This repository has been archived by the owner on Nov 9, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 157
/
pose_camera.py
166 lines (138 loc) · 6.2 KB
/
pose_camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import collections
from functools import partial
import re
import time
import numpy as np
from PIL import Image
import svgwrite
import gstreamer
from pose_engine import PoseEngine
from pose_engine import KeypointType
EDGES = (
(KeypointType.NOSE, KeypointType.LEFT_EYE),
(KeypointType.NOSE, KeypointType.RIGHT_EYE),
(KeypointType.NOSE, KeypointType.LEFT_EAR),
(KeypointType.NOSE, KeypointType.RIGHT_EAR),
(KeypointType.LEFT_EAR, KeypointType.LEFT_EYE),
(KeypointType.RIGHT_EAR, KeypointType.RIGHT_EYE),
(KeypointType.LEFT_EYE, KeypointType.RIGHT_EYE),
(KeypointType.LEFT_SHOULDER, KeypointType.RIGHT_SHOULDER),
(KeypointType.LEFT_SHOULDER, KeypointType.LEFT_ELBOW),
(KeypointType.LEFT_SHOULDER, KeypointType.LEFT_HIP),
(KeypointType.RIGHT_SHOULDER, KeypointType.RIGHT_ELBOW),
(KeypointType.RIGHT_SHOULDER, KeypointType.RIGHT_HIP),
(KeypointType.LEFT_ELBOW, KeypointType.LEFT_WRIST),
(KeypointType.RIGHT_ELBOW, KeypointType.RIGHT_WRIST),
(KeypointType.LEFT_HIP, KeypointType.RIGHT_HIP),
(KeypointType.LEFT_HIP, KeypointType.LEFT_KNEE),
(KeypointType.RIGHT_HIP, KeypointType.RIGHT_KNEE),
(KeypointType.LEFT_KNEE, KeypointType.LEFT_ANKLE),
(KeypointType.RIGHT_KNEE, KeypointType.RIGHT_ANKLE),
)
def shadow_text(dwg, x, y, text, font_size=16):
dwg.add(dwg.text(text, insert=(x + 1, y + 1), fill='black',
font_size=font_size, style='font-family:sans-serif'))
dwg.add(dwg.text(text, insert=(x, y), fill='white',
font_size=font_size, style='font-family:sans-serif'))
def draw_pose(dwg, pose, src_size, inference_box, color='yellow', threshold=0.2):
box_x, box_y, box_w, box_h = inference_box
scale_x, scale_y = src_size[0] / box_w, src_size[1] / box_h
xys = {}
for label, keypoint in pose.keypoints.items():
if keypoint.score < threshold: continue
# Offset and scale to source coordinate space.
kp_x = int((keypoint.point[0] - box_x) * scale_x)
kp_y = int((keypoint.point[1] - box_y) * scale_y)
xys[label] = (kp_x, kp_y)
dwg.add(dwg.circle(center=(int(kp_x), int(kp_y)), r=5,
fill='cyan', fill_opacity=keypoint.score, stroke=color))
for a, b in EDGES:
if a not in xys or b not in xys: continue
ax, ay = xys[a]
bx, by = xys[b]
dwg.add(dwg.line(start=(ax, ay), end=(bx, by), stroke=color, stroke_width=2))
def avg_fps_counter(window_size):
window = collections.deque(maxlen=window_size)
prev = time.monotonic()
yield 0.0 # First fps value.
while True:
curr = time.monotonic()
window.append(curr - prev)
prev = curr
yield len(window) / sum(window)
def run(inf_callback, render_callback):
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--mirror', help='flip video horizontally', action='store_true')
parser.add_argument('--model', help='.tflite model path.', required=False)
parser.add_argument('--res', help='Resolution', default='640x480',
choices=['480x360', '640x480', '1280x720'])
parser.add_argument('--videosrc', help='Which video source to use', default='/dev/video0')
parser.add_argument('--h264', help='Use video/x-h264 input', action='store_true')
parser.add_argument('--jpeg', help='Use image/jpeg input', action='store_true')
args = parser.parse_args()
default_model = 'models/mobilenet/posenet_mobilenet_v1_075_%d_%d_quant_decoder_edgetpu.tflite'
if args.res == '480x360':
src_size = (640, 480)
appsink_size = (480, 360)
model = args.model or default_model % (353, 481)
elif args.res == '640x480':
src_size = (640, 480)
appsink_size = (640, 480)
model = args.model or default_model % (481, 641)
elif args.res == '1280x720':
src_size = (1280, 720)
appsink_size = (1280, 720)
model = args.model or default_model % (721, 1281)
print('Loading model: ', model)
engine = PoseEngine(model)
input_shape = engine.get_input_tensor_shape()
inference_size = (input_shape[2], input_shape[1])
gstreamer.run_pipeline(partial(inf_callback, engine), partial(render_callback, engine),
src_size, inference_size,
mirror=args.mirror,
videosrc=args.videosrc,
h264=args.h264,
jpeg=args.jpeg
)
def main():
n = 0
sum_process_time = 0
sum_inference_time = 0
ctr = 0
fps_counter = avg_fps_counter(30)
def run_inference(engine, input_tensor):
return engine.run_inference(input_tensor)
def render_overlay(engine, output, src_size, inference_box):
nonlocal n, sum_process_time, sum_inference_time, fps_counter
svg_canvas = svgwrite.Drawing('', size=src_size)
start_time = time.monotonic()
outputs, inference_time = engine.ParseOutput()
end_time = time.monotonic()
n += 1
sum_process_time += 1000 * (end_time - start_time)
sum_inference_time += inference_time * 1000
avg_inference_time = sum_inference_time / n
text_line = 'PoseNet: %.1fms (%.2f fps) TrueFPS: %.2f Nposes %d' % (
avg_inference_time, 1000 / avg_inference_time, next(fps_counter), len(outputs)
)
shadow_text(svg_canvas, 10, 20, text_line)
for pose in outputs:
draw_pose(svg_canvas, pose, src_size, inference_box)
return (svg_canvas.tostring(), False)
run(run_inference, render_overlay)
if __name__ == '__main__':
main()