torchshow.show(x,
mode='auto',
auto_permute=True,
display=True,
nrows=None,
ncols=None,
channel_mode='auto',
show_axis=False,
tight_layout=True,
suptitle=None,
axes_title=None,
figsize=None,
dpi=None,
cmap='gray')
-
x: *tensor-like (support both
torch.Tensor
,np.ndarray
andPIL Image
) or List of tensor-like. * The tensor data that we want to visualize. Filename and list of filenames are also supported, for example:ts.show("my_image.jpg")
. -
mode: str. The visualize mode. The default value is
"auto"
where TorchShow will automatically infer the mode. Available options are:"image"
,"flow"
,"grayscale"
,"categorical_mask"
. -
auto_permute: bool. If enable, TorchShow will automatically convert
CHW
toHWC
format. -
display: bool. If set to false, TorchShow will not display the data but return the list of processed data. Use it when you want to visualize them using other libraries such as OpenCV.
-
nrows: Int. The number of rows to plot in a grid layout. If not specified it will be automatically inferred by TorchShow.
-
ncols: Int. The number of columns to plot in a grid layout. If not specified it will be automatically inferred by TorchShow.
-
channel_mode: Str. The channel mode of your input data. Available options are
"auto"
,"channel_last"
and"channel_fist"
. The default value is"auto"
and it will be automatically inferred by TorchShow. -
show_axis: Bool. Whether to show the axis in the plot.
-
tight_layout: Bool. Routines to adjust subplot params so that subplots are nicely fit in the figure. Corresponding to
fig.tight_layout()
in matplotlib. -
suptitle: Str. Add a centered suptitle to the figure.
-
axes_title: Str. Add titles to each of the axes. It can be used with predefined placeholders. Available placeholders are:
{img_id}
,{img_id_from_1}
,{row}
,{column}
.Below is an example that shows the image id on top of each image:
batch = torch.rand(8, 3, 100, 100) ts.show(batch, axes_title="Image ID: {img_id_from_1}")
-
figsize: 2-tuple of floats. Figure dimension
(width, height)
in inches. -
dpi: float. Dots per inch.
-
cmap: str. Specifying the color map for grayscale image.
torchshow.save(x,
path=None,
**kwargs)
- x: tensor-like (support both
torch.Tensor
andnp.ndarray
) or List of tensor-like. The tensor data that we want to visualize. - path: str. The path to save the figure.
- kwargs: You can pass in any other parameters available in
torchshow.show().
torchshow.overlay(x,
alpha=None,
extent=None,
save_as=None,
**kwargs)
A function use to overlay multiple visualization.
- x: list of tensor-like. A list of tensor data that we want to overlay their visualization. Filenames are also supported.
- alpha: list of (number or array-like). (Optional) The list of alpha values for blending, each alpha value is between 0 (transparent) and 1 (opaque). If alpha is an array-like, the alpha blending values are applied pixel by pixel, and alpha must have the same shape as X.
- extent: tuple. (Optional) Format:
(x_min, x_max, y_min, y_max)
. The extent defines the size of the rendering area which will be used to render all plots. If unspecified TorchShow will use the extent of the first visualization. - save_as: srt. (Optional) A filepath to save the plot. If specified TorchShow will save the result to this file.
- kwargs: You can pass in any other parameters available in
torchshow.show().
ts.overlay([tensor1, tensor2, tensor3], alpha=[0.5, 0.5])
ts.overlay(["example_rgb.jpg", "example_category_mask.png"], alpha=[1, 0.5])
torchshow.show_video(x,
display=True,
show_axis=False,
tight_layout=False,
suptitle=None,
figsize=None,
dpi=None)
-
x: tensor-like (Support both
torch.Tensor
andnp.ndarray
) or List of tensor-like. The tensor data that we want to visualize. -
display: bool. If set to false, TorchShow will not display the data but return the list of processed data. Use it when you want to visualize them using other libraries such as OpenCV.
-
show_axis: Bool. Whether to show the axis in the plot.
-
tight_layout: Bool. Routines to adjust subplot params so that subplots are nicely fit in the figure. Corresponding to
fig.tight_layout()
in matplotlib. -
suptitle: Str. Add a centered suptitle to the figure.
-
figsize: 2-tuple of floats. Figure dimension
(width, height)
in inches. -
dpi: float. Dots per inch.
torchshow.set_color_mode(mode)
- mode: str.
"rgb"
or"bgr"
. Set channel mode of the color image. The default config is"rgb"
.
torchshow.set_image_mean(mean)
- mean: list of number: Set the channel-wise mean when unnormalize the image. The default mean is
[0., 0., 0.]
.
torchshow.set_image_std(std)
- std: list of number: Set the channel-wise std when unnormalize the image. The default std is
[1., 1., 1.]
.
torchshow.show_rich_info(flag)
- flag: bool: Whether to show rich info in the interactive window.