-
Notifications
You must be signed in to change notification settings - Fork 11
/
DEMO.m
41 lines (36 loc) · 1.38 KB
/
DEMO.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
%% DEMO RUN FOR ICCV 2015 SUBMITTED WORK ON:
% Learning to Divide and Conquer for Online Multi-Target Tracking
clc; clear; close all;
%% README TO RUN
% This code is obfuscated and will be released upon acceptance to protect
% authorship. Through this realease we aim at showing that our method
% behaves as detailed in the paper, producing ambiguous influence zones
% only when miss or false detections occurs and invoking appearence or
% motion cues only under these ambiguous circumstances.
%
% Before running, you need to download the images and place them inside the
% data_PETS09S2L1/images folder and data_PETS09S2L2/images folder
% respectively:
% PETS09-S2L1 -> http://tinyurl.com/oo3mxlg
% PETS09-S2L1 -> http://tinyurl.com/lrjwduw
% INSTALL - first time only, then comment it
fprintf('Compiling C files...\n');
cd CCMatlab; mexall; cd ..;
mex assignmentoptimal.c -output assignmentoptimal_mex
%% PETS
trainingSequence = 'data_PETS09S2L1';
testingSequence = 'data_PETS09S2L1';
modelName = 'pets.mat';
dotraining = 1;
mymodel.w = [5;1;1;1;1;1;1]; % INIT FOR TRAINING
showresults = 1;
%% TRAINING
if dotraining
fprintf('TRAINING\n');
mymodel = mainLDCT(trainingSequence, 1, mymodel, showresults);
save(modelName, 'mymodel');
end
%% TESTING
fprintf('TESTING\n');
load(modelName);
mainLDCT(testingSequence, 0, mymodel, showresults);