diff --git a/doc/classes/Basis.xml b/doc/classes/Basis.xml
index 7ebbc6c388b2..02e0f1d0009c 100644
--- a/doc/classes/Basis.xml
+++ b/doc/classes/Basis.xml
@@ -71,12 +71,20 @@
Constructs a pure rotation Basis matrix from Euler angles in the specified Euler rotation order. By default, use YXZ order (most common). See the [enum EulerOrder] enum for possible values.
- [codeblock]
+ [codeblocks]
+ [gdscript]
# Creates a Basis whose z axis points down.
var my_basis = Basis.from_euler(Vector3(TAU / 4, 0, 0))
print(my_basis.z) # Prints (0, -1, 0).
- [/codeblock]
+ [/gdscript]
+ [csharp]
+ // Creates a Basis whose z axis points down.
+ var myBasis = Basis.FromEuler(new Vector3(Mathf.Tau / 4.0f, 0.0f, 0.0f));
+
+ GD.Print(myBasis.Z); // Prints (0, -1, 0).
+ [/csharp]
+ [/codeblocks]
@@ -84,13 +92,22 @@
Constructs a pure scale basis matrix with no rotation or shearing. The scale values are set as the diagonal of the matrix, and the other parts of the matrix are zero.
- [codeblock]
+ [codeblocks]
+ [gdscript]
var my_basis = Basis.from_scale(Vector3(2, 4, 8))
print(my_basis.x) # Prints (2, 0, 0).
print(my_basis.y) # Prints (0, 4, 0).
print(my_basis.z) # Prints (0, 0, 8).
- [/codeblock]
+ [/gdscript]
+ [csharp]
+ var myBasis = Basis.FromScale(new Vector3(2.0f, 4.0f, 8.0f));
+
+ GD.Print(myBasis.X); // Prints (2, 0, 0).
+ GD.Print(myBasis.Y); // Prints (0, 4, 0).
+ GD.Print(myBasis.Z); // Prints (0, 0, 8).
+ [/csharp]
+ [/codeblocks]
@@ -111,7 +128,8 @@
Assuming that the matrix is the combination of a rotation and scaling, return the absolute value of scaling factors along each axis.
- [codeblock]
+ [codeblocks]
+ [gdscript]
var my_basis = Basis(
Vector3(2, 0, 0),
Vector3(0, 4, 0),
@@ -122,7 +140,20 @@
my_basis = my_basis.rotated(Vector3.RIGHT, TAU / 4)
print(my_basis.get_scale()) # Prints (2, 4, 8).
- [/codeblock]
+ [/gdscript]
+ [csharp]
+ var myBasis = new Basis(
+ Vector3(2.0f, 0.0f, 0.0f),
+ Vector3(0.0f, 4.0f, 0.0f),
+ Vector3(0.0f, 0.0f, 8.0f)
+ );
+ // Rotating the Basis in any way preserves its scale.
+ myBasis = myBasis.Rotated(Vector3.Up, Mathf.Tau / 2.0f);
+ myBasis = myBasis.Rotated(Vector3.Right, Mathf.Tau / 4.0f);
+
+ GD.Print(myBasis.Scale); // Prints (2, 4, 8).
+ [/csharp]
+ [/codeblocks]
@@ -165,14 +196,25 @@
Returns the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix.
- [codeblock]
+ [codeblocks]
+ [gdscript]
# Rotate this Node3D every frame.
func _process(delta):
basis = basis.rotated(Vector3.UP, TAU * delta)
basis = basis.rotated(Vector3.RIGHT, TAU * delta)
basis = basis.orthonormalized()
- [/codeblock]
+ [/gdscript]
+ [csharp]
+ // Rotate this Node3D every frame.
+ public override void _Process(double delta)
+ {
+ Basis = Basis.Rotated(Vector3.Up, Mathf.Tau * (float)delta)
+ .Rotated(Vector3.Right, Mathf.Tau * (float)delta)
+ .Orthonormalized();
+ }
+ [/csharp]
+ [/codeblocks]
@@ -181,14 +223,24 @@
Introduce an additional rotation around the given axis by [param angle] (in radians). The axis must be a normalized vector.
- [codeblock]
+ [codeblocks]
+ [gdscript]
var my_basis = Basis.IDENTITY
var angle = TAU / 2
- my_basis = my_basis.rotated(Vector3.UP, angle) # Rotate around the up axis (yaw)
- my_basis = my_basis.rotated(Vector3.RIGHT, angle) # Rotate around the right axis (pitch)
- my_basis = my_basis.rotated(Vector3.BACK, angle) # Rotate around the back axis (roll)
- [/codeblock]
+ my_basis = my_basis.rotated(Vector3.UP, angle) # Rotate around the up axis (yaw).
+ my_basis = my_basis.rotated(Vector3.RIGHT, angle) # Rotate around the right axis (pitch).
+ my_basis = my_basis.rotated(Vector3.BACK, angle) # Rotate around the back axis (roll).
+ [/gdscript]
+ [csharp]
+ var myBasis = Basis.Identity;
+ var angle = Mathf.Tau / 2.0f;
+
+ myBasis = myBasis.Rotated(Vector3.Up, angle); // Rotate around the up axis (yaw).
+ myBasis = myBasis.Rotated(Vector3.Right, angle); // Rotate around the right axis (pitch).
+ myBasis = myBasis.Rotated(Vector3.Back, angle); // Rotate around the back axis (roll).
+ [/csharp]
+ [/codeblocks]
@@ -196,7 +248,8 @@
Introduce an additional scaling specified by the given 3D scaling factor.
- [codeblock]
+ [codeblocks]
+ [gdscript]
var my_basis = Basis(
Vector3(1, 1, 1),
Vector3(2, 2, 2),
@@ -207,7 +260,20 @@
print(my_basis.x) # Prints (0, 2, -2).
print(my_basis.y) # Prints (0, 4, -4).
print(my_basis.z) # Prints (0, 6, -6).
- [/codeblock]
+ [/gdscript]
+ [csharp]
+ var myBasis = new Basis(
+ new Vector3(1.0f, 1.0f, 1.0f),
+ new Vector3(2.0f, 2.0f, 2.0f),
+ new Vector3(3.0f, 3.0f, 3.0f)
+ );
+ myBasis = myBasis.Scaled(new Vector3(0.0f, 2.0f, -2.0f));
+
+ GD.Print(myBasis.X); // Prints (0, 2, -2).
+ GD.Print(myBasis.Y); // Prints (0, 4, -4).
+ GD.Print(myBasis.Z); // Prints (0, 6, -6).
+ [/csharp]
+ [/codeblocks]
@@ -243,7 +309,8 @@
Returns the transposed version of the matrix.
- [codeblock]
+ [codeblocks]
+ [gdscript]
var my_basis = Basis(
Vector3(1, 2, 3),
Vector3(4, 5, 6),
@@ -254,7 +321,20 @@
print(my_basis.x) # Prints (1, 4, 7).
print(my_basis.y) # Prints (2, 5, 8).
print(my_basis.z) # Prints (3, 6, 9).
- [/codeblock]
+ [/gdscript]
+ [csharp]
+ var myBasis = new Basis(
+ new Vector3(1.0f, 2.0f, 3.0f),
+ new Vector3(4.0f, 5.0f, 6.0f),
+ new Vector3(7.0f, 8.0f, 9.0f)
+ );
+ myBasis = myBasis.Transposed();
+
+ GD.Print(myBasis.X); // Prints (1, 4, 7).
+ GD.Print(myBasis.Y); // Prints (2, 5, 8).
+ GD.Print(myBasis.Z); // Prints (3, 6, 9).
+ [/csharp]
+ [/codeblocks]