forked from luxonis/depthai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dynamic_recalibration.py
executable file
·401 lines (313 loc) · 15.8 KB
/
dynamic_recalibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#!/usr/bin/env python3
description=\
"""
Dynamic recalibration script.
Capable of correcting extrinsic rotation (e.g. rotation change between sensors) without the need of full recalibration.
Recommended way of doing dynamic calibration is pointing the camera to a static scene, and running the script.
Recommended to try dynamic calibration if depth quality degraded over time.
Requires initial intrinsic calibration.
This script supports all sensor combinations that calibrate.py supports.
"""
from cmath import inf
import numpy as np
import cv2
import depthai as dai
import math
import argparse
from pathlib import Path
ransacMethod = cv2.RANSAC
if cv2.__version__ >= "4.5.4":
ransacMethod = cv2.USAC_MAGSAC
epilog_text="Dynamic recalibration."
parser = argparse.ArgumentParser(
epilog=epilog_text, description=description, formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument("-rd", "--rectifiedDisp", default=True, action="store_false",
help="Display rectified images with lines drawn for epipolar check")
parser.add_argument("-drgb", "--disableRgb", default=False, action="store_true",
help="Disable rgb camera Calibration")
parser.add_argument("-ep", "--maxEpiploarError", default="1.0", type=float, required=False,
help="Sets the maximum epiploar allowed with rectification")
parser.add_argument("-rlp", "--rgbLensPosition", default=None, type=int,
required=False, help="Set the manual lens position of the camera for calibration")
parser.add_argument("-fps", "--fps", default=10, type=int,
required=False, help="Set capture FPS for all cameras. Default: %(default)s")
parser.add_argument("-d", "--debug", default=False, action="store_true", help="Enable debug logs.")
parser.add_argument("-dr", "--dryRun", default=False, action="store_true", help="Dry run, don't flash obtained calib data, just save to disk.")
options = parser.parse_args()
#TODO implement RGB-stereo sync
epipolar_threshold = options.maxEpiploarError
rgbEnabled = not options.disableRgb
dryRun = options.dryRun
debug = options.debug
def calculate_Rt_from_frames(frame1,frame2,k1,k2,d1,d2):
sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(frame1,None)
kp2, des2 = sift.detectAndCompute(frame2,None)
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params,search_params)
matches = flann.knnMatch(des1,des2,k=2)
pts1 = []
pts2 = []
for i,(m,n) in enumerate(matches):
if m.distance < 0.8*n.distance:
pts2.append(kp2[m.trainIdx].pt)
pts1.append(kp1[m.queryIdx].pt)
minKeypoints = 20
if len(pts1) < minKeypoints:
raise Exception(f'Need at least {minKeypoints} keypoints!')
if debug:
img=cv2.drawKeypoints(frame1, kp1, frame1, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv2.imshow("Left", img)
img2=cv2.drawKeypoints(frame2, kp2, frame2, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv2.imshow("Right", img2)
cv2.waitKey(1)
pts1 = np.float32(pts1)
pts2 = np.float32(pts2)
E, mask = cv2.findEssentialMat(pts1,pts2,k1,d1,k2,d2, method=ransacMethod)
points, R_est, t_est, mask_pose = cv2.recoverPose(E, pts1,pts2, mask=mask)
R1, R2, P1, P2, Q, roi_left, roi_right = cv2.stereoRectify(k1, d1, k2, d2, frame2.shape[::-1], R_est, t_est)
return R_est, t_est, R1, R2, P1, P2, Q
def calculate_epipolar_error(frame1, frame2):
minNrInliers = 10
sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(frame1,None)
kp2, des2 = sift.detectAndCompute(frame2,None)
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params,search_params)
matches = flann.knnMatch(des1,des2,k=2)
pts1 = []
pts2 = []
for i,(m,n) in enumerate(matches):
if m.distance < 0.8*n.distance:
pts2.append(kp2[m.trainIdx].pt)
pts1.append(kp1[m.queryIdx].pt)
if len(pts1) < minNrInliers or len(pts2) < minNrInliers:
return math.inf
pts1 = np.float32(pts1)
pts2 = np.float32(pts2)
# this is just to get inliers
M, mask = cv2.findHomography(pts1, pts2, method = ransacMethod, ransacReprojThreshold = 5.0)
matchesMask = mask.ravel().tolist()
epi_error_sum = 0
for i in range(len(pts1)):
if not matchesMask[i]:
continue
pt2 = pts2[i]
pt1 = pts1[i]
epi_error_sum += abs(pt1[1] - pt2[1])
if len(pts1) < minNrInliers:
return math.inf
return epi_error_sum / len(pts1)
def display_rectification(image_data_pairs):
print("Displaying Stereo Pair for visual inspection. Press the [ESC] key to exit.")
for image_data_pair in image_data_pairs:
pair0 = image_data_pair[0]
pair1 = image_data_pair[1]
if len(pair0.shape) < 3:
pair0 = cv2.cvtColor(pair0, cv2.COLOR_GRAY2RGB)
if len(pair1.shape) < 3:
pair1 = cv2.cvtColor(pair1, cv2.COLOR_GRAY2RGB)
img_concat = cv2.hconcat([pair0, pair1])
# draw epipolar lines for debug purposes
line_row = 0
while line_row < img_concat.shape[0]:
cv2.line(img_concat,
(0, line_row), (img_concat.shape[1], line_row),
(0, 255, 0), 1)
line_row += 30
# show image
cv2.imshow('Stereo Pair', img_concat)
k = cv2.waitKey(0)
if k == 27: # Esc key to stop
break
cv2.destroyWindow('Stereo Pair')
if __name__ == "__main__":
camFps = options.fps
pipeline = dai.Pipeline()
device = dai.Device()
try:
calibration_handler = device.readCalibration2()
original_calibration = device.readCalibration2()
except Exception as e:
print("Dynamic recalibration requires initial intrinsic calibration!")
raise e
cam_left = pipeline.create(dai.node.MonoCamera)
cam_right = pipeline.create(dai.node.MonoCamera)
xout_left = pipeline.create(dai.node.XLinkOut)
xout_right = pipeline.create(dai.node.XLinkOut)
xout_left_rect = pipeline.create(dai.node.XLinkOut)
xout_right_rect = pipeline.create(dai.node.XLinkOut)
stereo = pipeline.create(dai.node.StereoDepth)
cam_left.setBoardSocket(dai.CameraBoardSocket.LEFT)
cam_right.setBoardSocket(dai.CameraBoardSocket.RIGHT)
cam_left.setResolution(dai.MonoCameraProperties.SensorResolution.THE_720_P)
cam_left.setFps(camFps)
cam_right.setResolution(dai.MonoCameraProperties.SensorResolution.THE_720_P)
cam_right.setFps(camFps)
xout_left.setStreamName("left")
xout_left_rect.setStreamName("left_rect")
# cam_left.out.link(xout_left.input)
xout_right.setStreamName("right")
xout_right_rect.setStreamName("right_rect")
# cam_right.out.link(xout_right.input)
cam_left.out.link(stereo.left)
cam_right.out.link(stereo.right)
stereo.syncedLeft.link(xout_left.input)
stereo.syncedRight.link(xout_right.input)
stereo.rectifiedLeft.link(xout_left_rect.input)
stereo.rectifiedRight.link(xout_right_rect.input)
stereo_img_shape = cam_left.getResolutionSize()
leftFps = cam_left.getFps()
rightFps = cam_right.getFps()
if leftFps != rightFps:
raise Exception("FPS between left and right cameras must be the same!")
if rgbEnabled:
rgbLensPosition = None
if options.rgbLensPosition:
rgbLensPosition = options.rgbLensPosition
else:
try:
rgbLensPosition = calibration_handler.getLensPosition(dai.CameraBoardSocket.RGB)
except:
pass
rgb_cam = pipeline.createColorCamera()
rgb_cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_4_K)
rgb_cam.setInterleaved(False)
rgb_cam.setBoardSocket(dai.CameraBoardSocket.RGB)
rgb_cam.setIspScale(1, 3)
if rgbLensPosition:
rgb_cam.initialControl.setManualFocus(rgbLensPosition)
rgb_cam.setFps(camFps)
xout_rgb_isp = pipeline.create(dai.node.XLinkOut)
xout_rgb_isp.setStreamName("rgb")
rgb_cam.isp.link(xout_rgb_isp.input)
rgb_img_shape = rgb_cam.getVideoSize()
rgbFps = rgb_cam.getFps()
if leftFps != rgbFps:
raise Exception("FPS between stereo cameras and rgb camera must be the same!")
with device:
device.startPipeline(pipeline)
left_camera_queue = device.getOutputQueue("left", 4, True)
right_camera_queue = device.getOutputQueue("right", 4, True)
if rgbEnabled:
rgb_camera_queue = device.getOutputQueue("rgb", 4, True)
left_rectified_camera_queue = device.getOutputQueue("left_rect", 4, True)
right_rectified_camera_queue = device.getOutputQueue("right_rect", 4, True)
left_camera = dai.CameraBoardSocket.LEFT
right_camera = dai.CameraBoardSocket.RIGHT
rgb_camera = dai.CameraBoardSocket.RGB
left_rect_frame = None
right_rect_frame = None
left_frame = None
right_frame = None
rgb_frame = None
for i in range(2*int(leftFps)): #let the exposure settle
left_rect_frame = left_rectified_camera_queue.get().getCvFrame()
right_rect_frame = right_rectified_camera_queue.get().getCvFrame()
leftFrameData = left_camera_queue.get()
left_frame = leftFrameData.getCvFrame()
rightFrameData = right_camera_queue.get()
right_frame = rightFrameData.getCvFrame()
stereo_img_shape = (leftFrameData.getWidth(), leftFrameData.getHeight())
if rgbEnabled:
rgbFrameData = rgb_camera_queue.get()
rgb_frame = rgbFrameData.getCvFrame()
rgb_img_shape = (rgbFrameData.getWidth(), rgbFrameData.getHeight())
left_k = calibration_handler.getCameraIntrinsics(left_camera, stereo_img_shape[0], stereo_img_shape[1])
right_k = calibration_handler.getCameraIntrinsics(right_camera, stereo_img_shape[0], stereo_img_shape[1])
left_d = calibration_handler.getDistortionCoefficients(left_camera)
right_d = calibration_handler.getDistortionCoefficients(right_camera)
left_k = np.array(left_k)
right_k = np.array(right_k)
left_d = np.array(left_d)
right_d = np.array(right_d)
rotationLeft = np.array(calibration_handler.getStereoLeftRectificationRotation())
rotationRight = np.array(calibration_handler.getStereoRightRectificationRotation())
if rgbEnabled:
rgb_k = calibration_handler.getCameraIntrinsics(rgb_camera, rgb_img_shape[0], rgb_img_shape[1])
rgb_k = np.array(rgb_k)
rgb_d = calibration_handler.getDistortionCoefficients(rgb_camera)
rgb_d = np.array(rgb_d)
while True:
try:
left_rect_frame = left_rectified_camera_queue.get().getCvFrame()
right_rect_frame = right_rectified_camera_queue.get().getCvFrame()
leftFrameData = left_camera_queue.get()
left_frame = leftFrameData.getCvFrame()
rightFrameData = right_camera_queue.get()
right_frame = rightFrameData.getCvFrame()
if rgbEnabled:
rgb_frame = rgb_camera_queue.get().getCvFrame()
R, T, R1, R2, P1, P2, Q = calculate_Rt_from_frames(left_frame,right_frame,left_k,right_k,left_d,right_d)
if rgbEnabled:
rgbR, rgbT, _, _, _, _, _ = calculate_Rt_from_frames(rgb_frame,right_frame,rgb_k,right_k,rgb_d,right_d)
rgbR = np.linalg.inv(rgbR) #right to rgb rotation
img_shape = cam_left.getResolutionSize()
M1 = left_k
M2 = right_k
d1 = left_d
d2 = right_d
mapx_l, mapy_l = cv2.initUndistortRectifyMap(M1, d1, R1, M2, img_shape, cv2.CV_32FC1)
mapx_r, mapy_r = cv2.initUndistortRectifyMap(M2, d2, R2, M2, img_shape, cv2.CV_32FC1)
img_l = cv2.remap(left_frame, mapx_l, mapy_l, cv2.INTER_LINEAR)
img_r = cv2.remap(right_frame, mapx_r, mapy_r, cv2.INTER_LINEAR)
stereo_epipolar = calculate_epipolar_error(img_l, img_r)
if stereo_epipolar > epipolar_threshold:
print(f"Stereo epipolar error: {stereo_epipolar} is higher than threshold {epipolar_threshold}")
continue
if rgbEnabled:
M3 = rgb_k
d3 = rgb_d
R3 = rgbR
mapx_rgb, mapy_rgb = cv2.initUndistortRectifyMap(M3, d3, None, M3, img_shape, cv2.CV_32FC1)
mapx_rgb2, mapy_rgb2 = cv2.initUndistortRectifyMap(M2, d2, R3, M3, img_shape, cv2.CV_32FC1)
img_rgb = cv2.remap(rgb_frame, mapx_rgb, mapy_rgb, cv2.INTER_LINEAR)
img_rgb2 = cv2.remap(right_frame, mapx_rgb2, mapy_rgb2, cv2.INTER_LINEAR)
rgb_epipolar = calculate_epipolar_error(img_rgb, img_rgb2)
if rgb_epipolar > epipolar_threshold:
print(f"RGB epipolar {rgb_epipolar} is higher than threshold {epipolar_threshold}")
continue
break
except Exception as e:
print(e)
continue
print(f"Stereo epipolar error: {stereo_epipolar}")
if rgbEnabled:
print(f"RGB epipolar error: {rgb_epipolar}")
#save rotation data
lrSpecExtrinsics = calibration_handler.getCameraExtrinsics(left_camera, right_camera, True)
specTranslation = (lrSpecExtrinsics[0][3], lrSpecExtrinsics[1][3], lrSpecExtrinsics[2][3])
lrCompExtrinsics = calibration_handler.getCameraExtrinsics(left_camera, right_camera, False)
compTranslation = (lrCompExtrinsics[0][3], lrCompExtrinsics[1][3], lrCompExtrinsics[2][3])
calibration_handler.setCameraExtrinsics(left_camera, right_camera, R, compTranslation, specTranslation)
calibration_handler.setStereoLeft(left_camera, R1)
calibration_handler.setStereoRight(right_camera, R2)
if rgbEnabled:
rgbSpecExtrinsics = calibration_handler.getCameraExtrinsics(right_camera, rgb_camera, True)
specTranslation = (rgbSpecExtrinsics[0][3], rgbSpecExtrinsics[1][3], rgbSpecExtrinsics[2][3])
rgbCompExtrinsics = calibration_handler.getCameraExtrinsics(right_camera, rgb_camera, False)
compTranslation = (rgbCompExtrinsics[0][3], rgbCompExtrinsics[1][3], rgbCompExtrinsics[2][3])
calibration_handler.setCameraExtrinsics(right_camera, rgb_camera, rgbR, compTranslation, specTranslation)
#flash updates
is_write_successful = False
if not dryRun:
calibFile = str((Path(__file__).parent / Path(f"calib_{device.getMxId()}_backup.json")).resolve().absolute())
original_calibration.eepromToJsonFile(calibFile)
print(f"Original calibration data on the device is backed up at: {calibFile}")
is_write_successful = device.flashCalibration(calibration_handler)
if not is_write_successful:
print(f"Error: failed to save calibration to EEPROM")
else:
calibFile = str((Path(__file__).parent / Path(f"calib_{device.getMxId()}_dynamic_calib.json")).resolve().absolute())
calibration_handler.eepromToJsonFile(calibFile)
print(f"Dynamic calibration data on the device is saved at: {calibFile}")
if options.rectifiedDisp:
image_data_pairs = []
image_data_pairs.append((img_l, img_r))
if rgbEnabled:
image_data_pairs.append((img_rgb, img_rgb2))
display_rectification(image_data_pairs)