-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
238 lines (206 loc) · 9.89 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import paddle
class MedicalCorpus(paddle.io.Dataset):
def __init__(self, data_path, tokenizer):
self.data_path = data_path
self.tokenizer = tokenizer
# Add ids for suffixal chinese tokens in tokenized text, e.g. '##度' in '百度'.
# It should coincide with the vocab dictionary in preprocess.py.
orig_len = len(self.tokenizer)
suffix_vocab = {}
for idx, token in enumerate(range(0x4E00, 0x9FA6)):
suffix_vocab[len(self.tokenizer) + idx] = '##' + chr(token)
self.tokenizer.added_tokens_decoder.update(suffix_vocab)
self._samples, self._global_index = self._read_data_files(data_path)
def _get_data_files(self, data_path):
# Get all prefix of .npy/.npz files in the current and next-level directories.
files = [
os.path.join(data_path, f) for f in os.listdir(data_path)
if (os.path.isfile(os.path.join(data_path, f))
and '_idx.npz' in str(f))
]
files = [x.replace('_idx.npz', '') for x in files]
return files
def _read_data_files(self, data_path):
data_files = self._get_data_files(data_path)
samples = []
indexes = []
for file_id, file_name in enumerate(data_files):
for suffix in ['_ids.npy', '_idx.npz']:
if not os.path.isfile(file_name + suffix):
raise ValueError('File Not found, %s' %
(file_name + suffix))
token_ids = np.load(file_name + '_ids.npy',
mmap_mode='r',
allow_pickle=True)
samples.append(token_ids)
split_ids = np.load(file_name + '_idx.npz')
end_ids = np.cumsum(split_ids['lens'], dtype=np.int64)
file_ids = np.full(end_ids.shape, file_id)
split_ids = np.stack([file_ids, end_ids], axis=-1)
indexes.extend(split_ids)
indexes = np.stack(indexes, axis=0)
return samples, indexes
def __len__(self):
return len(self._global_index)
def __getitem__(self, index):
file_id, end_id = self._global_index[index]
start_id = 0
if index > 0:
pre_file_id, pre_end_id = self._global_index[index - 1]
if pre_file_id == file_id:
start_id = pre_end_id
word_token_ids = self._samples[file_id][start_id:end_id]
token_ids = []
is_suffix = np.zeros(word_token_ids.shape)
for idx, token_id in enumerate(word_token_ids):
token = self.tokenizer.convert_ids_to_tokens(int(token_id))
if '##' in token:
token_id = self.tokenizer.convert_tokens_to_ids(token[-1])
is_suffix[idx] = 1
token_ids.append(token_id)
return token_ids, is_suffix.astype(np.int64)
class DataCollatorForErnieHealth(object):
def __init__(self, tokenizer, mlm_prob, max_seq_length, return_dict=False):
self.tokenizer = tokenizer
self.mlm_prob = mlm_prob
self.max_seq_len = max_seq_length
self.return_dict = return_dict
self._ids = {
'cls':
self.tokenizer.convert_tokens_to_ids(self.tokenizer.cls_token),
'sep':
self.tokenizer.convert_tokens_to_ids(self.tokenizer.sep_token),
'pad':
self.tokenizer.convert_tokens_to_ids(self.tokenizer.pad_token),
'mask':
self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
}
def __call__(self, data):
masked_input_ids_a, input_ids_a, labels_a = self.mask_tokens(data)
masked_input_ids_b, input_ids_b, labels_b = self.mask_tokens(data)
masked_input_ids = paddle.concat(
[masked_input_ids_a, masked_input_ids_b], axis=0).astype('int64')
input_ids = paddle.concat([input_ids_a, input_ids_b], axis=0)
labels = paddle.concat([labels_a, labels_b], axis=0)
if self.return_dict:
return {
"input_ids": masked_input_ids,
"raw_input_ids": input_ids,
"generator_labels": labels
}
else:
return masked_input_ids, input_ids, labels
def mask_tokens(self, batch_data):
token_ids = [x[0] for x in batch_data]
is_suffix = [x[1] for x in batch_data]
# Create probability matrix where the probability of real tokens is
# self.mlm_prob, while that of others is zero.
data = self.add_special_tokens_and_set_maskprob(token_ids, is_suffix)
token_ids, is_suffix, prob_matrix = data
token_ids = paddle.to_tensor(token_ids,
dtype='int64',
stop_gradient=True)
masked_token_ids = token_ids.clone()
labels = token_ids.clone()
# Create masks for words, where '百' must be masked if '度' is masked
# for the word '百度'.
prob_matrix = prob_matrix * (1 - is_suffix)
word_mask_index = np.random.binomial(1, prob_matrix).astype('float')
is_suffix_mask = (is_suffix == 1)
word_mask_index_tmp = word_mask_index
while word_mask_index_tmp.sum() > 0:
word_mask_index_tmp = np.concatenate([
np.zeros(
(word_mask_index.shape[0], 1)), word_mask_index_tmp[:, :-1]
],
axis=1)
word_mask_index_tmp = word_mask_index_tmp * is_suffix_mask
word_mask_index += word_mask_index_tmp
word_mask_index = word_mask_index.astype('bool')
labels[~word_mask_index] = -100
# 80% replaced with [MASK].
token_mask_index = paddle.bernoulli(paddle.full(
labels.shape, 0.8)).astype('bool').numpy() & word_mask_index
masked_token_ids[token_mask_index] = self._ids['mask']
# 10% replaced with random token ids.
token_random_index = paddle.to_tensor(
paddle.bernoulli(paddle.full(labels.shape, 0.5)).astype(
'bool').numpy() & word_mask_index & ~token_mask_index)
random_tokens = paddle.randint(low=0,
high=self.tokenizer.vocab_size,
shape=labels.shape,
dtype='int64')
masked_token_ids = paddle.where(token_random_index, random_tokens,
masked_token_ids)
return masked_token_ids, token_ids, labels
def add_special_tokens_and_set_maskprob(self, token_ids, is_suffix):
batch_size = len(token_ids)
batch_token_ids = np.full((batch_size, self.max_seq_len),
self._ids['pad'])
batch_token_ids[:, 0] = self._ids['cls']
batch_is_suffix = np.full_like(batch_token_ids, -1)
prob_matrix = np.zeros_like(batch_token_ids, dtype='float32')
for idx in range(batch_size):
if len(token_ids[idx]) > self.max_seq_len - 2:
token_ids[idx] = token_ids[idx][:self.max_seq_len - 2]
is_suffix[idx] = is_suffix[idx][:self.max_seq_len - 2]
seq_len = len(token_ids[idx])
batch_token_ids[idx, seq_len + 1] = self._ids['sep']
batch_token_ids[idx, 1:seq_len + 1] = token_ids[idx]
batch_is_suffix[idx, 1:seq_len + 1] = is_suffix[idx]
prob_matrix[idx, 1:seq_len + 1] = self.mlm_prob
return batch_token_ids, batch_is_suffix, prob_matrix
def create_dataloader(dataset,
mode='train',
batch_size=1,
use_gpu=True,
data_collator=None):
"""
Creats dataloader.
Args:
dataset(obj:`paddle.io.Dataset`):
Dataset instance.
mode(obj:`str`, optional, defaults to obj:`train`):
If mode is 'train', it will shuffle the dataset randomly.
batch_size(obj:`int`, optional, defaults to 1):
The sample number of a mini-batch.
use_gpu(obj:`bool`, optional, defaults to obj:`True`):
Whether to use gpu to run.
Returns:
dataloader(obj:`paddle.io.DataLoader`): The dataloader which generates batches.
"""
if mode == 'train' and use_gpu:
sampler = paddle.io.DistributedBatchSampler(dataset=dataset,
batch_size=batch_size,
shuffle=True)
dataloader = paddle.io.DataLoader(dataset,
batch_sampler=sampler,
return_list=True,
collate_fn=data_collator,
num_workers=0)
else:
shuffle = True if mode == 'train' else False
sampler = paddle.io.BatchSampler(dataset=dataset,
batch_size=batch_size,
shuffle=shuffle)
dataloader = paddle.io.DataLoader(dataset,
batch_sampler=sampler,
return_list=True,
collate_fn=data_collator,
num_workers=0)
return dataloader