-
Notifications
You must be signed in to change notification settings - Fork 6
/
setup.py
90 lines (86 loc) · 3.88 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from setuptools import setup, find_packages
from os import path
import re
d = path.abspath(path.dirname(__file__))
with open(path.join(d, "README.md"), encoding="utf-8") as f:
long_description = f.read()
with open("aict_tools/__init__.py", "r") as f:
version = re.search(r'__version__ = \"(\d+[.]\d+[.]\d+)\"', f.read()).groups()[0]
extras_require = {
"pmml": [
"sklearn2pmml>=0.66",
"jpmml_evaluator>=0.2.2",
],
"onnx": ["skl2onnx", "onnxmltools", "onnxruntime~=1.0"],
"cta": ["ctapipe"],
"tests": ["pytest", "pytest-runner", "pytest-cov"],
}
extras_require["all"] = list({dep for deps in extras_require.values() for dep in deps})
setup(
name="aict_tools",
version=version,
description="Artificial Intelligence for Imaging Atmospheric Cherenkov Telescopes",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/fact-project/aict-tools",
author="Kai Brügge, Maximilian Nöthe, Jens Buss",
author_email="[email protected]",
license="MIT",
packages=find_packages(),
python_requires=">=3.7",
setup_requires=["pytest-runner"],
tests_require=["pytest"],
install_requires=[
"astropy~=4.2", # in anaconda
"click", # in anaconda
"h5py", # in anaconda
"joblib", # in anaconda
"matplotlib>=2.0", # in anaconda
"numexpr", # in anaconda
"numpy", # in anaconda
"pandas", # in anaconda
"pyfact>=0.16.0",
"python-dateutil", # in anaconda
"pytz", # in anaconda
"ruamel.yaml>=0.15.0", # in anaconda
"scikit-learn>=0.21.0", # See PEP 440, compatible releases
"tables>=3" "tqdm", # in anaconda
],
extras_require=extras_require,
zip_safe=False,
entry_points={
"console_scripts": [
"aict_train_separation_model = aict_tools.scripts.train_separation_model:main",
"aict_apply_separation_model = aict_tools.scripts.apply_separation_model:main",
"aict_train_energy_regressor = aict_tools.scripts.train_energy_regressor:main",
"aict_apply_energy_regressor = aict_tools.scripts.apply_energy_regressor:main",
"aict_train_disp_regressor = aict_tools.scripts.train_disp_regressor:main",
"aict_apply_disp_regressor = aict_tools.scripts.apply_disp_regressor:main",
"aict_train_dxdy_regressor = aict_tools.scripts.train_dxdy_regressor:main",
"aict_apply_dxdy_regressor = aict_tools.scripts.apply_dxdy_regressor:main",
"aict_split_data = aict_tools.scripts.split_data:main",
"aict_plot_separator_performance = aict_tools.scripts.plot_separator_performance:main",
"aict_plot_regressor_performance = aict_tools.scripts.plot_regressor_performance:main",
"aict_plot_disp_performance = aict_tools.scripts.plot_disp_performance:main",
"aict_plot_dxdy_performance = aict_tools.scripts.plot_dxdy_performance:main",
"aict_apply_cuts = aict_tools.scripts.apply_cuts:main",
"aict_convert_pandas2h5py = aict_tools.scripts.convert_pandas2h5py:main",
"fact_to_dl3 = aict_tools.scripts.fact_to_dl3:main",
],
},
classifiers=[
"Development Status :: 4 - Beta",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Operating System :: OS Independent",
"Programming Language :: Python",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3 :: Only",
"Topic :: Scientific/Engineering :: Astronomy",
"Topic :: Scientific/Engineering :: Physics",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Scientific/Engineering :: Information Analysis",
],
)