欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
# 动态规划:一样的套路,再求一次完全平方数题目地址:https://leetcode-cn.com/problems/perfect-squares/
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
示例 1: 输入:n = 12 输出:3 解释:12 = 4 + 4 + 4
示例 2: 输入:n = 13 输出:2 解释:13 = 4 + 9
提示:
- 1 <= n <= 10^4
可能刚看这种题感觉没啥思路,又平方和的,又最小数的。
我来把题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?
感受出来了没,这么浓厚的完全背包氛围,而且和昨天的题目动态规划:322. 零钱兑换就是一样一样的!
动规五部曲分析如下:
- 确定dp数组(dp table)以及下标的含义
dp[i]:和为i的完全平方数的最少数量为dp[i]
- 确定递推公式
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。
此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);
- dp数组如何初始化
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。
有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?
看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, ...),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。
非0下标的dp[j]应该是多少呢?
从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[i]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。
- 确定遍历顺序
我们知道这是完全背包,
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
在动态规划:322. 零钱兑换中我们就深入探讨了这个问题,本题也是一样的,是求最小数!
所以本题外层for遍历背包,里层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的!
我这里先给出外层遍历背包,里层遍历物品的代码:
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++) { // 遍历背包
for (int j = 1; j * j <= i; j++) { // 遍历物品
dp[i] = min(dp[i - j * j] + 1, dp[i]);
}
}
- 举例推导dp数组
已输入n为5例,dp状态图如下:
dp[0] = 0 dp[1] = min(dp[0] + 1) = 1 dp[2] = min(dp[1] + 1) = 2 dp[3] = min(dp[2] + 1) = 3 dp[4] = min(dp[3] + 1, dp[0] + 1) = 1 dp[5] = min(dp[4] + 1, dp[1] + 1) = 2
最后的dp[n]为最终结果。
以上动规五部曲分析完毕C++代码如下:
// 版本一
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++) { // 遍历背包
for (int j = 1; j * j <= i; j++) { // 遍历物品
dp[i] = min(dp[i - j * j] + 1, dp[i]);
}
}
return dp[n];
}
};
同样我在给出先遍历物品,在遍历背包的代码,一样的可以AC的。
// 版本二
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 1; i * i <= n; i++) { // 遍历物品
for (int j = 1; j <= n; j++) { // 遍历背包
if (j - i * i >= 0) {
dp[j] = min(dp[j - i * i] + 1, dp[j]);
}
}
}
return dp[n];
}
};
如果大家认真做了昨天的题目动态规划:322. 零钱兑换,今天这道就非常简单了,一样的套路一样的味道。
但如果没有按照「代码随想录」的题目顺序来做的话,做动态规划或者做背包问题,上来就做这道题,那还是挺难的!
经过前面的训练这道题已经是简单题了,哈哈哈
Java:
class Solution {
public int numSquares(int n) {
int max = Integer.MAX_VALUE;
int[] dp = new int[n + 1];
//初始化
for (int j = 0; j <= n; j++) {
dp[j] = max;
}
//当和为0时,组合的个数为0
dp[0] = 0;
for (int i = 1; i * i <= n; i++) {
for (int j = i * i; j <= n; j++) {
if (dp[j - i * i] != max) {
dp[j] = Math.min(dp[j], dp[j - i * i] + 1);
}
}
}
return dp[n];
}
}
Python:
class Solution:
def numSquares(self, n: int) -> int:
'''版本一'''
# 初始化
nums = [i**2 for i in range(1, n + 1) if i**2 <= n]
dp = [10**4]*(n + 1)
dp[0] = 0
# 遍历背包
for j in range(1, n + 1):
# 遍历物品
for num in nums:
if j >= num:
dp[j] = min(dp[j], dp[j - num] + 1)
return dp[n]
def numSquares1(self, n: int) -> int:
'''版本二'''
# 初始化
nums = [i**2 for i in range(1, n + 1) if i**2 <= n]
dp = [10**4]*(n + 1)
dp[0] = 0
# 遍历物品
for num in nums:
# 遍历背包
for j in range(num, n + 1)
dp[j] = min(dp[j], dp[j - num] + 1)
return dp[n]
Python3:
class Solution:
def numSquares(self, n: int) -> int:
# 初始化
# 组成和的完全平方数的最多个数,就是只用1构成
# 因此,dp[i] = i
dp = [i for i in range(n + 1)]
# dp[0] = 0 无意义,只是为了方便记录特殊情况:
# n本身就是完全平方数,dp[n] = min(dp[n], dp[n - n] + 1) = 1
for i in range(1, n): # 遍历物品
if i * i > n:
break
num = i * i
for j in range(num, n + 1): # 遍历背包
dp[j] = min(dp[j], dp[j - num] + 1)
return dp[n]
Go:
// 版本一,先遍历物品, 再遍历背包
func numSquares1(n int) int {
//定义
dp := make([]int, n+1)
// 初始化
dp[0] = 0
for i := 1; i <= n; i++ {
dp[i] = math.MaxInt32
}
// 遍历物品
for i := 1; i <= n; i++ {
// 遍历背包
for j := i*i; j <= n; j++ {
dp[j] = min(dp[j], dp[j-i*i]+1)
}
}
return dp[n]
}
// 版本二,先遍历背包, 再遍历物品
func numSquares2(n int) int {
//定义
dp := make([]int, n+1)
// 初始化
dp[0] = 0
// 遍历背包
for j := 1; j <= n; j++ {
//初始化
dp[j] = math.MaxInt32
// 遍历物品
for i := 1; i <= n; i++ {
if j >= i*i {
dp[j] = min(dp[j], dp[j-i*i]+1)
}
}
}
return dp[n]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
Javascript:
// 先遍历物品,再遍历背包
var numSquares1 = function(n) {
let dp = new Array(n + 1).fill(Infinity)
dp[0] = 0
for(let i = 0; i <= n; i++) {
let val = i * i
for(let j = val; j <= n; j++) {
dp[j] = Math.min(dp[j], dp[j - val] + 1)
}
}
return dp[n]
};
// 先遍历背包,再遍历物品
var numSquares2 = function(n) {
let dp = new Array(n + 1).fill(Infinity)
dp[0] = 0
for(let i = 1; i <= n; i++) {
for(let j = 1; j * j <= i; j++) {
dp[i] = Math.min(dp[i - j * j] + 1, dp[i])
}
}
return dp[n]
};