forked from upbit/clone-fastcoll
-
Notifications
You must be signed in to change notification settings - Fork 1
/
block1stevens10.cpp
287 lines (243 loc) · 9.57 KB
/
block1stevens10.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*
MD5 collision generator
=======================
Source code files:
block0.cpp
block1.cpp
main.cpp
main.hpp
md5.cpp
block1wang.cpp
block1stevens00.cpp
block1stevens01.cpp
block1stevens10.cpp
block1stevens11.cpp
Win32 executable:
fastcoll_v1.0.0.5.exe
Version
=======
version 1.0.0.5, April 2006.
Copyright
=========
© M. Stevens, 2006. All rights reserved.
Disclaimer
==========
This software is provided as is. Use is at the user's risk.
No guarantee whatsoever is given on how it may function or malfunction.
Support cannot be expected.
This software is meant for scientific and educational purposes only.
It is forbidden to use it for other than scientific or educational purposes.
In particular, commercial and malicious use is not allowed.
Further distribution of this software, by whatever means, is not allowed
without our consent.
This includes publication of source code or executables in printed form,
on websites, newsgroups, CD-ROM's, etc.
Changing the (source) code without our consent is not allowed.
In all versions of the source code this disclaimer, the copyright
notice and the version number should be present.
*/
#include <iostream>
#include <vector>
#include "main.hpp"
void find_block1_stevens_10(uint32 block[], const uint32 IV[])
{
uint32 Q[68] = { IV[0], IV[3], IV[2], IV[1] };
std::vector<uint32> q9q10mask(1<<4);
for (unsigned k = 0; k < q9q10mask.size(); ++k)
q9q10mask[k] = ((k<<2) ^ (k<<8) ^ (k<<11) ^ (k<<25)) & 0x08004204;
std::vector<uint32> q9mask(1<<10);
for (unsigned k = 0; k < q9mask.size(); ++k)
q9mask[k] = ((k<<1) ^ (k<<2) ^ (k<<3) ^ (k<<7) ^ (k<<12) ^ (k<<15) ^ (k<<18) ^ (k<<20)) & 0x2471042a;
while (true)
{
uint32 aa = Q[Qoff] & 0x80000000;
Q[Qoff + 2] = (xrng64() & 0x79b0c6ba) | 0x024c3841 | aa;
Q[Qoff + 3] = (xrng64() & 0x19300210) | 0x2603096d | (Q[Qoff + 2] & 0x80000082);
Q[Qoff + 4] = (xrng64() & 0x10300000) | 0xe4cae30c | (Q[Qoff + 3] & 0x01000030);
Q[Qoff + 5] = (xrng64() & 0x10000000) | 0x63494061 | (Q[Qoff + 4] & 0x00300000);
Q[Qoff + 6] = 0x7deaff68;
Q[Qoff + 7] = (xrng64() & 0x20444000) | 0x09091ee0;
Q[Qoff + 8] = (xrng64() & 0x09040000) | 0xb2529f6d;
Q[Qoff + 9] = (xrng64() & 0x00040000) | 0x10885184;
Q[Qoff + 10] = (xrng64() & 0x00000080) | 0x428afb11 | (Q[Qoff + 9] & 0x00040000);
Q[Qoff + 11] = (xrng64() & 0x128a8110) | 0x6571266b | (Q[Qoff + 10] & 0x0000080);
Q[Qoff + 12] = (xrng64() & 0x3ef38d7f) | 0x00003080 | (~Q[Qoff + 11] & 0x00080000);
Q[Qoff + 13] = (xrng64() & 0x3efb1d77) | 0x0004c008;
Q[Qoff + 14] = (xrng64() & 0x5fff5d77) | 0x8000a288;
Q[Qoff + 15] = (xrng64() & 0x1efe7ff7) | 0xe0008000 | (~Q[Qoff + 14] & 0x00010000);
Q[Qoff + 16] = (xrng64() & 0x5ffdffff) | 0x20000000 | (~Q[Qoff + 15] & 0x00020000);
MD5_REVERSE_STEP(5, 0x4787c62a, 12);
MD5_REVERSE_STEP(6, 0xa8304613, 17);
MD5_REVERSE_STEP(7, 0xfd469501, 22);
MD5_REVERSE_STEP(11, 0x895cd7be, 22);
MD5_REVERSE_STEP(14, 0xa679438e, 17);
MD5_REVERSE_STEP(15, 0x49b40821, 22);
const uint32 tt17 = GG(Q[Qoff + 16], Q[Qoff + 15], Q[Qoff + 14]) + Q[Qoff + 13] + 0xf61e2562;
const uint32 tt18 = Q[Qoff + 14] + 0xc040b340 + block[6];
const uint32 tt19 = Q[Qoff + 15] + 0x265e5a51 + block[11];
const uint32 tt0 = FF(Q[Qoff + 0], Q[Qoff - 1], Q[Qoff - 2]) + Q[Qoff - 3] + 0xd76aa478;
const uint32 tt1 = Q[Qoff - 2] + 0xe8c7b756;
const uint32 q1a = 0x02000941 ^ (Q[Qoff + 0] & 0x80000000);
unsigned counter = 0;
while (counter < (1 << 12))
{
++counter;
uint32 q1 = q1a | (xrng64() & 0x7dfdf6be);
uint32 m1 = Q[Qoff+2] - q1;
m1 = RR(m1, 12) - FF(q1, Q[Qoff+0], Q[Qoff-1]) - tt1;
const uint32 q16 = Q[Qoff+16];
uint32 q17 = tt17 + m1;
q17 = RL(q17, 5) + q16;
if (0x80000000 != ((q17^q16) & 0x80008008)) continue;
if (0 != (q17 & 0x00020000)) continue;
uint32 q18 = GG(q17, q16, Q[Qoff+15]) + tt18;
q18 = RL(q18, 9); q18 += q17;
if (0x80020000 != ((q18^q17) & 0xa0020000)) continue;
uint32 q19 = GG(q18, q17, q16) + tt19;
q19 = RL(q19, 14); q19 += q18;
if (0 != (q19 & 0x80020000)) continue;
uint32 m0 = q1 - Q[Qoff + 0];
m0 = RR(m0, 7) - tt0;
uint32 q20 = GG(q19, q18, q17) + q16 + 0xe9b6c7aa + m0;
q20 = RL(q20, 20); q20 += q19;
if (0x00040000 != ((q20^q19) & 0x80040000)) continue;
Q[Qoff + 1] = q1;
Q[Qoff + 17] = q17;
Q[Qoff + 18] = q18;
Q[Qoff + 19] = q19;
Q[Qoff + 20] = q20;
block[0] = m0;
block[1] = m1;
MD5_REVERSE_STEP(5, 0x4787c62a, 12);
uint32 q21 = GG(Q[Qoff+20], Q[Qoff+19], Q[Qoff+18]) + Q[Qoff+17] + 0xd62f105d + block[5];
q21 = RL(q21, 5); q21 += Q[Qoff+20];
if (0 != ((q21^Q[Qoff+20]) & 0x80020000)) continue;
Q[Qoff+21] = q21;
counter = 0;
break;
}
if (counter != 0)
continue;
const uint32 q9b = Q[Qoff + 9];
const uint32 q10b = Q[Qoff + 10];
MD5_REVERSE_STEP(2, 0x242070db, 17);
MD5_REVERSE_STEP(3, 0xc1bdceee, 22);
MD5_REVERSE_STEP(4, 0xf57c0faf, 7);
MD5_REVERSE_STEP(7, 0xfd469501, 22);
const uint32 tt10 = Q[Qoff + 7] + 0xffff5bb1;
const uint32 tt22 = GG(Q[Qoff + 21], Q[Qoff + 20], Q[Qoff + 19]) + Q[Qoff + 18] + 0x02441453;
const uint32 tt23 = Q[Qoff + 19] + 0xd8a1e681 + block[15];
const uint32 tt24 = Q[Qoff + 20] + 0xe7d3fbc8 + block[4];
for (unsigned k10 = 0; k10 < (1<<4); ++k10)
{
uint32 q10 = q10b | (q9q10mask[k10]&0x08000004);
uint32 m10 = RR(Q[Qoff+11]-q10,17);
uint32 q9 = q9b | (q9q10mask[k10]&0x00004200);
m10 -= FF(q10, q9, Q[Qoff+8]) + tt10;
uint32 aa = Q[Qoff + 21];
uint32 dd = tt22+m10; dd = RL(dd, 9) + aa;
if (0 != (dd & 0x80000000)) continue;
uint32 bb = Q[Qoff + 20];
uint32 cc = tt23 + GG(dd, aa, bb);
if (0 != (cc & 0x20000)) continue;
cc = RL(cc, 14) + dd;
if (0 != (cc & 0x80000000)) continue;
bb = tt24 + GG(cc, dd, aa); bb = RL(bb, 20) + cc;
if (0 == (bb & 0x80000000)) continue;
block[10] = m10;
Q[Qoff + 9] = q9;
Q[Qoff + 10] = q10;
MD5_REVERSE_STEP(13, 0xfd987193, 12);
for (unsigned k9 = 0; k9 < (1<<10); ++k9)
{
uint32 a = aa, b = bb, c = cc, d = dd;
Q[Qoff + 9] = q9 ^ q9mask[k9];
MD5_REVERSE_STEP(8, 0x698098d8, 7);
MD5_REVERSE_STEP(9, 0x8b44f7af, 12);
MD5_REVERSE_STEP(12, 0x6b901122, 7);
MD5_STEP(GG, a, b, c, d, block[9], 0x21e1cde6, 5);
MD5_STEP(GG, d, a, b, c, block[14], 0xc33707d6, 9);
MD5_STEP(GG, c, d, a, b, block[3], 0xf4d50d87, 14);
MD5_STEP(GG, b, c, d, a, block[8], 0x455a14ed, 20);
MD5_STEP(GG, a, b, c, d, block[13], 0xa9e3e905, 5);
MD5_STEP(GG, d, a, b, c, block[2], 0xfcefa3f8, 9);
MD5_STEP(GG, c, d, a, b, block[7], 0x676f02d9, 14);
MD5_STEP(GG, b, c, d, a, block[12], 0x8d2a4c8a, 20);
MD5_STEP(HH, a, b, c, d, block[5], 0xfffa3942, 4);
MD5_STEP(HH, d, a, b, c, block[8], 0x8771f681, 11);
c += HH(d, a, b) + block[11] + 0x6d9d6122;
if (0 != (c & (1 << 15)))
continue;
c = (c<<16 | c>>16) + d;
MD5_STEP(HH, b, c, d, a, block[14], 0xfde5380c, 23);
MD5_STEP(HH, a, b, c, d, block[1], 0xa4beea44, 4);
MD5_STEP(HH, d, a, b, c, block[4], 0x4bdecfa9, 11);
MD5_STEP(HH, c, d, a, b, block[7], 0xf6bb4b60, 16);
MD5_STEP(HH, b, c, d, a, block[10], 0xbebfbc70, 23);
MD5_STEP(HH, a, b, c, d, block[13], 0x289b7ec6, 4);
MD5_STEP(HH, d, a, b, c, block[0], 0xeaa127fa, 11);
MD5_STEP(HH, c, d, a, b, block[3], 0xd4ef3085, 16);
MD5_STEP(HH, b, c, d, a, block[6], 0x04881d05, 23);
MD5_STEP(HH, a, b, c, d, block[9], 0xd9d4d039, 4);
MD5_STEP(HH, d, a, b, c, block[12], 0xe6db99e5, 11);
MD5_STEP(HH, c, d, a, b, block[15], 0x1fa27cf8, 16);
MD5_STEP(HH, b, c, d, a, block[2], 0xc4ac5665, 23);
if (0 != ((b^d) & 0x80000000))
continue;
MD5_STEP(II, a, b, c, d, block[0], 0xf4292244, 6);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, d, a, b, c, block[7], 0x432aff97, 10);
if (0 == ((b^d) >> 31)) continue;
MD5_STEP(II, c, d, a, b, block[14], 0xab9423a7, 15);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, b, c, d, a, block[5], 0xfc93a039, 21);
if (0 != ((b^d) >> 31)) continue;
MD5_STEP(II, a, b, c, d, block[12], 0x655b59c3, 6);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, d, a, b, c, block[3], 0x8f0ccc92, 10);
if (0 != ((b^d) >> 31)) continue;
MD5_STEP(II, c, d, a, b, block[10], 0xffeff47d, 15);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, b, c, d, a, block[1], 0x85845dd1, 21);
if (0 != ((b^d) >> 31)) continue;
MD5_STEP(II, a, b, c, d, block[8], 0x6fa87e4f, 6);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, d, a, b, c, block[15], 0xfe2ce6e0, 10);
if (0 != ((b^d) >> 31)) continue;
MD5_STEP(II, c, d, a, b, block[6], 0xa3014314, 15);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, b, c, d, a, block[13], 0x4e0811a1, 21);
if (0 == ((b^d) >> 31)) continue;
MD5_STEP(II, a, b, c, d, block[4], 0xf7537e82, 6);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, d, a, b, c, block[11], 0xbd3af235, 10);
if (0 != ((b^d) >> 31)) continue;
MD5_STEP(II, c, d, a, b, block[2], 0x2ad7d2bb, 15);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, b, c, d, a, block[9], 0xeb86d391, 21);
std::cout << "." << std::flush;
uint32 block2[16];
uint32 IV1[4], IV2[4];
for (int t = 0; t < 4; ++t)
{
IV1[t] = IV[t];
IV2[t] = IV[t] + (1 << 31);
}
IV2[1] -= (1 << 25);
IV2[2] -= (1 << 25);
IV2[3] -= (1 << 25);
for (int t = 0; t < 16; ++t)
block2[t] = block[t];
block2[4] += 1<<31;
block2[11] += 1<<15;
block2[14] += 1<<31;
md5_compress(IV1, block);
md5_compress(IV2, block2);
if (IV2[0]==IV1[0] && IV2[1]==IV1[1] && IV2[2]==IV1[2] && IV2[3]==IV1[3])
return;
if (IV2[0] != IV1[0])
std::cout << "!" << std::flush;
}
}
}
}