-
Notifications
You must be signed in to change notification settings - Fork 17.7k
/
lock_futex.go
231 lines (203 loc) · 4.99 KB
/
lock_futex.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build dragonfly freebsd linux
package runtime
import (
"runtime/internal/atomic"
"unsafe"
)
// This implementation depends on OS-specific implementations of
//
// futexsleep(addr *uint32, val uint32, ns int64)
// Atomically,
// if *addr == val { sleep }
// Might be woken up spuriously; that's allowed.
// Don't sleep longer than ns; ns < 0 means forever.
//
// futexwakeup(addr *uint32, cnt uint32)
// If any procs are sleeping on addr, wake up at most cnt.
const (
mutex_unlocked = 0
mutex_locked = 1
mutex_sleeping = 2
active_spin = 4
active_spin_cnt = 30
passive_spin = 1
)
// Possible lock states are mutex_unlocked, mutex_locked and mutex_sleeping.
// mutex_sleeping means that there is presumably at least one sleeping thread.
// Note that there can be spinning threads during all states - they do not
// affect mutex's state.
// We use the uintptr mutex.key and note.key as a uint32.
//go:nosplit
func key32(p *uintptr) *uint32 {
return (*uint32)(unsafe.Pointer(p))
}
func lock(l *mutex) {
gp := getg()
if gp.m.locks < 0 {
throw("runtime·lock: lock count")
}
gp.m.locks++
// Speculative grab for lock.
v := atomic.Xchg(key32(&l.key), mutex_locked)
if v == mutex_unlocked {
return
}
// wait is either MUTEX_LOCKED or MUTEX_SLEEPING
// depending on whether there is a thread sleeping
// on this mutex. If we ever change l->key from
// MUTEX_SLEEPING to some other value, we must be
// careful to change it back to MUTEX_SLEEPING before
// returning, to ensure that the sleeping thread gets
// its wakeup call.
wait := v
// On uniprocessors, no point spinning.
// On multiprocessors, spin for ACTIVE_SPIN attempts.
spin := 0
if ncpu > 1 {
spin = active_spin
}
for {
// Try for lock, spinning.
for i := 0; i < spin; i++ {
for l.key == mutex_unlocked {
if atomic.Cas(key32(&l.key), mutex_unlocked, wait) {
return
}
}
procyield(active_spin_cnt)
}
// Try for lock, rescheduling.
for i := 0; i < passive_spin; i++ {
for l.key == mutex_unlocked {
if atomic.Cas(key32(&l.key), mutex_unlocked, wait) {
return
}
}
osyield()
}
// Sleep.
v = atomic.Xchg(key32(&l.key), mutex_sleeping)
if v == mutex_unlocked {
return
}
wait = mutex_sleeping
futexsleep(key32(&l.key), mutex_sleeping, -1)
}
}
func unlock(l *mutex) {
v := atomic.Xchg(key32(&l.key), mutex_unlocked)
if v == mutex_unlocked {
throw("unlock of unlocked lock")
}
if v == mutex_sleeping {
futexwakeup(key32(&l.key), 1)
}
gp := getg()
gp.m.locks--
if gp.m.locks < 0 {
throw("runtime·unlock: lock count")
}
if gp.m.locks == 0 && gp.preempt { // restore the preemption request in case we've cleared it in newstack
gp.stackguard0 = stackPreempt
}
}
// One-time notifications.
func noteclear(n *note) {
n.key = 0
}
func notewakeup(n *note) {
old := atomic.Xchg(key32(&n.key), 1)
if old != 0 {
print("notewakeup - double wakeup (", old, ")\n")
throw("notewakeup - double wakeup")
}
futexwakeup(key32(&n.key), 1)
}
func notesleep(n *note) {
gp := getg()
if gp != gp.m.g0 {
throw("notesleep not on g0")
}
ns := int64(-1)
if *cgo_yield != nil {
// Sleep for an arbitrary-but-moderate interval to poll libc interceptors.
ns = 10e6
}
for atomic.Load(key32(&n.key)) == 0 {
gp.m.blocked = true
futexsleep(key32(&n.key), 0, ns)
if *cgo_yield != nil {
asmcgocall(*cgo_yield, nil)
}
gp.m.blocked = false
}
}
// May run with m.p==nil if called from notetsleep, so write barriers
// are not allowed.
//
//go:nosplit
//go:nowritebarrier
func notetsleep_internal(n *note, ns int64) bool {
gp := getg()
if ns < 0 {
if *cgo_yield != nil {
// Sleep for an arbitrary-but-moderate interval to poll libc interceptors.
ns = 10e6
}
for atomic.Load(key32(&n.key)) == 0 {
gp.m.blocked = true
futexsleep(key32(&n.key), 0, ns)
if *cgo_yield != nil {
asmcgocall(*cgo_yield, nil)
}
gp.m.blocked = false
}
return true
}
if atomic.Load(key32(&n.key)) != 0 {
return true
}
deadline := nanotime() + ns
for {
if *cgo_yield != nil && ns > 10e6 {
ns = 10e6
}
gp.m.blocked = true
futexsleep(key32(&n.key), 0, ns)
if *cgo_yield != nil {
asmcgocall(*cgo_yield, nil)
}
gp.m.blocked = false
if atomic.Load(key32(&n.key)) != 0 {
break
}
now := nanotime()
if now >= deadline {
break
}
ns = deadline - now
}
return atomic.Load(key32(&n.key)) != 0
}
func notetsleep(n *note, ns int64) bool {
gp := getg()
if gp != gp.m.g0 && gp.m.preemptoff != "" {
throw("notetsleep not on g0")
}
return notetsleep_internal(n, ns)
}
// same as runtime·notetsleep, but called on user g (not g0)
// calls only nosplit functions between entersyscallblock/exitsyscall
func notetsleepg(n *note, ns int64) bool {
gp := getg()
if gp == gp.m.g0 {
throw("notetsleepg on g0")
}
entersyscallblock(0)
ok := notetsleep_internal(n, ns)
exitsyscall(0)
return ok
}