-
Notifications
You must be signed in to change notification settings - Fork 0
/
lmathlib.c
781 lines (637 loc) · 19.2 KB
/
lmathlib.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
/*
** $Id: lmathlib.c $
** Standard mathematical library
** See Copyright Notice in lua.h
*/
#define lmathlib_c
#define LUA_LIB
#include "lprefix.h"
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include "lua.h"
#include "lauxlib.h"
#include "lualib.h"
#undef PI
#define PI (l_mathop(3.141592653589793238462643383279502884))
static int math_abs (lua_State *L) {
if (lua_isinteger(L, 1)) {
lua_Integer n = lua_tointeger(L, 1);
if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n);
lua_pushinteger(L, n);
}
else
lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1)));
return 1;
}
static int math_sin (lua_State *L) {
lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1)));
return 1;
}
static int math_cos (lua_State *L) {
lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1)));
return 1;
}
static int math_tan (lua_State *L) {
lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1)));
return 1;
}
static int math_asin (lua_State *L) {
lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1)));
return 1;
}
static int math_acos (lua_State *L) {
lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1)));
return 1;
}
static int math_atan (lua_State *L) {
lua_Number y = luaL_checknumber(L, 1);
lua_Number x = luaL_optnumber(L, 2, 1);
lua_pushnumber(L, l_mathop(atan2)(y, x));
return 1;
}
static int math_toint (lua_State *L) {
int valid;
lua_Integer n = lua_tointegerx(L, 1, &valid);
if (l_likely(valid))
lua_pushinteger(L, n);
else {
luaL_checkany(L, 1);
luaL_pushfail(L); /* value is not convertible to integer */
}
return 1;
}
static void pushnumint (lua_State *L, lua_Number d) {
lua_Integer n;
if (lua_numbertointeger(d, &n)) /* does 'd' fit in an integer? */
lua_pushinteger(L, n); /* result is integer */
else
lua_pushnumber(L, d); /* result is float */
}
static int math_floor (lua_State *L) {
if (lua_isinteger(L, 1))
lua_settop(L, 1); /* integer is its own floor */
else {
lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1));
pushnumint(L, d);
}
return 1;
}
static int math_ceil (lua_State *L) {
if (lua_isinteger(L, 1))
lua_settop(L, 1); /* integer is its own ceil */
else {
lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1));
pushnumint(L, d);
}
return 1;
}
static int math_fmod (lua_State *L) {
if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) {
lua_Integer d = lua_tointeger(L, 2);
if ((lua_Unsigned)d + 1u <= 1u) { /* special cases: -1 or 0 */
luaL_argcheck(L, d != 0, 2, "zero");
lua_pushinteger(L, 0); /* avoid overflow with 0x80000... / -1 */
}
else
lua_pushinteger(L, lua_tointeger(L, 1) % d);
}
else
lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1),
luaL_checknumber(L, 2)));
return 1;
}
/*
** next function does not use 'modf', avoiding problems with 'double*'
** (which is not compatible with 'float*') when lua_Number is not
** 'double'.
*/
static int math_modf (lua_State *L) {
if (lua_isinteger(L ,1)) {
lua_settop(L, 1); /* number is its own integer part */
lua_pushnumber(L, 0); /* no fractional part */
}
else {
lua_Number n = luaL_checknumber(L, 1);
/* integer part (rounds toward zero) */
lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n);
pushnumint(L, ip);
/* fractional part (test needed for inf/-inf) */
lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip));
}
return 2;
}
static int math_sqrt (lua_State *L) {
lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1)));
return 1;
}
static int math_ult (lua_State *L) {
lua_Integer a = luaL_checkinteger(L, 1);
lua_Integer b = luaL_checkinteger(L, 2);
lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b);
return 1;
}
static int math_log (lua_State *L) {
lua_Number x = luaL_checknumber(L, 1);
lua_Number res;
if (lua_isnoneornil(L, 2))
res = l_mathop(log)(x);
else {
lua_Number base = luaL_checknumber(L, 2);
#if !defined(LUA_USE_C89)
if (base == l_mathop(2.0))
res = l_mathop(log2)(x);
else
#endif
if (base == l_mathop(10.0))
res = l_mathop(log10)(x);
else
res = l_mathop(log)(x)/l_mathop(log)(base);
}
lua_pushnumber(L, res);
return 1;
}
static int math_exp (lua_State *L) {
lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1)));
return 1;
}
static int math_deg (lua_State *L) {
lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI));
return 1;
}
static int math_rad (lua_State *L) {
lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0)));
return 1;
}
static int math_min (lua_State *L) {
int n = lua_gettop(L); /* number of arguments */
int imin = 1; /* index of current minimum value */
int i;
luaL_argcheck(L, n >= 1, 1, "value expected");
for (i = 2; i <= n; i++) {
if (lua_compare(L, i, imin, LUA_OPLT))
imin = i;
}
lua_pushvalue(L, imin);
return 1;
}
static int math_max (lua_State *L) {
int n = lua_gettop(L); /* number of arguments */
int imax = 1; /* index of current maximum value */
int i;
luaL_argcheck(L, n >= 1, 1, "value expected");
for (i = 2; i <= n; i++) {
if (lua_compare(L, imax, i, LUA_OPLT))
imax = i;
}
lua_pushvalue(L, imax);
return 1;
}
static int math_type (lua_State *L) {
if (lua_type(L, 1) == LUA_TNUMBER)
lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float");
else {
luaL_checkany(L, 1);
luaL_pushfail(L);
}
return 1;
}
/*
** {==================================================================
** Pseudo-Random Number Generator based on 'xoshiro256**'.
** ===================================================================
*/
/*
** This code uses lots of shifts. ANSI C does not allow shifts greater
** than or equal to the width of the type being shifted, so some shifts
** are written in convoluted ways to match that restriction. For
** preprocessor tests, it assumes a width of 32 bits, so the maximum
** shift there is 31 bits.
*/
/* number of binary digits in the mantissa of a float */
#define FIGS l_floatatt(MANT_DIG)
#if FIGS > 64
/* there are only 64 random bits; use them all */
#undef FIGS
#define FIGS 64
#endif
/*
** LUA_RAND32 forces the use of 32-bit integers in the implementation
** of the PRN generator (mainly for testing).
*/
#if !defined(LUA_RAND32) && !defined(Rand64)
/* try to find an integer type with at least 64 bits */
#if ((ULONG_MAX >> 31) >> 31) >= 3
/* 'long' has at least 64 bits */
#define Rand64 unsigned long
#define SRand64 long
#elif !defined(LUA_USE_C89) && defined(LLONG_MAX)
/* there is a 'long long' type (which must have at least 64 bits) */
#define Rand64 unsigned long long
#define SRand64 long long
#elif ((LUA_MAXUNSIGNED >> 31) >> 31) >= 3
/* 'lua_Unsigned' has at least 64 bits */
#define Rand64 lua_Unsigned
#define SRand64 lua_Integer
#endif
#endif
#if defined(Rand64) /* { */
/*
** Standard implementation, using 64-bit integers.
** If 'Rand64' has more than 64 bits, the extra bits do not interfere
** with the 64 initial bits, except in a right shift. Moreover, the
** final result has to discard the extra bits.
*/
/* avoid using extra bits when needed */
#define trim64(x) ((x) & 0xffffffffffffffffu)
/* rotate left 'x' by 'n' bits */
static Rand64 rotl (Rand64 x, int n) {
return (x << n) | (trim64(x) >> (64 - n));
}
static Rand64 nextrand (Rand64 *state) {
Rand64 state0 = state[0];
Rand64 state1 = state[1];
Rand64 state2 = state[2] ^ state0;
Rand64 state3 = state[3] ^ state1;
Rand64 res = rotl(state1 * 5, 7) * 9;
state[0] = state0 ^ state3;
state[1] = state1 ^ state2;
state[2] = state2 ^ (state1 << 17);
state[3] = rotl(state3, 45);
return res;
}
/*
** Convert bits from a random integer into a float in the
** interval [0,1), getting the higher FIG bits from the
** random unsigned integer and converting that to a float.
** Some old Microsoft compilers cannot cast an unsigned long
** to a floating-point number, so we use a signed long as an
** intermediary. When lua_Number is float or double, the shift ensures
** that 'sx' is non negative; in that case, a good compiler will remove
** the correction.
*/
/* must throw out the extra (64 - FIGS) bits */
#define shift64_FIG (64 - FIGS)
/* 2^(-FIGS) == 2^-1 / 2^(FIGS-1) */
#define scaleFIG (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1)))
static lua_Number I2d (Rand64 x) {
SRand64 sx = (SRand64)(trim64(x) >> shift64_FIG);
lua_Number res = (lua_Number)(sx) * scaleFIG;
if (sx < 0)
res += l_mathop(1.0); /* correct the two's complement if negative */
lua_assert(0 <= res && res < 1);
return res;
}
/* convert a 'Rand64' to a 'lua_Unsigned' */
#define I2UInt(x) ((lua_Unsigned)trim64(x))
/* convert a 'lua_Unsigned' to a 'Rand64' */
#define Int2I(x) ((Rand64)(x))
#else /* no 'Rand64' }{ */
/* get an integer with at least 32 bits */
#if LUAI_IS32INT
typedef unsigned int lu_int32;
#else
typedef unsigned long lu_int32;
#endif
/*
** Use two 32-bit integers to represent a 64-bit quantity.
*/
typedef struct Rand64 {
lu_int32 h; /* higher half */
lu_int32 l; /* lower half */
} Rand64;
/*
** If 'lu_int32' has more than 32 bits, the extra bits do not interfere
** with the 32 initial bits, except in a right shift and comparisons.
** Moreover, the final result has to discard the extra bits.
*/
/* avoid using extra bits when needed */
#define trim32(x) ((x) & 0xffffffffu)
/*
** basic operations on 'Rand64' values
*/
/* build a new Rand64 value */
static Rand64 packI (lu_int32 h, lu_int32 l) {
Rand64 result;
result.h = h;
result.l = l;
return result;
}
/* return i << n */
static Rand64 Ishl (Rand64 i, int n) {
lua_assert(n > 0 && n < 32);
return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n);
}
/* i1 ^= i2 */
static void Ixor (Rand64 *i1, Rand64 i2) {
i1->h ^= i2.h;
i1->l ^= i2.l;
}
/* return i1 + i2 */
static Rand64 Iadd (Rand64 i1, Rand64 i2) {
Rand64 result = packI(i1.h + i2.h, i1.l + i2.l);
if (trim32(result.l) < trim32(i1.l)) /* carry? */
result.h++;
return result;
}
/* return i * 5 */
static Rand64 times5 (Rand64 i) {
return Iadd(Ishl(i, 2), i); /* i * 5 == (i << 2) + i */
}
/* return i * 9 */
static Rand64 times9 (Rand64 i) {
return Iadd(Ishl(i, 3), i); /* i * 9 == (i << 3) + i */
}
/* return 'i' rotated left 'n' bits */
static Rand64 rotl (Rand64 i, int n) {
lua_assert(n > 0 && n < 32);
return packI((i.h << n) | (trim32(i.l) >> (32 - n)),
(trim32(i.h) >> (32 - n)) | (i.l << n));
}
/* for offsets larger than 32, rotate right by 64 - offset */
static Rand64 rotl1 (Rand64 i, int n) {
lua_assert(n > 32 && n < 64);
n = 64 - n;
return packI((trim32(i.h) >> n) | (i.l << (32 - n)),
(i.h << (32 - n)) | (trim32(i.l) >> n));
}
/*
** implementation of 'xoshiro256**' algorithm on 'Rand64' values
*/
static Rand64 nextrand (Rand64 *state) {
Rand64 res = times9(rotl(times5(state[1]), 7));
Rand64 t = Ishl(state[1], 17);
Ixor(&state[2], state[0]);
Ixor(&state[3], state[1]);
Ixor(&state[1], state[2]);
Ixor(&state[0], state[3]);
Ixor(&state[2], t);
state[3] = rotl1(state[3], 45);
return res;
}
/*
** Converts a 'Rand64' into a float.
*/
/* an unsigned 1 with proper type */
#define UONE ((lu_int32)1)
#if FIGS <= 32
/* 2^(-FIGS) */
#define scaleFIG (l_mathop(0.5) / (UONE << (FIGS - 1)))
/*
** get up to 32 bits from higher half, shifting right to
** throw out the extra bits.
*/
static lua_Number I2d (Rand64 x) {
lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS));
return h * scaleFIG;
}
#else /* 32 < FIGS <= 64 */
/* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */
#define scaleFIG \
(l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33)))
/*
** use FIGS - 32 bits from lower half, throwing out the other
** (32 - (FIGS - 32)) = (64 - FIGS) bits
*/
#define shiftLOW (64 - FIGS)
/*
** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32)
*/
#define shiftHI ((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0))
static lua_Number I2d (Rand64 x) {
lua_Number h = (lua_Number)trim32(x.h) * shiftHI;
lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW);
return (h + l) * scaleFIG;
}
#endif
/* convert a 'Rand64' to a 'lua_Unsigned' */
static lua_Unsigned I2UInt (Rand64 x) {
return (((lua_Unsigned)trim32(x.h) << 31) << 1) | (lua_Unsigned)trim32(x.l);
}
/* convert a 'lua_Unsigned' to a 'Rand64' */
static Rand64 Int2I (lua_Unsigned n) {
return packI((lu_int32)((n >> 31) >> 1), (lu_int32)n);
}
#endif /* } */
/*
** A state uses four 'Rand64' values.
*/
typedef struct {
Rand64 s[4];
} RanState;
/*
** Project the random integer 'ran' into the interval [0, n].
** Because 'ran' has 2^B possible values, the projection can only be
** uniform when the size of the interval is a power of 2 (exact
** division). Otherwise, to get a uniform projection into [0, n], we
** first compute 'lim', the smallest Mersenne number not smaller than
** 'n'. We then project 'ran' into the interval [0, lim]. If the result
** is inside [0, n], we are done. Otherwise, we try with another 'ran',
** until we have a result inside the interval.
*/
static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n,
RanState *state) {
if ((n & (n + 1)) == 0) /* is 'n + 1' a power of 2? */
return ran & n; /* no bias */
else {
lua_Unsigned lim = n;
/* compute the smallest (2^b - 1) not smaller than 'n' */
lim |= (lim >> 1);
lim |= (lim >> 2);
lim |= (lim >> 4);
lim |= (lim >> 8);
lim |= (lim >> 16);
#if (LUA_MAXUNSIGNED >> 31) >= 3
lim |= (lim >> 32); /* integer type has more than 32 bits */
#endif
lua_assert((lim & (lim + 1)) == 0 /* 'lim + 1' is a power of 2, */
&& lim >= n /* not smaller than 'n', */
&& (lim >> 1) < n); /* and it is the smallest one */
while ((ran &= lim) > n) /* project 'ran' into [0..lim] */
ran = I2UInt(nextrand(state->s)); /* not inside [0..n]? try again */
return ran;
}
}
static int math_random (lua_State *L) {
lua_Integer low, up;
lua_Unsigned p;
RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
Rand64 rv = nextrand(state->s); /* next pseudo-random value */
switch (lua_gettop(L)) { /* check number of arguments */
case 0: { /* no arguments */
lua_pushnumber(L, I2d(rv)); /* float between 0 and 1 */
return 1;
}
case 1: { /* only upper limit */
low = 1;
up = luaL_checkinteger(L, 1);
if (up == 0) { /* single 0 as argument? */
lua_pushinteger(L, I2UInt(rv)); /* full random integer */
return 1;
}
break;
}
case 2: { /* lower and upper limits */
low = luaL_checkinteger(L, 1);
up = luaL_checkinteger(L, 2);
break;
}
default: return luaL_error(L, "wrong number of arguments");
}
/* random integer in the interval [low, up] */
luaL_argcheck(L, low <= up, 1, "interval is empty");
/* project random integer into the interval [0, up - low] */
p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state);
lua_pushinteger(L, p + (lua_Unsigned)low);
return 1;
}
static void setseed (lua_State *L, Rand64 *state,
lua_Unsigned n1, lua_Unsigned n2) {
int i;
state[0] = Int2I(n1);
state[1] = Int2I(0xff); /* avoid a zero state */
state[2] = Int2I(n2);
state[3] = Int2I(0);
for (i = 0; i < 16; i++)
nextrand(state); /* discard initial values to "spread" seed */
lua_pushinteger(L, n1);
lua_pushinteger(L, n2);
}
/*
** Set a "random" seed. To get some randomness, use the current time
** and the address of 'L' (in case the machine does address space layout
** randomization).
*/
static void randseed (lua_State *L, RanState *state) {
lua_Unsigned seed1 = (lua_Unsigned)time(NULL);
lua_Unsigned seed2 = (lua_Unsigned)(size_t)L;
setseed(L, state->s, seed1, seed2);
}
static int math_randomseed (lua_State *L) {
RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
if (lua_isnone(L, 1)) {
randseed(L, state);
}
else {
lua_Integer n1 = luaL_checkinteger(L, 1);
lua_Integer n2 = luaL_optinteger(L, 2, 0);
setseed(L, state->s, n1, n2);
}
return 2; /* return seeds */
}
static const luaL_Reg randfuncs[] = {
{"random", math_random},
{"randomseed", math_randomseed},
{NULL, NULL}
};
/*
** Register the random functions and initialize their state.
*/
static void setrandfunc (lua_State *L) {
RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0);
randseed(L, state); /* initialize with a "random" seed */
lua_pop(L, 2); /* remove pushed seeds */
luaL_setfuncs(L, randfuncs, 1);
}
/* }================================================================== */
/*
** {==================================================================
** Deprecated functions (for compatibility only)
** ===================================================================
*/
#if defined(LUA_COMPAT_MATHLIB)
static int math_cosh (lua_State *L) {
lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1)));
return 1;
}
static int math_sinh (lua_State *L) {
lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1)));
return 1;
}
static int math_tanh (lua_State *L) {
lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1)));
return 1;
}
static int math_pow (lua_State *L) {
lua_Number x = luaL_checknumber(L, 1);
lua_Number y = luaL_checknumber(L, 2);
lua_pushnumber(L, l_mathop(pow)(x, y));
return 1;
}
static int math_frexp (lua_State *L) {
int e;
lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e));
lua_pushinteger(L, e);
return 2;
}
static int math_ldexp (lua_State *L) {
lua_Number x = luaL_checknumber(L, 1);
int ep = (int)luaL_checkinteger(L, 2);
lua_pushnumber(L, l_mathop(ldexp)(x, ep));
return 1;
}
static int math_log10 (lua_State *L) {
lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1)));
return 1;
}
#endif
/* }================================================================== */
static const luaL_Reg mathlib[] = {
{"abs", math_abs},
{"acos", math_acos},
{"asin", math_asin},
{"atan", math_atan},
{"ceil", math_ceil},
{"cos", math_cos},
{"deg", math_deg},
{"exp", math_exp},
{"tointeger", math_toint},
{"floor", math_floor},
{"fmod", math_fmod},
{"ult", math_ult},
{"log", math_log},
{"max", math_max},
{"min", math_min},
{"modf", math_modf},
{"rad", math_rad},
{"sin", math_sin},
{"sqrt", math_sqrt},
{"tan", math_tan},
{"type", math_type},
#if defined(LUA_COMPAT_MATHLIB)
{"atan2", math_atan},
{"cosh", math_cosh},
{"sinh", math_sinh},
{"tanh", math_tanh},
{"pow", math_pow},
{"frexp", math_frexp},
{"ldexp", math_ldexp},
{"log10", math_log10},
#endif
/* placeholders */
{"random", NULL},
{"randomseed", NULL},
{"pi", NULL},
{"huge", NULL},
{"maxinteger", NULL},
{"mininteger", NULL},
{NULL, NULL}
};
/*
** Open math library
*/
LUAMOD_API int luaopen_math (lua_State *L) {
luaL_newlib(L, mathlib);
lua_pushnumber(L, PI);
lua_setfield(L, -2, "pi");
lua_pushnumber(L, (lua_Number)HUGE_VAL);
lua_setfield(L, -2, "huge");
lua_pushinteger(L, LUA_MAXINTEGER);
lua_setfield(L, -2, "maxinteger");
lua_pushinteger(L, LUA_MININTEGER);
lua_setfield(L, -2, "mininteger");
setrandfunc(L);
return 1;
}