-
Notifications
You must be signed in to change notification settings - Fork 3
/
main.py
314 lines (255 loc) · 11.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import argparse
import time
import math
import os
import unicodedata
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch import optim
import util.data as data
from model.rnn_model import *
import util.printhelper as printhelper
import util.masked_cross_entropy as masked_cross_entropy
parser = argparse.ArgumentParser(description='PyTorch SEAME RNN/LSTM Language Model')
parser.add_argument('--name', type=str, default='',
help='name')
parser.add_argument('--data', type=str, default='../data/seame_phase2',
help='location of the data corpus')
parser.add_argument('--model', type=str, default='LSTM',
help='type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU)')
parser.add_argument('--emsize', type=int, default=200,
help='size of word embeddings')
parser.add_argument('--nhid', type=int, default=200,
help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=2,
help='number of layers')
parser.add_argument('--lr', type=float, default=20,
help='initial learning rate')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=40,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=20, metavar='N',
help='batch size')
parser.add_argument('--bptt', type=int, default=35,
help='sequence length')
parser.add_argument('--dropout', type=float, default=0.2,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--tied', action='store_true',
help='tie the word embedding and softmax weights')
parser.add_argument('--pad', action='store_true',
help='pad the words')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--log_path', type=str, default='./log', help='location of log file')
parser.add_argument('--log-interval', type=int, default=200, metavar='N',
help='report interval')
parser.add_argument('--save', type=str, default='./model',
help='path to save the final model')
args = parser.parse_args()
log_name = str(args.name) + "_model" + str(args.model) + "_layers" + str(args.nlayers) + "_nhid" + str(args.nhid) + "_emsize" + str(args.emsize) + ".txt"
log_file = open(args.log_path + "/" + log_name, "w+")
save_path = args.save + "/" + log_name + ".pt"
dir_path = os.path.dirname(os.path.realpath(__file__))
is_pad = False
if args.pad:
is_pad = args.pad
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
torch.cuda.manual_seed(args.seed)
# Write all summary
printhelper.print_log(log_file, "is_pad\t:" + str(is_pad))
printhelper.print_log(log_file, "clip\t:" + str(args.clip))
printhelper.print_log(log_file, "data\t:" + str(args.data))
printhelper.print_log(log_file, "start lr\t:" + str(args.lr))
printhelper.print_log(log_file, "em size\t:" + str(args.emsize))
def is_chinese_char(cc):
return unicodedata.category(cc) == 'Lo'
def is_contain_chinese_word(seq):
for i in range(len(seq)):
if is_chinese_char(seq[i]):
return True
return False
###############################################################################
# Load data
###############################################################################
corpus = data.Corpus(args.data)
def batchify(data, bsz):
# Work out how cleanly we can divide the dataset into bsz parts.
nbatch = data.size(0) // bsz
print(data.size(0), bsz)
print("nbatch", nbatch)
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
if args.cuda:
data = data.cuda()
return data
eval_batch_size = 10
train_data = batchify(corpus.train, args.batch_size)
val_data = batchify(corpus.valid, eval_batch_size)
test_data = batchify(corpus.test, eval_batch_size)
###############################################################################
# Build the model
###############################################################################
ntokens = len(corpus.dictionary)
model = RNNModel(args.model, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.tied)
printhelper.print_log(log_file, str(model))
if args.cuda:
model.cuda()
###############################################################################
# Training code
###############################################################################
def repackage_hidden(h):
"""Wraps hidden states in new Variables, to detach them from their history."""
if type(h) == Variable:
return Variable(h.data)
else:
return tuple(repackage_hidden(v) for v in h)
def get_batch(source, i, evaluation=False):
seq_len = min(args.bptt, len(source) - 1 - i)
data = Variable(source[i:i+seq_len], volatile=evaluation)
target = Variable(source[i+1:i+1+seq_len].view(-1))
return data, target
# print the result
word2idx = corpus.dictionary.word2idx
idx2word = corpus.dictionary.idx2word
num_word = len(corpus.dictionary.idx2word)
english_word = {}
chinese_word = {}
for j in range(num_word):
word = idx2word[j]
if is_contain_chinese_word(word):
chinese_word[j] = True
else:
english_word[j] = True
def evaluate(data_source, type_evaluation="val"):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(eval_batch_size)
# hidden_lang = model.init_hidden(eval_batch_size)
criterion = nn.CrossEntropyLoss()
if type_evaluation == "test":
file_out = open("predictions/" + log_name, "w+", encoding="utf-8")
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, evaluation=True)
output, hidden = model(data, hidden)
if type_evaluation == "test":
batch_size = output.size(1)
seq_len = output.size(0)
for k in range(batch_size):
for j in range(seq_len-1):
en_word_val = 0
zh_word_val = 0
word_dist = output[j][k]
# for l in range(len(word_dist)):
# if l in english_word:
# en_word_val += pow(math.e, word_dist[l].data[0])
# else:
# zh_word_val += pow(math.e, word_dist[l].data[0])
# file_out.write(idx2word[data[j][k].data[0]] + "\t" + idx2word[data[j+1][k].data[0]] + "\t" + str(en_word_val) + "\t" + str(zh_word_val) + "\t" + str(en_val) + "\t" + str(zh_val) + "\n")
target_batch = targets.view(seq_len, batch_size)
target_word = target_batch[j][k].data[0]
word_val = pow(math.e, word_dist[target_word].data[0])
word_val_log = word_dist[target_word].data[0]
# word_dist, word_dist_idx = torch.topk(output[j][k], 1000, dim=-1)
# for l in range(len(word_dist)):
# idx = word_dist_idx[l].data[0]
# if idx in english_word:
# en_word_val += pow(math.e, word_dist[l].data[0])
# else:
# zh_word_val += pow(math.e, word_dist[l].data[0])
file_out.write(idx2word[data[j][k].data[0]] + "\t" + idx2word[data[j+1][k].data[0]] + "\t" + str(word_val) + "\t" + str(word_val_log) + "\n")
file_out.write("\n")
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
# hidden_lang = repackage_hidden(hidden_lang)
return total_loss[0] / len(data_source)
def train():
# Turn on training mode which enables dropout.
model.train()
total_loss = 0
start_time = time.time()
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(args.batch_size)
hidden_lang = model.init_hidden(args.batch_size)
criterion = nn.CrossEntropyLoss()
batch_idx = 0
for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
# data_lang, targets_lang = get_batch(train_lang_data, i)
data, targets = get_batch(train_data, i)
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
hidden = repackage_hidden(hidden)
hidden_lang = repackage_hidden(hidden_lang)
model.zero_grad()
output, hidden = model(data, hidden)
loss = criterion(output.view(-1, ntokens), targets)
loss.backward()
batch_idx += data.size(1)
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
opt = optim.SGD(model.parameters(), lr=lr)
opt.step()
# for p in model.parameters():
# print(p.size())
# p.data.add_(-lr, p.grad.data)
total_loss += loss.data
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss[0] / args.log_interval
elapsed = time.time() - start_time
log = '| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | word_loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, lr,
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss))
printhelper.print_log(log_file, log)
total_loss = 0
start_time = time.time()
# Loop over epochs.
lr = args.lr
best_val_loss = None
counter = 0
# At any point you can hit Ctrl + C to break out of training early.
try:
for epoch in range(1, args.epochs+1):
epoch_start_time = time.time()
train()
# val_loss = evaluate_per_sequence(val_sequence_data)
val_loss = evaluate(val_data, "dev")
log = '-' * 89 + "\n" + '| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
val_loss, math.exp(val_loss)) + '-' * 89
printhelper.print_log(log_file, log)
# Save the model if the validation loss is the best we've seen so far.
if not best_val_loss or val_loss < best_val_loss:
with open(save_path, 'wb') as f:
torch.save(model, f)
best_val_loss = val_loss
counter = 0
else:
lr /= 4.0
counter += 1
if counter == 5:
break
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
# Load the best saved model.
with open(save_path, 'rb') as f:
model = torch.load(f)
# Run on test data.
# test_loss = evaluate_per_sequence(test_sequence_data)
test_loss = evaluate(test_data, "test")
log = ('=' * 89) + '| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
test_loss, math.exp(test_loss)) + ('=' * 89)
printhelper.print_log(log_file, log)
log_file.close()