauge transformation]\n");
fprintf(stdout, " -h? this help\n");
#ifdef MPI
MPI_Abort(MPI_COMM_WORLD, 1);
MPI_Finalize();
#endif
exit(0);
}
int main(int argc, char **argv) {
const int n_c=3;
const int n_s=4;
const char outfile_prefix[] = "delta_2pt_v3";
int c, i, j, ll, sl, icomp;
int filename_set = 0;
int append, status;
int l_LX_at, l_LXstart_at;
int ix, idx, it, iix, x1,x2,x3;
int ir, ir1, ir2, ir3, is;
int VOL3, ia0, ia1, ia2, ib;
int do_gt=0;
int dims[3];
double *connt=NULL;
spinor_propagator_type *connq=NULL;
int verbose = 0;
int sx0, sx1, sx2, sx3;
int write_ascii=0;
int fermion_type = 1; // Wilson fermion type
int num_threads=1;
int pos;
char filename[200], contype[200], gauge_field_filename[200];
double ratime, retime;
double plaq_m, plaq_r, dsign, dtmp, dtmp2;
double *gauge_field_timeslice=NULL, *gauge_field_f=NULL;
double **chi=NULL, **chi2=NULL, **psi=NULL, **psi2=NULL, *work=NULL;
fermion_propagator_type fp1=NULL, fp2=NULL, fp3=NULL, uprop=NULL, dprop=NULL;
spinor_propagator_type sp1, sp2;
double q[3], phase, *gauge_trafo=NULL;
complex w, w1;
size_t items, bytes;
FILE *ofs;
int timeslice;
DML_Checksum ildg_gauge_field_checksum, *spinor_field_checksum=NULL, connq_checksum;
uint32_t nersc_gauge_field_checksum;
/*******************************************************************
* Gamma components for the Delta:
*/
const int num_component = 1;
int gamma_component[2][16] = { {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3}, \
{0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3}};
double gamma_component_sign[16] = {1., 1.,-1., 1., 1., 1.,-1., 1.,-1.,-1., 1.,-1., 1., 1.,-1., 1.};
/*
*******************************************************************/
fftw_complex *in=NULL;
#ifdef MPI
fftwnd_mpi_plan plan_p;
#else
fftwnd_plan plan_p;
#endif
#ifdef MPI
MPI_Status status;
#endif
#ifdef MPI
MPI_Init(&argc, &argv);
#endif
while ((c = getopt(argc, argv, "ah?vgf:t:F:")) != -1) {
switch (c) {
case 'v':
verbose = 1;
break;
case 'f':
strcpy(filename, optarg);
filename_set=1;
break;
case 'a':
write_ascii = 1;
fprintf(stdout, "# [] will write in ascii format\n");
break;
case 'F':
if(strcmp(optarg, "Wilson") == 0) {
fermion_type = _WILSON_FERMION;
} else if(strcmp(optarg, "tm") == 0) {
fermion_type = _TM_FERMION;
} else {
fprintf(stderr, "[] Error, unrecognized fermion type\n");
exit(145);
}
fprintf(stdout, "# [] will use fermion type %s ---> no. %d\n", optarg, fermion_type);
break;
case 't':
num_threads = atoi(optarg);
fprintf(stdout, "# [] number of threads set to %d\n", num_threads);
break;
case 'g':
do_gt = 1;
fprintf(stdout, "# [] will perform gauge transform\n");
break;
case 'h':
case '?':
default:
usage();
break;
}
}
/* set the default values */
if(filename_set==0) strcpy(filename, "cvc.input");
fprintf(stdout, "# reading input from file %s\n", filename);
read_input_parser(filename);
/* some checks on the input data */
if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
if(g_proc_id==0) fprintf(stdout, "T and L's must be set\n");
usage();
}
if(g_kappa == 0.) {
if(g_proc_id==0) fprintf(stdout, "kappa should be > 0.n");
usage();
}
#ifdef OPENMP
omp_set_num_threads(num_threads);
#else
fprintf(stdout, "[delta_2pt_v3] Warning, resetting global thread number to 1\n");
g_num_threads = 1;
#endif
/* initialize MPI parameters */
mpi_init(argc, argv);
#ifdef OPENMP
status = fftw_threads_init();
if(status != 0) {
fprintf(stderr, "\n[] Error from fftw_init_threads; status was %d\n", status);
exit(120);
}
#endif
/******************************************************
*
******************************************************/
VOL3 = LX*LY*LZ;
l_LX_at = LX;
l_LXstart_at = 0;
FFTW_LOC_VOLUME = T*LX*LY*LZ;
fprintf(stdout, "# [%2d] parameters:\n"\
"# [%2d] l_LX_at = %3d\n"\
"# [%2d] l_LXstart_at = %3d\n"\
"# [%2d] FFTW_LOC_VOLUME = %3d\n",
g_cart_id, g_cart_id, l_LX_at,
g_cart_id, l_LXstart_at, g_cart_id, FFTW_LOC_VOLUME);
if(init_geometry() != 0) {
fprintf(stderr, "ERROR from init_geometry\n");
exit(1);
}
geometry();
if(N_ape>0 && N_Jacobi>0) {
// alloc the gauge field
alloc_gauge_field(&g_gauge_field, VOL3);
switch(g_gauge_file_format) {
case 0:
sprintf(gauge_field_filename, "%s.%.4d", gaugefilename_prefix, Nconf);
break;
case 1:
sprintf(gauge_field_filename, "%s.%.5d", gaugefilename_prefix, Nconf);
break;
}
if(g_cart_id==0) {
fprintf(stdout, "# [] reading gauge field from file %s\n", gauge_field_filename);
fflush(stdout);
}
if(N_ape>0) {
if(g_cart_id==0) fprintf(stdout, "# apply APE smearing with parameters N_ape = %d, alpha_ape = %f\n", N_ape, alpha_ape);
fprintf(stdout, "# [] APE smearing gauge field with paramters N_APE=%d, alpha_APE=%e\n", N_ape, alpha_ape);
for(i=0; i<N_ape; i++) {
#ifdef OPENMP
APE_Smearing_Step_threads(g_gauge_field, alpha_ape);
#else
APE_Smearing_Step(g_gauge_field, alpha_ape);
#endif
}
}
plaquette(&plaq_m);
fprintf(stdout, "# [] calculated plaquette: %e\n", plaq_m);
} else {
g_gauge_field = NULL;
} // of if N_Jacobi>0
/*********************************************************************
* gauge transformation
*********************************************************************/
if(do_gt) { init_gauge_trafo(&gauge_trafo, 1.); }
// determine the source location
sx0 = g_source_location/(LX*LY*LZ)-Tstart;
sx1 = (g_source_location%(LX*LY*LZ)) / (LY*LZ);
sx2 = (g_source_location%(LY*LZ)) / LZ;
sx3 = (g_source_location%LZ);
// g_source_time_slice = sx0;
fprintf(stdout, "# [] source location %d = (%d,%d,%d,%d)\n", g_source_location, sx0, sx1, sx2, sx3);
// allocate memory for the spinor fields
g_spinor_field = NULL;
no_fields = n_s*n_c;
if(fermion_type == _TM_FERMION) {
no_fields *= 2;
}
if(N_Jacobi>0) no_fields++;
g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
for(i=0; i<no_fields-1; i++) alloc_spinor_field(&g_spinor_field[i], VOL3);
alloc_spinor_field(&g_spinor_field[no_fields-1], VOL3);
work = g_spinor_field[no_fields-1];
spinor_field_checksum = (DML_Checksum*)malloc(no_fields * sizeof(DML_Checksum) );
if(spinor_field_checksum == NULL ) {
fprintf(stderr, "[] Error, could not alloc checksums for spinor fields\n");
exit(73);
}
// allocate memory for the contractions
items = 4* num_component*T;
bytes = sizeof(double);
connt = (double*)malloc(items*bytes);
if(connt == NULL) {
fprintf(stderr, "\n[] Error, could not alloc connt\n");
exit(2);
}
for(ix=0; ix<items; ix++) connt[ix] = 0.;
items = num_component * (size_t)VOL3;
connq = create_sp_field( items );
if(connq == NULL) {
fprintf(stderr, "\n[] Error, could not alloc connq\n");
exit(2);
}
/******************************************************
* initialize FFTW
******************************************************/
items = 2 * num_component * g_sv_dim * g_sv_dim * VOL3;
bytes = sizeof(double);
in = (fftw_complex*)malloc(num_component*g_sv_dim*g_sv_dim*VOL3*sizeof(fftw_complex));
if(in == NULL) {
fprintf(stderr, "[] Error, could not malloc in for FFTW\n");
exit(155);
}
dims[0]=LX; dims[1]=LY; dims[2]=LZ;
//plan_p = fftwnd_create_plan(3, dims, FFTW_FORWARD, FFTW_MEASURE | FFTW_IN_PLACE);
plan_p = fftwnd_create_plan_specific(3, dims, FFTW_FORWARD, FFTW_MEASURE, in, num_component*g_sv_dim*g_sv_dim, (fftw_complex*)( connq[0][0] ), num_component*g_sv_dim*g_sv_dim);
// create the fermion propagator points
create_fp(&uprop);
create_fp(&dprop);
create_fp(&fp1);
create_fp(&fp2);
create_fp(&fp3);
create_sp(&sp1);
create_sp(&sp2);
/******************************************************
* loop on timeslices
******************************************************/
for(timeslice=0; timeslice<T; timeslice++) {
append = (int)( timeslice != 0 );
// read timeslice of the gauge field
if(N_ape>0 && N_Jacobi>0) {
switch(g_gauge_file_format) {
case 0:
status = read_lime_gauge_field_doubleprec_timeslice(g_gauge_field, gauge_field_filename, timeslice, &ildg_gauge_field_checksum);
break;
case 1:
status = read_nersc_gauge_field_timeslice(g_gauge_field, gauge_field_filename, timeslice, &nersc_gauge_field_checksum);
break;
}
if(status != 0) {
fprintf(stderr, "[] Error, could not read gauge field\n");
exit(21);
}
}
// read timeslice of the 12 up-type propagators and smear them
for(is=0;is<n_s*n_c;is++) {
if(do_gt == 0) {
sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d.inverted", filename_prefix, Nconf, sx0, sx1, sx2, sx3, is);
status = read_lime_spinor_timeslice(g_spinor_field[is], timeslice, filename, 0, spinor_field_checksum+is);
if(status != 0) {
fprintf(stderr, "[] Error, could not read propagator from file %s\n", filename);
exit(102);
}
if(N_Jacobi > 0) {
fprintf(stdout, "# [] Jacobi smearing propagator no. %d with paramters N_Jacobi=%d, kappa_Jacobi=%f\n",
is, N_Jacobi, kappa_Jacobi);
for(c=0; c<N_Jacobi; c++) {
#ifdef OPENMP
Jacobi_Smearing_Step_one_Timeslice_threads(g_gauge_field, g_spinor_field[is], work, kappa_Jacobi);
#else
Jacobi_Smearing_Step_one_Timeslice(g_gauge_field, g_spinor_field[is], work, kappa_Jacobi);
#endif
}
}
} else { // of if do_gt == 0
// apply gt
apply_gt_prop(gauge_trafo, g_spinor_field[is], is/n_c, is%n_c, 4, filename_prefix, g_source_location);
} // of if do_gt == 0
}
if(fermion_type == _TM_FERMION) {
// read timeslice of the 12 down-type propagators, smear them
for(is=0;is<n_s*n_c;is++) {
if(do_gt == 0) {
sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d.inverted", filename_prefix2, Nconf, sx0, sx1, sx2, sx3, is);
status = read_lime_spinor_timeslice(g_spinor_field[n_s*n_c+is], timeslice, filename, 0, spinor_field_checksum+n_s*n_c+is);
if(status != 0) {
fprintf(stderr, "[] Error, could not read propagator from file %s\n", filename);
exit(102);
}
if(N_Jacobi > 0) {
fprintf(stdout, "# [] Jacobi smearing propagator no. %d with paramters N_Jacobi=%d, kappa_Jacobi=%f\n",
is, N_Jacobi, kappa_Jacobi);
for(c=0; c<N_Jacobi; c++) {
#ifdef OPENMP
Jacobi_Smearing_Step_one_Timeslice_threads(g_gauge_field, g_spinor_field[n_s*n_c+is], work, kappa_Jacobi);
#else
Jacobi_Smearing_Step_one_Timeslice(g_gauge_field, g_spinor_field[n_s*n_c+is], work, kappa_Jacobi);
#endif
}
}
} else { // of if do_gt == 0
// apply gt
apply_gt_prop(gauge_trafo, g_spinor_field[is], is/n_c, is%n_c, 4, filename_prefix, g_source_location);
} // of if do_gt == 0
}
}
/******************************************************
* contractions
******************************************************/
for(ix=0;ix<VOL3;ix++)
// for(ix=0;ix<2;ix++)
{
// assign the propagators
_assign_fp_point_from_field(uprop, g_spinor_field, ix);
if(fermion_type==_TM_FERMION) {
_assign_fp_point_from_field(dprop, g_spinor_field+n_s*n_c, ix);
} else {
_fp_eq_fp(dprop, uprop);
}
// flavor rotation for twisted mass fermions
if(fermion_type == _TM_FERMION) {
_fp_eq_rot_ti_fp(fp1, uprop, +1, fermion_type, fp2);
_fp_eq_fp_ti_rot(uprop, fp1, +1, fermion_type, fp2);
_fp_eq_rot_ti_fp(fp1, dprop, -1, fermion_type, fp2);
_fp_eq_fp_ti_rot(dprop, fp1, -1, fermion_type, fp2);
}
for(icomp=0; icomp<num_component; icomp++) {
/******************************************************
* first contribution
******************************************************/
// S_u x C Gamma_1 = S_u x g0 g2 Gamma_2
_fp_eq_fp_ti_gamma(fp1, 0, uprop);
_fp_eq_fp_ti_gamma(fp3, 2, fp1);
_fp_eq_fp_ti_gamma(fp1, gamma_component[icomp][1], fp3);
// C Gamma_1 x S_d
_fp_eq_gamma_ti_fp(fp2, gamma_component[icomp][0], dprop);
_fp_eq_gamma_ti_fp(fp3, 2, fp2);
_fp_eq_gamma_ti_fp(fp2, 0, fp3);
// first part
// reduce
_fp_eq_zero(fp3);
_fp_eq_fp_eps_contract13_fp(fp3, fp1, fp2);
// reduce to spin propagator
_sp_eq_zero( sp1 );
_sp_eq_fp_del_contract34_fp(sp1, uprop, fp3);
// second part
// reduce
_fp_eq_zero(fp3);
_fp_eq_fp_eps_contract24_fp(fp3, fp1, fp2);
// reduce to spin propagator
_sp_eq_zero( sp2 );
_sp_eq_fp_del_contract23_fp(sp2, fp3, uprop);
// add and assign
_sp_pl_eq_sp(sp1, sp2);
_sp_eq_sp_ti_re(sp2, sp1, -4.*gamma_component_sign[icomp]);
_sp_eq_sp( connq[ix], sp2);
/******************************************************
* second contribution
******************************************************/
// first part
// S_u x C Gamma_2
_fp_eq_fp_ti_gamma(fp1, 0, uprop);
_fp_eq_fp_ti_gamma(fp3, 2, fp1);
_fp_eq_fp_ti_gamma(fp1, gamma_component[icomp][1], fp3);
// C Gamma_1 x S_u (same S_u as above)
_fp_eq_gamma_ti_fp(fp2, gamma_component[icomp][0], fp1);
_fp_eq_gamma_ti_fp(fp3, 2, fp2);
_fp_eq_gamma_ti_fp(fp1, 0, fp3);
// reduce
_fp_eq_zero(fp3);
_fp_eq_fp_eps_contract13_fp(fp3, fp1, uprop);
// reduce to spin propagator
_sp_eq_zero( sp1 );
_sp_eq_fp_del_contract34_fp(sp1, dprop, fp3);
// second part
// S_u x C Gamma_2
_fp_eq_fp_ti_gamma(fp1, 0, uprop);
_fp_eq_fp_ti_gamma(fp3, 2, fp1);
_fp_eq_fp_ti_gamma(fp1, gamma_component[icomp][1], fp3);
// C Gamma_1 x S_u (different S_u than above)
_fp_eq_gamma_ti_fp(fp2, gamma_component[icomp][0], uprop);
_fp_eq_gamma_ti_fp(fp3, 2, fp2);
_fp_eq_gamma_ti_fp(fp2, 0, fp3);
// reduce
_fp_eq_zero(fp3);
_fp_eq_fp_eps_contract13_fp(fp3, fp1, fp2);
// reduce to spin propagator
_sp_eq_zero( sp2 );
_sp_eq_fp_del_contract34_fp(sp2, dprop, fp3);
// add and assign
_sp_pl_eq_sp(sp1, sp2);
_sp_eq_sp_ti_re(sp2, sp1, -gamma_component_sign[icomp]);
_sp_pl_eq_sp( connq[ix], sp2);
/******************************************************
* third contribution
******************************************************/
// first part
// S_u x C Gamma_2
_fp_eq_fp_ti_gamma(fp1, 0, uprop);
_fp_eq_fp_ti_gamma(fp3, 2, fp1);
_fp_eq_fp_ti_gamma(fp1, gamma_component[icomp][1], fp3);
// C Gamma_1 x S_d
_fp_eq_gamma_ti_fp(fp2, gamma_component[icomp][0], dprop);
_fp_eq_gamma_ti_fp(fp3, 2, fp2);
_fp_eq_gamma_ti_fp(fp2, 0, fp3);
// reduce
_fp_eq_zero(fp3);
_fp_eq_fp_eps_contract24_fp(fp3, fp1, uprop);
// reduce to spin propagator
_sp_eq_zero( sp1 );
_sp_eq_fp_del_contract23_fp(sp1, fp3, fp2);
// second part
// reduce
_fp_eq_zero(fp3);
_fp_eq_fp_eps_contract24_fp(fp3, uprop, fp1);
// reduce to spin propagator
_sp_eq_zero( sp2 );
_sp_eq_fp_del_contract23_fp(sp2, fp3, fp2);
// add and assign
_sp_pl_eq_sp(sp1, sp2);
_sp_eq_sp_ti_re(sp2, sp1, -2.*gamma_component_sign[icomp]);
_sp_pl_eq_sp( connq[ix], sp2);
/******************************************************
* fourth contribution
******************************************************/
// first part
// S_u x C Gamma_2
_fp_eq_fp_ti_gamma(fp1, 0, uprop);
_fp_eq_fp_ti_gamma(fp3, 2, fp1);
_fp_eq_fp_ti_gamma(fp1, gamma_component[icomp][1], fp3);
// C Gamma_1 x S_u (same S_u as above)
_fp_eq_gamma_ti_fp(fp2, gamma_component[icomp][0], fp1);
_fp_eq_gamma_ti_fp(fp3, 2, fp2);
_fp_eq_gamma_ti_fp(fp1, 0, fp3);
// reduce
_fp_eq_zero(fp3);
_fp_eq_fp_eps_contract13_fp(fp3, uprop, fp1);
// reduce to spin propagator
_sp_eq_zero( sp1 );
_sp_eq_fp_del_contract24_fp(sp1, dprop, fp3);
// second part
// S_u x C Gamma_2
_fp_eq_fp_ti_gamma(fp1, 0, uprop);
_fp_eq_fp_ti_gamma(fp3, 2, fp1);
_fp_eq_fp_ti_gamma(fp1, gamma_component[icomp][1], fp3);
// C Gamma_1 x S_u (different S_u than above)
_fp_eq_gamma_ti_fp(fp2, gamma_component[icomp][0], uprop);
_fp_eq_gamma_ti_fp(fp3, 2, fp2);
_fp_eq_gamma_ti_fp(fp2, 0, fp3);
// reduce
_fp_eq_zero(fp3);
_fp_eq_fp_eps_contract13_fp(fp3, fp2, fp1);
// reduce to spin propagator
_sp_eq_zero( sp2 );
_sp_eq_fp_del_contract24_fp(sp2, dprop, fp3);
// add and assign
_sp_pl_eq_sp(sp1, sp2);
_sp_eq_sp_ti_re(sp2, sp1, -2.*gamma_component_sign[icomp]);
_sp_pl_eq_sp( connq[ix], sp2);
} // of icomp
} // of ix
/***********************************************
* finish calculation of connq
***********************************************/
if(g_propagator_bc_type == 0) {
// multiply with phase factor
fprintf(stdout, "# [] multiplying timeslice %d with boundary phase factor\n", timeslice);
ir = (timeslice - sx0 + T_global) % T_global;
w1.re = cos( 3. * M_PI*(double)ir / (double)T_global );
w1.im = sin( 3. * M_PI*(double)ir / (double)T_global );
for(ix=0;ix<num_component*VOL3;ix++) {
_sp_eq_sp(sp1, connq[ix] );
_sp_eq_sp_ti_co( connq[ix], sp1, w1);
}
} else if (g_propagator_bc_type == 1) {
// multiply with step function
if(timeslice < sx0) {
fprintf(stdout, "# [] multiplying timeslice %d with boundary step function\n", timeslice);
for(ix=0;ix<num_component*VOL3;ix++) {
_sp_eq_sp(sp1, connq[ix] );
_sp_eq_sp_ti_re( connq[ix], sp1, -1.);
}
}
}
if(write_ascii) {
sprintf(filename, "%s_x.%.4d.t%.2dx%.2dy%.2dz%.2d.ascii", outfile_prefix, Nconf, sx0, sx1, sx2, sx3);
write_contraction2( connq[0][0], filename, num_component*g_sv_dim*g_sv_dim, VOL3, 1, append);
}
/******************************************************************
* Fourier transform
******************************************************************/
items = 2 * num_component * g_sv_dim * g_sv_dim * VOL3;
bytes = sizeof(double);
memcpy(in, connq[0][0], items * bytes);
ir = num_component * g_sv_dim * g_sv_dim;
#ifdef OPENMP
fftwnd_threads(num_threads, plan_p, ir, in, ir, 1, (fftw_complex*)(connq[0][0]), ir, 1);
#else
fftwnd(plan_p, ir, in, ir, 1, (fftw_complex*)(connq[0][0]), ir, 1);
#endif
// add phase factor from the source location
iix = 0;
for(x1=0;x1<LX;x1++) {
q[0] = (double)x1 / (double)LX;
for(x2=0;x2<LY;x2++) {
q[1] = (double)x2 / (double)LY;
for(x3=0;x3<LZ;x3++) {
q[2] = (double)x3 / (double)LZ;
phase = 2. * M_PI * ( q[0]*sx1 + q[1]*sx2 + q[2]*sx3 );
w1.re = cos(phase);
w1.im = sin(phase);
for(icomp=0; icomp<num_component; icomp++) {
_sp_eq_sp(sp1, connq[iix] );
_sp_eq_sp_ti_co( connq[iix], sp1, w1) ;
iix++;
}
}}} // of x3, x2, x1
// write to file
sprintf(filename, "%s_q.%.4d.t%.2dx%.2dy%.2dz%.2d", outfile_prefix, Nconf, sx0, sx1, sx2, sx3);
sprintf(contype, "2-pt. function, (t,q_1,q_2,q_3)-dependent, source_timeslice = %d", sx0);
write_lime_contraction_timeslice(connq[0][0], filename, 64, num_component*g_sv_dim*g_sv_dim, contype, Nconf, 0, &connq_checksum, timeslice);
if(write_ascii) {
strcat(filename, ".ascii");
write_contraction2(connq[0][0],filename, num_component*g_sv_dim*g_sv_dim, VOL3, 1, append);
}
/***********************************************
* calculate connt
***********************************************/
for(icomp=0;icomp<num_component; icomp++) {
// fwd
_sp_eq_sp(sp1, connq[icomp]);
_sp_eq_gamma_ti_sp(sp2, 0, sp1);
_sp_pl_eq_sp(sp1, sp2);
_co_eq_tr_sp(&w, sp1);
connt[2*(icomp*T + timeslice) ] += w.re * 0.25;
connt[2*(icomp*T + timeslice)+1] += w.im * 0.25;
// bwd
_sp_eq_sp(sp1, connq[icomp]);
_sp_eq_gamma_ti_sp(sp2, 0, sp1);
_sp_mi_eq_sp(sp1, sp2);
_co_eq_tr_sp(&w, sp1);
connt[2*(icomp*T+timeslice + num_component*T) ] += w.re * 0.25;
connt[2*(icomp*T+timeslice + num_component*T)+1] += w.im * 0.25;
}
} // of loop on timeslice
// write connt
sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.fw", outfile_prefix, Nconf, sx0, sx1, sx2, sx3);
ofs = fopen(filename, "w");
if(ofs == NULL) {
fprintf(stderr, "[] Error, could not open file %s for writing\n", filename);
exit(3);
}
fprintf(ofs, "#%12.8f%3d%3d%3d%3d%8.4f%6d\n", g_kappa, T_global, LX, LY, LZ, g_mu, Nconf);
for(icomp=0; icomp<num_component; icomp++) {
ir = sx0;
fprintf(ofs, "%3d%3d%3d%16.7e%16.7e%6d\n", 0, icomp, 0, connt[2*(icomp*T+ir)], 0., Nconf);
for(it=1;it<T/2;it++) {
ir = ( it + sx0 ) % T_global;
ir2 = ( (T_global - it) + sx0 ) % T_global;
fprintf(ofs, "%3d%3d%3d%16.7e%16.7e%6d\n", 0, icomp, it, connt[2*(icomp*T+ir)], connt[2*(icomp*T+ir2)], Nconf);
}
ir = ( it + sx0 ) % T_global;
fprintf(ofs, "%3d%3d%3d%16.7e%16.7e%6d\n", 0, icomp, it, connt[2*(icomp*T+ir)], 0., Nconf);
}
fclose(ofs);
sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.bw", outfile_prefix, Nconf, sx0, sx1, sx2, sx3);
ofs = fopen(filename, "w");
if(ofs == NULL) {
fprintf(stderr, "[] Error, could not open file %s for writing\n", filename);
exit(3);
}
fprintf(ofs, "#%12.8f%3d%3d%3d%3d%8.4f%6d\n", g_kappa, T_global, LX, LY, LZ, g_mu, Nconf);
for(icomp=0; icomp<num_component; icomp++) {
ir = sx0;
fprintf(ofs, "%3d%3d%3d%16.7e%16.7e%6d\n", 0, icomp, 0, connt[2*(num_component*T+icomp*T+ir)], 0., Nconf);
for(it=1;it<T/2;it++) {
ir = ( it + sx0 ) % T_global;
ir2 = ( (T_global - it) + sx0 ) % T_global;
fprintf(ofs, "%3d%3d%3d%16.7e%16.7e%6d\n", 0, icomp, it, connt[2*(num_component*T+icomp*T+ir)], connt[2*(num_component*T+icomp*T+ir2)], Nconf);
}
ir = ( it + sx0 ) % T_global;
fprintf(ofs, "%3d%3d%3d%16.7e%16.7e%6d\n", 0, icomp, it, connt[2*(num_component*T+icomp*T+ir)], 0., Nconf);
}
fclose(ofs);
/***********************************************
* free the allocated memory, finalize
***********************************************/
free_geometry();
if(connt!= NULL) free(connt);
if(connq!= NULL) free(connq);
if(gauge_trafo != NULL) free(gauge_trafo);
if(g_spinor_field!=NULL) {
for(i=0; i<no_fields; i++) free(g_spinor_field[i]);
free(g_spinor_field); g_spinor_field=(double**)NULL;
}
if(spinor_field_checksum !=NULL) free(spinor_field_checksum);
// create the fermion propagator points
free_fp( &uprop );
free_fp( &dprop );
free_fp( &fp1 );
free_fp( &fp2 );
free_fp( &fp3 );
free_sp( &sp1 );
free_sp( &sp2 );
free(in);
fftwnd_destroy_plan(plan_p);
g_the_time = time(NULL);
fprintf(stdout, "# [] %s# [] end fo run\n", ctime(&g_the_time));
fflush(stdout);
fprintf(stderr, "# [] %s# [] end fo run\n", ctime(&g_the_time));
fflush(stderr);
#ifdef MPI
MPI_Finalize();
#endif
return(0);
}